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Abstract

Background: Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and
infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on
fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals.
Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic
networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many
metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that
rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified
metabolites.

Results: We present a novel approach to integrate biochemical pathway and chemical relationships to map all
detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and
NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats
exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified
compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase
data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content
visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential
statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and
blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher
amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of
metabolites for cell division, structural proteins and lipids that are critical for in lung development.

Conclusions: MetaMapp graphs efficiently visualizes mass spectrometry based metabolomics datasets as network
graphs in Cytoscape, and highlights metabolic alterations that can be associated with higher rate of pulmonary
diseases and infections in children prenatally exposed to ETS. The MetaMapp scripts can be accessed at http://
metamapp.fiehnlab.ucdavis.edu.
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Background
Exposure to environmental tobacco smoke (ETS) during
fetal development can cause serious health consequences in
later stages of life to increase the risk of respiratory disease
and susceptibility [1-4]. Biochemical studies suggest that
ETS can alter cell signaling and metabolic functions that
can impair normal cellular growth and morphology in lung
tissues [5,6]. Environmental tobacco smoke exposure has
also been associated with abnormal fetal development [7,8].
However, the exact biochemical changes in different organs
of ETS-exposed animal models are not understood on the
systems level.
Among the functional genomics technologies, metabo-

lomics may better assist in understanding physiology on
systems level, because the metabolome is the ultimate out-
come of biochemical networks and close to disease phe-
notypes. Metabolic perturbations can be investigated on
the levels of genomic topology, gene expression or proteo-
mics, aided by functional ontology interpretation [9] or
pathway mapping [10]. However, changes on gene and
protein levels may not lead to actual changes in metabolic
fluxes and abundance levels, the realm of metabolomic
techniques. Data acquisition and statistical analysis of
metabolomic data have undergone extensive advancement
in the past 10 years [11,12], but interpretation of meta-
bolic data is much less straightforward than that with gen-
omic and proteomic data sets. Unlike in gene and protein
expression studies, no single technology platform can com-
pletely cover all metabolites present in organisms. Physico-
chemical properties of complex lipids, volatiles, primary
metabolites and exogenous components such as vitamins
and food phytochemicals are too different to be analyzed
by a single device. Nevertheless, a good default approach is
to target the most conserved part of metabolism, called pri-
mary metabolic pathways that list well known intermedi-
ates such as metabolism of carbohydrates, amino acids,
fatty acids, hydroxyl acids, nucleotides, purines and related
compounds. Quantitative analysis of common primary
metabolites is most useful to understand major physio-
logical consequences, e.g. growth [13] and diseases [14], as
many primary metabolic pathways are well studied with re-
spect to regulatory aspects of associated genes and
enzymes. Indeed, most primary metabolites are captured in
standard biochemical pathway databases such as MetaCyc
[15] or the KEGG LIGAND repository [16] while biochem-
ical knowledge repositories for lipid, secondary and volatile
metabolism are far less advanced. Most primary metabo-
lites have molecular masses below 550 Da which makes
them amenable to data acquisition using gas chromatog-
raphy (GC) and mass spectrometry (MS) after derivatiza-
tion [17], albeit with notable exceptions such as di- and
triphosphates (e.g. ATP, NADPH, fructose-1,6-bispho-
sphate) or selected other compounds (e.g. beta-carotene,
betaine, S-adenosylmethione).
To cover these compounds, hydrophilic interaction
chromatography/electrospray tandem MS [18] and capil-
lary electrophoresis/MS [19] have been used which focus
on hydrophilic metabolites and thus complement
separations based on lipophilic interactions (reverse
phase liquid chromatography/MS) [20]. Each platform
faces technical limitations which yet constrain reporting
more than 200 identified primary metabolites per data
set, as well as additional metabolic signals that refer to
unknown and potentially novel metabolic intermediates.
GC/MS can be considered as most mature because large
mass spectral repositories have been compiled under
standard data acquisition procedures to annotate small
molecules, most prominently the NIST and Wiley librar-
ies that cover more than 250,000 compounds. Metabo-
lites are distinct in their three-dimensional structure
(e.g. glucose, galactose, mannose) and thus need to be
referred to by both mass spectra and standardized
chromatographic retention which led to the develop-
ment of small target libraries [21,22]. These libraries
support metabolomic databases such as BinBase [23]
that automatically process raw data files into input
data sets for statistical comparisons, e.g. in cancer biol-
ogy [24], plant biology [25], microbial studies [26,27]
or metabolism of subcellular compartments [28]. Sub-
sequently, the observed differential regulation of metabo-
lites needs to be interpreted based on biochemical and
physiological background information, both from pathway
repositories [29,30] and literature databases like the human
metabolome database HMDB [31]. While many metabo-
lites can be mapped to overall metabolic modules, e.g.
using KEGG LIGAND metabolic maps [24], it was noticed
that many metabolites could not be mapped to any known
metabolic pathways or reactions available in the KEGG
database. Beyond the mere extension of genomic recon-
struction databases, e.g. by pathway gap analysis [32] or
community curation efforts [33], the presence of non-
mapped metabolites may be explained by substrate and re-
action promiscuity of enzymes [34,35]. In addition, even for
the best studied organism like Escherichia coli, 40% of the
genes are still not annotated with any cellular function [36].
For newly sequenced organisms, the number of non-anno-
tated genes and thus uncertainty about presence of meta-
bolic pathways is certainly even higher. Therefore, to map,
to visualize and to interpret altered metabolic levels with
respect to biochemical networks remains a formidable
bottleneck in metabolomics.
Due to the sparse nature of metabolomic coverage and

the presence of unaccounted metabolic signals in meta-
bolomic data sets, efforts have been undertaken to utilize
the inherent data structure beyond statistical compari-
sons. The Pearson’s correlation matrix of metabolomic
data was used to represent the metabolic relationships in
a network context [37]. It was shown that the existence



