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Experimental observation 
of asymmetrical microwave jets 
and far‑field distribution generated 
by a dual‑material system
B. Varghese1*, O. Shramkova1, P. Minard2, L. Blondé1, V. Drazic1 & V. Allié1

In this paper, we report the experimental and numerical investigation of plane wave diffraction by an 
all-dielectric dual-material cuboid. Edge diffraction by a cuboid leads to the generation of a narrow, 
high intensity beam in the near-field region called a photonic jet. We examine the dependence of the 
jet behavior and orientation on the materials and dimensions of constitutive parts in the microwave 
frequency domain. The possibility to shift and deviate the resultant microwave jet in the near-field 
region of such a structure depending on the size of constitutive parts is demonstrated numerically. 
Experimentally, we observe a shift in the spatial position of the jet. The experimental asymmetric 
electric field profile observed in the far-field region is attributed to the input of multiple edge waves 
generated by the dual-material cuboid. The presented results may be scaled at different frequency 
bands such as optical frequencies for designing nanostructures enabling the focusing and deviation 
functionality and creation of new optical devices which would satisfy the needs of emerging 
nanophotonic applications.

A photonic jet is a narrow, high-intensity electromagnetic beam formed on the shadow side surface of an ele-
ment illuminated by a plane wave. The concept was first reported by modelling the response of micron-scale 
dielectric cylinders illuminated by a plane wave1. Due to small scale of the structures involved, they were termed 
as nanojets. The formalism of photonic nanojets for dielectric microspheres2 and microcylinders3 can be under-
stood using Mie’s theory. A detailed literature review on photonic nanojets has been reported by Heifetz et al.4. 
Jets of the same nature have also been reported with mesoscale objects irradiated by THz frequencies in which 
case the jets are termed as terajets5–7. Heifetz et al.8 report an enhanced backscattering by a jet created by a 
dielectric sphere of diameter 7.62 cm at 30 GHz. Kong et al.9 created a microwave jet by a 5.08 cm acrylic sphere 
illuminated by plane polarized EM waves of 30 GHz frequency. Minin et al.7 experimentally observe a photonic 
hook phenomenon (a type of curved light beam created by the focusing of a plane wave through an asymmetric 
dielectric particle10) at 0.25 THz frequency using a mesoscale asymmetric dielectric cuboid. Pacheco-Pena et al.5 
experimentally studied terajets created from dielectric cuboids at sub-THz frequencies. Creation of photonic jets 
by dielectric particles of different shapes have also been reported in the literature11,12.

Microwave jets9, generated in the microwave frequency domain are analogues of photonic nanojets. Recently, 
studies have shown how edge diffraction phenomenon can explain the focusing properties of arbitrary shaped 
microstructures13,14. Diffraction of an incident plane wave from the edge of a dielectric microstructure forms a 
tilted focused beam (a.k.a. photonic jet) whose deviation angle depends on the refractive index ratio between 
the structure medium and the surrounding material. Design of metagrating diffractive elements for waveguide 
in-couplers15 and color splitting elements for image sensors16 using photonic jet combination by dual-material 
elements have previously been demonstrated.

The photonic jet beam angle for edges with a base angle of 90° (refer Fig. 1) can be approximated by the fol-
lowing relation13:

(1)θBj ∼=
90◦ − θTIRj
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where j = 1, 2, 3 and θTIR1 = sin−1
(

n1
n2

)

, θTIR2 = sin−1
(

n3
n2

)

, θTIR3 = sin−1
(

n1
n3

)

 are the critical angles of total 
internal reflection. The angles of each photonic jet deviation depend on the ratio of indexes of the two media in 
contact. The maximal intensity and minimal length correspond to the beam with the highest ratio between the 
refractive indexes in the expression for θTIRj . Each photonic jet is a result of constructive interference between 
the transmitted plane wave and an edge wave generated at the edge of an interface separating two mediums14. It 
makes approximately twice the angle of the photonic jet i.e. θEdge Wave = 2θBj w.r.t. the vertical. Influence of edge 
waves on the far-field (FF) response of a system is observed in the following sections.