Barupal et al. BMC Bioinformatics 2012, 13:99 Page 3 of 15
http://www.biomedcentral.com/1471-2105/13/99
of such correlation pairs actually reflects biochemical
regulation [38,39]. However, translating a correlation link
into a biochemical link is not straightforward as correla-
tions may not only be driven by the action of enzymes
but also other factors, e.g. transcription regulators.
Another approach is to investigate the topological struc-
ture of network graphs, for example based on contrast-
ing, comparing and correlating multiple nodes
simultaneously [40] using static or dynamic networks
[41]. However, while expression-based metabolite net-
works may shed light on hidden structures in data sets,
biochemistry-based network graphs of metabolic reac-
tions can serve as input to develop structural and
organization models [42], leading to insights into evolu-
tionary relationships [43-45], establish metabolic routes
in a large metabolic networks [46] or predict cellular
growth in microorganisms [47].
While the standardized methods for data acquisition

and improved data processing have enabled generation
of high quality and reliable metabolomics datasets,
methods that would assist biological interpretation are
confined only to metabolic pathway mapping using bio-
chemical knowledgebases. Among those methods, bio-
chemical visualization of metabolomics datasets using
pathway diagrams showed several bottlenecks that
should be overcome for biological interpretation of the
statistical pattern within data. A genome sequence with
its annotation and mRNAs and proteins with their ex-
pression values can be overlaid on static pathway dia-
grams to highlight sequence inferred presence/absence
of a pathway or sub pathway in an organism, and to
visualize mRNA/protein inferred increase/decrease in
metabolic flux in multiple pathways. However, metabolo-
mics datasets do not contain all the metabolites pre-
dicted in a genome constrained metabolic network, not
all the identified metabolites in a metabolomics datasets
can be mapped to pathway diagrams and 2/3 of the
detected metabolites are unknowns. Metabolites are all
different and cannot be sequenced from a linear code ar-
rangement of building blocks, unlike genes, transcripts
and proteins. Furthermore, metabolites can be members
of many different reactions, as they reflect the ultimate
output phenotype of the underlying complex regulatory
and enzymatic network. Therefore, a biochemical
visualization approach for metabolomics is required that
is independent of genome sequence, and that can
visualize all the metabolites in a metabolomics dataset,
include all the known biochemical reactions for identi-
fied metabolites, yield customizable layout and efficiently
visualize differential alteration in metabolite levels to
assist biological interpretation. We here present an ap-
proach to integrate network graphs based on biochem-
ical reactions with chemistry-based graphs. Differential
expression of all the detected metabolite nodes is
superimposed onto the graph to aid the biological inter-
pretation of perturbations in metabolic networks.

Results and discussion
41% of all detected metabolites were significantly
regulated under exposure to secondhand smoke
GC-TOF MS based metabolomics of maternal and fetal
lungs and maternal blood plasma extracts yielded over
700 distinct signals per chromatogram which were auto-
matically deconvoluted and submitted to our open
source BinBase mass spectral processing database. Bin-
Base filters out noisy signals that are not positively
detected in at least 50% of at least one study design
class, excludes known artifacts from data export, adds
potentially novel compounds that had never been
detected before, annotates spectra by retention index/
mass spectral matching to libraries of authentic stan-
dards and finally exports a high confidence data matrix
for statistical and biochemical analysis, including KEGG
and PubChem identifiers for each metabolite. Intensity
values for compounds that were absent in some samples
but positively detected in others are replaced by target
ion signal intensities at the expected peak retention time,
minus the lowest noise signal in local neighborhood, en-
suring that a complete data matrix was available. Over-
all, 459 metabolites were detected in a consistent
manner over all chromatograms, of which 179 were
structurally identified. Between 285–377 metabolites
were positively detected per organ (Figure 1A) using the
stringent BinBase quality criteria. The far majority of all
compounds were detected in at least two organs, verifyin
the conserved nature of metabolism and the suitability
for comparison of metabolic effects of treatments with
environmental tobacco smoke (ETS) between animals
and between organs. Consequently, one-way ANOVA
comparisons were conducted for each metabolite be-
tween ETS-treated and control organs (p< 0.05, n = 8
per group in dams, n = 46 per group for fetuses). With
notable exceptions, ETS treatment led to downregulation of
metabolite concentrations for most compounds (Additional
file 1: Table S1). Interestingly, the largest number of signifi-
cantly regulated metabolites under ETS treatment was
found for fetal lung metabolites (Figure 1B), despite the fact
that maternal lungs were much more directly exposed than
the embryo itself. Indeed, few compounds were found to be
significantly regulated in more than one organ, indicating a
highly specific and organ-dependant metabolic response to
ETS exposure. Only 7% of the compounds were detected
exclusively in blood but not in lung tissues. Moreover, the
Venn diagram (Figure 1B) clearly shows that very few meta-
bolic alterations were apparent in blood plasma and even
fewer of these were shared with changes in either maternal
or fetal lungs. This finding demonstrates that differential ex-
pression of lung metabolites was indeed directly associated



Figure 1 Overview analysis of metabolomic data and differential metabolic regulation for fetal lungs, and maternal blood plasma and
maternal lungs of rats exposed to environmental tobacco smoke (ETS) compared to filtered-air (FA) exposed animals. (A) High
confidence detection (BinBase) and overlap of metabolites among all three tested organs. (B) Number of differentially altered metabolites
(p< 0.05), and overlap of significant differences among three organs. (C&D). Exemplary box and whisker plots of two metabolites that were
found significantly altered in three organs.
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with tissue-specific changes in cellular regulation in lungs
and not conferred by potential contamination with blood
metabolites. Overall, 189 of the total of 459 metabolites
were significantly different in at least one organ (41%). Each
individual compound can be visualized in bar diagrams, e.g.
for hypoxanthine and orotic acid which are involved in pur-
ine and pyrimidine pathways (Figure 1C, D). Tables or bar
charts are hard to navigate with respect to functional rela-
tionships, especially when hundreds of variables are investi-
gated. How can we depict all metabolic changes while
simultaneously keeping visual clarity of and superimposing
biochemical organization?

Mammalian biochemical databases poorly covered the
detected metabolome
Mapping all metabolites to biochemical pathways appears
to be a logical approach for further structuring and finally
interpreting the observed metabolic changes. A range of
databases and tools have been developed over the past
10 years [48-50]. Accordingly, we have matched all 179
identified metabolites against seven biochemical repositories
and additional chemical databases (Additional file 2: Table
S2) to evaluate how many of these compounds were cov-
ered by biochemical knowledgebases. We deemed enzyme
reaction databases most relevant that referred to mamma-
lian biochemistry such as HumanCyc [15], Biochemical
Genetic and Genomic knowledgebase BiGG [51], Reactome
[50] and the Edinburgh Human Metabolic Network
(EHMN) [52]. Surprisingly, 30-53% of all identified metabo-
lites could not be mapped this way (Figure 2) although most
compounds were supposed to be genuine endogenous lung
metabolites and not e.g. derived from gut microbial metab-
olism (like hippuric acid) or food constituents (like sitos-
terol), detected solely in blood plasma. This finding
indicated that genomic-reconstructed mammalian pathway
databases are far from complete. We therefore queried glo-
bal reaction pathway databases (MetaCyc and KEGG) that
would encompass also non-mammalian genomes and
reduced the loss biochemical coverage to only 15-24% of
the structurally identified metabolites (Figure 2). These



Figure 2 Data representation of a total of 179 identified metabolites from the rat environmental tobacco smoke metabolomics study
by querying various bioinformatics databases. Databases were queried using KEGG and PubChem identifiers in addition to individual
compound names.
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compounds may be due to enzyme substrate or reaction
promiscuity [53]. In the next step we searched ligand and
chemical databases which did not directly refer metabolites
to reactions or enzymes: KEGG Compound, MetaCyc
Compound, ‘Chemicals of Biological Interest’ ChEBI [54],
Human Metabolome database HMDB [31] and the largest
freely available chemical repository, PubChem [55]. Only in
PubChem, all compounds were referenced whereas in other
databases, 9-16% of the identified metabolites were not cat-
alogued. The majority of missing compounds were com-
posed of lipids, sugars and sugar conjugates, pointing to
current lack of knowledge of substrate and reaction specifi-
city for many mammalian enzymes.

Biochemical mapping leads to loss of structural clarity
Even without those compounds missing from a specific
biochemical database, it might still be helpful to display the
overall metabolic dysregulation of ETS-impaired lung me-
tabolism on biochemical pathways, either by using available
direct visualization tools or by network graphs. Some tools
such as MetaCyc are focused on single pathways but do
not readily facilitate matching overview results on ‘all Meta-
Cyc pathways’. We have first used seven publicly available
direct ‘global’ visualization tools [50,56-61], (Additional file
3: Table S3). Tools were straightforwardly usable and in-
deed provided the capabilities as referenced. However,
results were not satisfying due to several drawbacks: first,
all tools had static visualization layouts which were defined
by the boundaries of the genes (or proteins, metabolites, re-
spectively) encoded in the tools, but not based on the actual
input, here: the 179 structurally identified metabolites. A re-
cently reported tool, MetExplore [60], uses all MetaCyc
pathways for global mapping of metabolites. Unfortunately,
it does not yield images but only returns lists of associated
pathways, and not connections between these. Alterna-
tively, the KEGG Atlas global map of 128 independent
pathways [58] can be used. However, global pathway map-
ping approaches all suffer from lack of visual clarity because
typical metabolomic data sets (such as the rat ETS data set
used here) are sparsely populated. In cells, metabolic regu-
lation focuses fluxes towards end products and some pools
of intermediate branch points, but metabolic regulation
does not lead to accumulation of many pathway intermedi-
ates which are therefore missing from data sets (Additional
file 4: Figure S4), in addition to constraints given by the
particular metabolomic platform used for data acquisition.
Furthermore, 45% of our identified metabolites could not
be mapped onto this KEGG Atlas global map because, only
a fraction of the 371 reference pathway maps in the KEGG
database are summoned in the Atlas global map (Add-
itional file 4: Figure S4). In order to obtain an overall
complete and structurally clear graphical view of mapping
metabolites to pathways, alternative strategies need to be
taken. Such graphs need to be able to adapt flexibly to the
input data while displaying all input metabolites in a bio-
chemically relevant overview. In order to aid biological
interpretations, views should facilitate superimposing results
of statistical analyses and focus on dysregulated pathway
modules while also displaying all encompassed pathways.
Additional discussion and comparison of various pathway
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mapping tools are given in [62]. Ultimately, graphical path-
way mapping visualizations serve biologists to draw conclu-
sions or new hypotheses that would otherwise be difficult to
obtain. The purpose of tools like MetaMapp is therefore to
map data to biochemical modules to facilitate biological
interpretations. Secondly, MetaMapp may be used to inte-
grate metabolomic data with data from other Omics plat-
forms, but it is not aimed at using graphs to predict fluxes
or to predict enzymatic reactions for novel metabolites [63].
Instead of using static global maps, we have therefore tested
using Cytoscape for visualization of biochemical pathway
databases. While this approach certainly enables large over-
views and zooming functionality, overall graph structures
are determined by the high number of entities in pathway
databases. In global KEGG pathway graphs, 4688 metabo-
lites are present (2010 version, excluding the drug-like com-
pounds), which led to densely packed, hairball-type
visualizations that are unsuitable if 179 metabolites are
matched (Additional file 5: Figure S5). The only exception
returning a visually clear graph was by employing the KEGG
pathway query that returned a list of 137 of our 179 ETS-
study metabolites. Linking those 137 metabolites based on
association with pathway maps as edges yielded a custo-
mized graph (Additional file 5: Figure S5) that proximately
clustered metabolites according to biochemical neighbor-
hood. However, the observed clustering was not very strong,
and a range of compounds were found as isolated groups of
nodes. In addition, 42 metabolites were not visualized as
these were not present in the KEGG PATHWAY database.
When using the KEGG reactant pair database, a total of
149 metabolites were mapped on a global view in a uni-
partite graph (Additional file 5: Figure S5, e). As this
visualization was reflecting all metabolites comprised in
the KEGG reactant pair database, the network graph still
appeared very dense despite some emergence of biochem-
ical modules based on overall reaction distances [64,65] in
which the ETS-study metabolites were clustered. A bio-
chemically superior approach is utilizing the information
content of substrate/product reactant pairs for which the
majority of atoms are shared, and indeed, metabolic path-
ways are best analyzed using atomic reconstruction map-
ping [66,67]. Using reactant pairs as founding parameter
of metabolic pathways [68,69] is essential to derive bio-
chemically relevant conclusions, unlike efforts that only
utilize network topology data. In addition, reconstruction
of pathways that are based on reactant pairs assists in
identifying pathway gaps that can be filled in by assigning
reactions from enzyme paralogs or orthologs of yet not-
annotated enzymes [70].

Chemical network graphs yield cluster resembling
biochemical modules
While these initial networks were encouraging, they failed
in visual clarity, strength of biochemical clustering and
completeness of mapping our detected metabolites. We
have therefore explored adding a radically different ap-
proach: if biochemistry refers to the conversion of chem-
ically similar compounds by catalytic enzymes, it appears
logical to associate all compounds directly by their chem-
ical similarity. Clusters of chemical similar compounds
should then resemble biochemical modules. The struc-
tures of all 179 identified metabolites can be encoded in
molfiles which can be decomposed into substructures
(Figure 3, labeled in colors) which are defined by a 881-bit
publicly available set of substructures (ftp://ftp.ncbi.nlm.
nih.gov/pubchem/specifications/pubchem_fingerprints.
txt) in PubChem. The presence and count of all of these
substructures define a matrix which was subjected to dis-
tance calculation utilizing the Tanimoto formula [71],
yielding a pair-wise chemical similarity matrix among all
studied metabolites. While we have used here only 179
variables, this approach can be easily extended to next
generation metabolomics data sets that may encompass
many more identified metabolites. These similarity ma-
trixes can be visualized in Cytoscape graphs by applying
thresholds of similarity scores to define network edges
(Additional file 6: Figure S6). Tanimoto coefficients run
from 0 to 1 from ‘no similarity’ to ‘identical structure’. At
high threshold settings (0.9), scattered graphs were
obtained with many isolated compounds. Even at very low
thresholds (0.5), compounds were found in isolation of
the network, while clusters begin to disappear into densely
packed patterns. At 0.7 Tanimoto coefficient thresholds,
clear metabolite clusters resulted (Additional file 7: Figure
S7). Isolated compounds were connected to the network
by its single closest similar compound (see Methods).
Resulting clusters of fatty acids, organic acids, sugars,
sugar alcohols, phosphates, amino acids, nucleotides, pur-
ines and aromatics indeed were similar to patterns yielded
by KEGG RPAIR matching networks. Most importantly,
such chemical similarity network graphs can map metabo-
lites that lack reaction annotation in any biochemical data-
base. However, there were compounds that are known to
be biochemically closely related (members of the tricarb-
oxylic acid cycle, TCA) that were not found in close prox-
imity in chemical similarity networks (Figure 4A and
additional file 7: Figure S7). Succinic, aconitic and fumaric
acid had higher chemical similarity to fatty acids than to
hydroxyl acid s, and thus were placed in proximity to the
fatty acid cluster. Hence, solely relying on chemical simi-
larities fails to generate reactant pair networks that are
fully suitable for enzymatic interpretations [63].

MetaMapp integrated network graphs display all
metabolites while maintaining biochemical organization
In order to resolve the shortcomings of both mapping
approaches, we therefore combined KEGG reactant pairs
and Tanimoto chemical similarity tools into a novel

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt


Figure 3 Schema of network integration and visualization using MetaMapp and Cytoscape. For biochemical mapping, the KEGG reactant
pairs database was used. Chemical similarity mapping was performed using 881- substructure fingerprints within the PubChem database.
MetaMapp tools then integrated biochemical and chemical similarity matrix files to visualize the network in Cytoscape. Attribute files such as fold-
changes and statistical thresholds were added to inform about metabolic regulation in case/control studies.
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method, MetaMapp (Figure 3). We have first mapped all
identified metabolites of our ETS study against the presence
in the KEGG reactant pair database for single-step conver-
sions. 101 of 179 metabolites were returned in this query.
Subsequently, a simple interaction format (.sif) network
graph was constructed and visualized in Cytoscape.
Cytoscape enables adding further node or edge metadata
for visualization purposes, such as statistical significance in-
formation or magnitude of regulation. Results for the
MetaMapp graphs are given in Figure 4, showing zoom-ins
that highlight the improved biochemical interpretability
from Tanimoto chemical similarity networks to MetaMapp
graphs. Complete Cytoscape session files are given as
additional information S8. As demonstrated by Figure 4A,
TCA metabolites were scattered into different clusters of
nodes using chemical similarity alone. The combination of
biochemical reactant pair mapping (red edges) and chem-
ical similarity (blue edges, Figure 4B) into one MetaMapp
graph, however, correctly clustered the TCA metabolites
into one group, separate from fatty acids, hydroxyl acids
and sugar acids.
In order to display our data set in a truly comprehen-

sive manner, we lastly aimed at adding the 280 unknown
metabolite signals that could not yet structurally identi-
fied using the Fiehnlib or NIST mass spectral libraries.
Electron ionization mass spectra of similar structures
are known to cluster [72-74]. Hence, mass spectra of
unknowns can be mapped against all other compounds,
bringing unknown metabolites into proximity of bio-
chemically relevant groups of nodes in networks. Using
the NIST mass spectral similarity algorithm [75] at a for-
ward similarity threshold of 700, and integrating sif files
from biochemical, chemical and mass spectral similarity
networks (yellow edges), all 459 metabolites of the lung
and blood metabolome of ETS-treated rats were inte-
grated (Figure 4C). Cytoscape does not provide capabil-
ity to define one network as host or primary grid and
further networks as additions; hence, overall biochemical
clarity suffered by adding unknowns using mass spectral
similarity. Nevertheless, TCA metabolites were still
retained in close proximity (Figure 4C), giving biochem-
ical relevance to three-tiered MetaMapp networks when
aiming to classify differentially regulated metabolites of
unknown structure into chemical classes and potential
biochemical modules. In comparison to other ways of
visualization of metabolome data, such as direct



Figure 4 MetaMapp zoom-ins for results of mapping metabolomic data using three different approaches, focusing on the
biochemically strongly related TCA cycle metabolites as example (highlighted with bold labels and red nodes). Identified metabolites are
represented by circle nodes; unknown metabolites by square nodes. Red edges denote KEGG reactant pair links; blue edges symbolize Tanimoto
chemical similarity at T> 700; yellow edges give mass spectral similarity> 700. Cytoscape session files are given as additional information S8,
including metabolite names that have been left out of the network graphs for visual clarity. (A) Mapping 179 identified metabolites solely using
Tanimoto chemical similarity as input data. (B) Integration of KEGG reactant pair information with the Tanimoto chemical similarity matrix
(threshold T> 700). (C) Integration of KEGG reactant pair information with the Tanimoto chemical similarity matrix of all 179 identified
metabolites and the mass spectral similarity matrix of all 459 compounds, including unknowns (squared nodes, exemplified with BinBase
database identifier numbers).
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biochemical mapping or mere statistical visualizations
(e.g. bar diagrams, heatmaps or multivariate Partial Least
Square plots), three-tiered MetaMapp networks appear to
structurally organize information in a biochemically rele-
vant way while enabling to overlay the network structure
with further metadata, most importantly the significance
and magnitude of class-wise statistics.
MetaMapp provides several advantages. First, it is inde-

pendent of the technology utilized to identify metabolomic
profiles, be these mass spectrometry- or NMR-based. This
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means that data from different metabolomics platforms can
be readily integrated and visualized to infer biological con-
clusions. The only requirement is that all chemical struc-
tures are associated with machine encoded chemical
structures. Second, MetaMapp is not constrained by gen-
omics information. All detected metabolites can be straight-
forwardly mapped across studies or species, enabling
mapping of metabolites that originated from diet or gut
microbes along with compounds that stem from mamma-
lian enzymes. Third, the MetaMapp layout is not static and
is automatically updated according to the input list of com-
pounds; hence, MetaMapp graphs enable high biochemical
clarity despite a large number of metabolic nodes. However,
MetaMapp also had shortcomings, some of which may be
partly resolved in further extensions: (a) MetaMapp cannot
be used to compute fluxes, or to compute enzymatic reac-
tions, between metabolites. (b) MetaMapp is scalable to
some extent, but any network graph may get blurred when
adding large numbers of nodes; in our case, this was
observed by adding too many unknowns using MS similar-
ity. (c) MetaMapp is most useful for visualizing case/control
comparisons. Visual clarity suffers when statistical results
are added from additional comparisons, and we therefore
suggest using multiple two-way graphs for displaying data
from more complex biological study designs.

Fetal lung metabolism is more affected by environmental
tobacco smoke than metabolism in organs of dams
Changes in the fetus lung metabolic networks in com-
parison to metabolic impairments in the organs of dams
were subsequently visualized in MetaMapp graphs and
interpreted in the context of biological functions. As sta-
ted above, 189 of the total of 459 metabolites were sig-
nificantly different in at least one organ (41%) when
comparing ETS- challenged rats to rats in control condi-
tions. Using MetaMapp, the results of statistical tests
were now superimposed to the biochemical network
structure for comparing metabolic alterations in fetal
lungs and dams’ lung and plasma.
In Figure 5, mapping metabolomic data is high-

lighted for all three rat organs, displaying only sig-
nificantly altered metabolites (p< 0.05) while not
labeling the unchanged compounds. For clarity,
metabolites of unknown structure have been excluded.
The 179 identified metabolites were clustered into
five major network clusters (see, e.g., the fetal lungs
metabolomic network, top graph in Figure 5): amino
acids and amines in the upper left corner, fatty acids
in the lower left corner, purines and pyrimidines in
the upper right corner, carbohydrates in the lower left
corner and dicarboxylic and hydroxyl acids in the
center of the graph. Few intermediate metabolites
were interspersed in the graph, including metabolites
comprising the TCA cycle that was biochemically
correct found to connect the fatty acid cluster to the
amino acid cluster.
In all three organs, most of the affected compounds

were down-regulated under ETS-stress, as indicated by
the blue-colored nodes in the networks. By far the largest
number of differences was observed in fetal lung tissues
(78 compounds, compared to 29 and 9 metabolites in
lungs and plasma of dams). 68% (13/19) of the detected
free fatty acids were dysregulated in fetal lungs, compared
to only 8% (3/19) of the free fatty acids in the lungs of
dams. Fatty acids are important components of pulmonary
surface-active lipids and alveolar membranes [76]. Both
components are critical in the breathing process and indi-
cate that important metabolic building blocks for lung de-
velopment were found down regulated. It has been shown
that significant de-novo fatty acid biosynthesis is per-
formed in the developing fetal lungs [77], in addition to
hepatic metabolism [78]. Decreased amounts of those fatty
acids in the developing fetal lung hence may lead to
impaired lung function after birth. Moreover, a round 50%
of purines/pyrimidines were dysregulated in both fetal and
dams lungs (all metabolomic result data are given in
Additional file 1: Table S1). Purines and pyrimidines are
required for DNA and RNA biosynthesis and are linked
through their ribose units to the pentose phosphate cycle,
which also generates reducing power by NAPDH produc-
tion. A decreased level of these metabolites can generally
indicate a lower rate of cell division [79]. Conversely, uric
acid was among the few compounds found to be increased
in fetal lungs. As uric acid is a metabolite known for its
antioxidant properties in the respiratory tract [80], its
increased concentration might indicate that fetal lungs
were already under oxidative stress prior to birth. The
only further elevated compounds were metabolites dir-
ectly related to energy metabolism, i.e. glucose, glucose-6-
phosphate and the ketone body 3-hydroxybutyrate. Higher
levels of glucose and glucose-6-phosphate can be inter-
preted by lower fluxes through glycolysis and the pentose
phosphate pathway [81], because fewer amounts of struc-
tural carbon backbones are needed for biosynthesis in cell
division. Antioxidant defense, energy metabolism, nucleo-
tide production and fatty acid metabolism are co-ordinated
with the cell cycle [82,83] and hence support the notion of
lower rates of cell division in ETS-challenged fetal lungs.
In addition, other critical parts of lung metabolism were

impaired as well. The MetaMapp graph for fetal lung dysre-
gulation (Figure 5) shows that several amino acid pools
were down-regulated, among them proline levels. Proline is
one of the most important building blocks of lung collagen,
a structural protein for connective tissues that provides
mechanical stability and elasticity to the pulmonary tissues.
Similarly, isoleucine was reduced, an amino acid that is
found enriched in the lung surfactant protein B. Next, both
glycocyamine and its anabolic product creatine/creatinine



Figure 5 MetaMapp visualization of metabolomic data highlighting the differential metabolic regulation in fetal lungs, maternal blood
plasma and maternal lungs of rats exposed to environmental tobacco smoke compared to filtered-air exposed animals. Red edges
denote KEGG reactant pair links; blue edges symbolize Tanimoto chemical similarity at T> 700; unknowns are left out of these graphs for visual
clarity. Metabolites found significantly up- regulated under exposure to environmental tobacco smoke (p< 0.05) are given as red nodes and
labeled by BinBase names; blue nodes give down-regulated metabolites. Node sizes reflect fold change. Metabolites that were not found to be
differentially regulated were left unlabeled for visual clarity. Red edges denote KEGG reactant pair links; blue edges symbolize Tanimoto chemical
similarity at T> 700.
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were found at lowered levels in fetal lungs. Creatine and
creatinine are needed to supply energy in muscles.
Decreased amounts may impair lung muscle contractions.
Newborns of ETS-exposed dams, thus, appear to be born
with compromised lung metabolism that may impact the
lung surfactant and membrane fluidity system, lung flexibil-
ity and lung muscular strength. In humans, epidemiological
studies show similar effects of environmental tobacco
smoke. In-utero exposure to cigarette smoking adversily
affects tidal flow volume in healthy newborn babies [84]. It
was also observed that smoking during pregnancy causes
altered height to weight ratio [85] in newborns. These
findings support the underlying hypothesis of our
study that second hand smoke may impact the devel-
opment of fetal lungs in a highly critical phase of life,
just a day before birth. In comparison to fetal lung me-
tabolism, far fewer changes in blood plasma were
observed, excluding the possibility that changes seen in
fetal lungs were directly conferred by changes in blood
plasma or by contamination of the fetal lung tissues
with plasma. Indeed, only allo-inositol and hippuric acid,
a product of gut metabolism for detoxifying aromatics
were found decreased in both blood and fetal lungs.

Conclusions
We have developed an improved way to visualize all
detected metabolites in metabolomics studies (Meta-
Mapp) that can comprise both identified and unknown
compounds while maintaining the modular organization
of metabolites in biochemical pathways. As MetaMapp
outputs are seamlessly compatible with the open-source
platform Cytoscape, visualization of next generation
metabolomics datasets with an increased number of
identified metabolites and integration with genomics
and protemics data sets can be easily achieved. By apply-
ing this approach on metabolic responses of ETS in the
lungs of dams and their respective unborn offspring
(fetuses) as well as in blood plasma we have demon-
strated that such network graphs enable rapid over-
views on all statistically significant metabolic changes
in different organs, including their biochemical con-
text. The down-regulation of critical biochemical
substrates in perinatal lung metabolism, most notably
purines and pyrimidines, free fatty acids and specific
amino acids, may lead to a compromised lung system
impaired in a range of vital structural components
such as surfactant proteins and lipids, connective tis-
sues and alveolar membranes that are required to
provide mechanical stability and elasticity to the pul-
monary tissues. Hence, we propose that metabolic
changes during this critical phase of development of
a life supporting organ may affect lung morphogen-
esis which ultimately may lead to respiratory com-
promise and disease in later stages of life.
Methods
Environmental tobacco smoke exposure
Timed pregnant Sprague Dawley rats were purchased
from Zivic Laboratories (Zeleniople, PA). Viviparous fe-
male rats were time-mated over a 12 hour window to
insure a narrow gestational time among dams for this
study. Conception was confirmed by the presence of a vis-
ible vaginal plug. Dams were shipped to the Center for
Health and the Environment (UC Davis) on gestation day
3. Exposure to aged and diluted sidestream cigarette
smoke as a surrogate to ETS was begun on gestation day
5. Dams were housed two per plastic cage on TEK-chip
pelleted paper bedding using a 12 hours light/12 hours
dark cycle. Animals during non-exposure hours had access
to water and laboratory rodent diet 5001 (ad libitum). In
compliance to Reporting In Vivo Experiments" (ARRIVE)
guidelines, all animals were handled according to the U.S.
Animal Welfare Acts, and all procedures were performed
under the supervision of the University Animal Care and
Use Committee (University of California, Davis). Dams
were randomly divided into groups exposed to filtered air or
to ETS in Hinners-type inhalation chambers. Humidified
3R4F research cigarettes (Lexington, KY) were used. An
automatic metered puffer was used to smoke cigarettes under
Federal Trade Commission conditions (35 ml puff, 2 seconds
duration, 1 puff per minute). The smoke was collected in a
chimney, diluted with fresh air and delivered to whole body
exposure chambers. Exposure to smoke was for 6 hours/day,
7 days/week from gestation day 5 to gestation day 20 at a tar-
get concentration of total suspended particulate (TSP)
of1mg/m^3Dams and their respective unborn offspring
(fetuses) were studied at gestation day 20 of pregnancy.

Metabolomic data acquisition and statistics
Rats were sacrificed one day before term (gestation day
19). Dams lungs were perfused using PBS (Phosphate
buffer saline) while fetal lungs were too small for this
procedure and contained residues of blood plasma. Lung
tissues were prepared from liquid-nitrogen frozen status
by grinding in 2 ml Eppendorf tubes for 2 minutes at
25 s-1 using 20 mm i.d. metal balls in a MM300 ball mill
(RETSCH, Germany). Subsequent extraction was carried
out using 1 ml of an one phase mixture of degassed iso-
propanol/acetonitrile/water (3:3:2) at −20°C for 5 min.
Tubes were centrifuged for 30 s at 14,000 g and the
supernatant was collected and concentrated to complete
dryness. Samples were derivatized for GC-TOF-MS ana-
lysis as previously published [21]. BinBase database pro-
cessing results and metabolite annotation matrices [21]
were downloaded from the SetupX database [86], com-
pliant to the recommendations by the metabolomics
standards initiative (MSI); experiment id SX-394122.
Reports contained deconvoluted mass spectra, retention in-
dices, unique ions, standard compound identifiers and
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compound names, class annotations and KEGG and
PubChem compound identifiers (CIDs); see Additional file
1: Table S1. Data were used without further normalization.
Student t-tests between ETS treated groups and filter aired
groups were calculated in MS Excel 2007 using p< 0.05 as
significance threshold. Fold changes were calculated by
dividing the median of metabolites in ETS group by the
median of metabolites in filter aired group. No multiple
testing correction was applied as the focus here was not to
identify biomarkers but to have a large set of potential
changes to be highlighted in pathways. Directions of alter-
ation were determined including fold changes. An output
file was saved as a Cytoscape node attribute file for up-
regulated, down-regulated and unchanged metabolites.

Bioinformatics database queries
Nine small-molecule and pathway databases were quer-
ied in order to find the maximum substance coverage in
each database and to obtain functional information.
KEGG and PubChem identifiers of the identified meta-
bolites were mapped against bioinformatics databases in
batch modes using various web tools available as KEGG,
PubChem, HMDB [31], MetaCyc [15] and ChEBI [54]
websites. Additional databases such as Reactome,
EHMN, and BIGG- UCSD were downloaded as BioPax
or SBML file format. Mapping was performed in
Cytoscape using the advance search option. Biochem-
ical and chemical metabolic relationships between
metabolites were utilized to construct metabolomics net-
work graphs. Species-specific reaction networks were
downloaded from their respective database, i.e. Reactome
[50] (http://Reactome.org/download/index.html), Human-
Cyc (www.biocyc.org) and EHMN [52] (http://wwwtest.
bioinformatics.ed.ac.uk/wiki/PublicCSB/EHMN) for mam-
malian reactions which were downloaded from their web-
sites as systems biological markup language files (SBML).
BIGG-UCSD [51] was received as SBML format from Dr.
Palsson’s laboratory, UCSD (http://systemsbiology.ucsd.
edu/In_Silico_Organisms/Other_Organisms). Global reac-
tion networks were constructed by parsing the reaction in-
formation from a text file downloaded from KEGG (ftp://
ftp.genome.jp/pub/KEGG/ligand/reaction/reaction.lst) and
MetaCyc databases (www.metacyc.org). Atomic mapping
of reaction network was constructed by parsing the KEGG
RPAIR text file (ftp://ftp.genome.jp/pub/KEGG/ligand/
rpair/rpair). Parsed information was converted into
Cytoscape SIF (simple interaction format) network
file format and visualized in Cytoscape version 2.6.
Metabolites-pathway relationships were extracted from a
text file downloaded from the KEGG database (ftp://ftp.
genome.jp/pub/kegg/pathway/map/cpd_map.tab). The in-
formation was converted into Cytoscape SIF file format.
Results of KEGG pathway mapping for a given list of
KEGG ids were converted into SIF file format using text
pad, which is a useful text editor for windows operating
systems.

MetaMapp graph construction and cytoscape
visualization
PubChem CIDs were utilized to obtain molfile encoded
structures from PubChem using batch entrez online utility
http://www.ncbi.nlm.nih.gov/sites/batchentrez. A 881 bit
long substructure fingerprint is pre-calculated and stored
for each compound entry in PubChem. Pair-wise Tanimoto
chemical similarity co-efficients [71] among metabolites
were calculated using the substructure fingerprints of input
metabolites. The similarity co-efficient ranges between 0.0
and 1.0; high score reflects high similarity between two
metabolites. Using online structure clustering tools of Pub-
Chem, pair wise matrices were subjected to a single linkage
clustering algorithm that clustered the chemical com-
pounds according to their chemical similarities. The simi-
larity matrix was then downloaded from the website and
converted into SIF formatted networks (Additional file 8:
S8) using MetaMapp scripts using thresholds of 0.5, 0.6,
0.7, 0.8 and 0.9. A pair wise mass spectral similarity matrix
was calculated by the BinBase database using the NIST
similarity co-efficient. The matrix was subjected to a hier-
archical clustering algorithm in the TMEV software. The
mass spectral similarity network was constructed by Meta-
Mapp scripts using 500, 600, 700, 800 and 900 similarity
thresholds. Cytoscape was utilized to visualize the differen-
tial statistics output on network graphs. All the network
graphs were imported into Cytoscape [87], and visualized
using the ‘organic layout’ algorithm. Organic layout com-
putes the node position in a graph on the basis of node de-
gree and clustering co-efficient. An increase in clustering
co-efficients means that the nodes are highly similar to each
other, placing those nodes into a single cluster with short
edges. As our objective was also to retrieve clusters of
structurally similar metabolites, we have chosen to use the
organic layout. Node and edge attributes were imported
and mapped to nodes and edges. Statistical results were
mapped as node color; fold changes were mapped as node
size. All MetaMapp tools have been automated and can be
accessed from http://metamapp.fiehnlab.ucdavis.edu.

Additional Files

Additional file 1: Table S1. Results of Analysis of variance (ANOVA) for all
459 metabolites detected in the rat environmental tobacco smoke exposure
study, compliant to MSI-recommendations (Metabolomics standard including
international chemical identifier keys (InChI), PubChem and KEGG database
identifiers and retention index and quantification ion information.
ETS=Environmental Tobacco smoke exposed, FA= filtered air exposed.

Additional file 2: Table S2. Bioinformatics databases that were queried for
identified metabolites.

Additional file 3: Table S3. A list of web tools for pathway mapping analysis
of a list of metabolites associated with KEGG or PubChem Identifiers.

Additional file 4: Figure S4. KEGG Atlas Global Map visualization. Mapped
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metabolites are highlighted as black nodes yielding an overall sparse
coverage of the graph. 45% of the identified metabolites in the rat ETS
study were not covered by the KEGG Atlas Global Map.

Additional file 5: Figure S5. Mapping the 179 identified metabolites of
the rat ETS study on biochemical network graphs using various publicly
available tools and databases. See method section for details on
construction of these graphs. (a) Edinburgh human metabolic network;
(b) HumanCyc; (c) Reactome; (d) BIGG-UCSD; (e) KEGG RPAIR network; (f)
MetaCyc reaction DB; (g) Cytoscape network using only the 137
metabolites retrieved from the KEGG pathway repository; (g) Cytoscape
network of the 137 metabolites retrieved from the KEGG pathway on all
metabolites comprised in the KEGG pathway repository.

Additional file 6: Figure S6. Impact of Tanimoto chemical similarity
thresholds on visual appearance and clarity of metabolomic networks in
Cytoscape without addition of KEGG reactant pair information. Nodes are
metabolites and edges are chemical similarity links. (a) Network without
any similarity threshold; (b) using a Tanimoto threshold of 0.9; (c) using a
Tanimoto threshold of 0.8; (d) using a Tanimoto threshold of 0.7; (e)
using a Tanimoto threshold of 0.6; (f) using a Tanimoto threshold of 0.5;
(g) linking all metabolites to the two most Tanimoto-similar compounds;
(h) combining data matrices from networks (d) and (g).

Additional file 7: Figure S7. A MetaMapp network graph displaying
labels for all the identified metabolites. Nodes are metabolites, red edges
are KEGG RPAIR links and blue edges denote chemical similarity links.

Additional file 8: S8. A zip file containing the input Tanimoto chemical
similarity matrix, ANOVA output, KEGG Ids, CID pairs and Cytoscape
session files for all 179 identified metabolites. The session files can be
opened directly into Cytoscape.
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