For the case of a single-material system with vertical edges (n3 = n2 in Fig. 1), photonic jets radiate from oppo-
site edges with θB3 = θB1 , intersect and combine on the vertical axis of symmetry. To understand the behavior 
of the combined photonic jet radiated by a dual-material structure with constitutive material of widths W1 and 
W2 as shown in Fig. 1 (W = W1 + W2), we must analyze the individual photonic jet orientation and determine the 
condition for their intersections and their positions. In Fig. 1, point A denotes the point of intersection of jet 1 
(with an angle of θB1) and jet 2 (with an angle of θB2) having the coordinates (XA, ZA), where 

The jets generated by the external vertical edges of the dual-material system (jet1 with angle θB1 and jet 3 with 
an angle θB3) will intersect at point B with the coordinates (XB, ZB), where 

Using Eq. (1), we note that jet 2 and jet 3 would intersect only when n3 ≥
√
n1n2 in which case the coordinates 

of point C (XC, ZC) would be

Numerical analysis of the power density distribution inside and outside the element demonstrates that the posi-
tion of photonic jet hotspot and shape of generated beam are determined by the sizes of the blocks. For systems 
with equal sizes of constitutive parts (i.e. W1 = W2), for W/2 > λ and n3 <

√
n1n2.

	 I.	 If H < ZA, the photonic jet shifts from the axis of symmetry toward the higher refractive index medium17,

(2)
XA = W1 + tan (θB2) ∗ ZA,

ZA = W2

tan(θB1)+ tan(θB2)
.

(3)
XB = tan θB3 ∗ ZB,

ZB = W

tan(θB1)+ tan(θB3)
.

(4)
XC = tan θB3 ∗ ZC ,

ZC = W1

tan(θB3)− tan(θB2)
.

Table 1.   Summary of details of the dielectric cuboids used in this study.

Cuboid type Relative permittivity, εr Loss tangent Total width, W (cm) Depth, D (cm) Height, H (cm)

Single material 2.6 0.0009 12 12 8.5

Dual-material 2.6 and 3.2 0.0009 and 0.0010 12 (6 + 6) 12 (each) 8.5 (each)

Figure 1.   Schematic representation of the cross-sectional geometry of a dual-material cuboid illuminated by a 
plane wave. The arrows indicate the direction of the photonic jets created and their position of intersection.
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	 II.	 If H > ZA, the photonic jet deviates towards the medium with refractive index n2 (n2 > n3).

For W/2 < λ we observe a shift of the photonic jet towards the part with higher refractive index. For our simu-
lations we chose W1 = W2 = 6 cm for incident frequencies of 4, 5 and 6 GHz (or λ = 7.5, 6 and 5 cm, respectively). 
For 4 GHz we have W/2 < λ, so we should observe a shift of the combined microwave jet, whereas for 6 GHz, 
W/2 > λ and so we should see a deviation of the jet orientation (for H > ZA). The parameters used were taken 
with the understanding that the photonic jet phenomenon is scalable with wavelength and keeping in mind the 
experimental aspect of the study. The materials we used were low-loss foam dielectric cuboids with εr = 2.6 and 
3.2 (n = 1.61 and 1.79 respectively). ZA for these materials was calculated to be 7.9 cm. To observe the devia-
tion, we first simulated a system with the height H = 8.5 cm, total width W = 12 cm and depth D = 12 cm. The jet 
created by the dual-material cuboid was compared to that by a single-material cuboid with an isotropic εr = 2.6 
having the same physical dimensions. Table 1 summarizes the dielectric cuboid parameters used in this study.

Results and discussion
This section consists of numerical and experimental results in the NF and FF domain. The methodology used is 
detailed in the Methods section later in the manuscript.

Numerical results.  Figure 2a shows the spatial distribution of power in the near-field (NF) for the three 
frequencies considered. As mentioned previously, constructive interference between the transmitted waves and 
the edge waves (refer Fig. 2b) results in a single combined microwave jet generated by the dielectric cuboids that 
appear as EM field hotspots as shown. Due to proper choice of the material refractive index ratios and structural 
dimensions, the microwave jets are created outside the dielectric cuboids in air where they could be experimen-
tally detected. The intensity of generated beam varies as the incident frequency changes showing a dependence 
on the structure height relative to wavelength. Due to symmetry of the system, for the case of a single-material 
cuboid, the microwave jets produced by opposite edges of the cuboid combine to form one single jet along the 
axis of symmetry of the system for all frequencies. For the case of dual-material cuboid, owing to relative per-
mittivity difference of constituent materials of the system, the generated microwave jet slightly shifts toward the 
higher permittivity medium for 4 GHz incidence, while it tilts away from the vertical axis towards the higher 
permittivity material for 5 and 6 GHz incident waves. Figure 2c shows the numerically determined Full-Width-
Half-Maximum (FWHM) values at the microwave jet maximum. It is seen that the microwave jet for the dual-
material system is thinner than its single-material counterpart for all considered frequencies (or corresponding 
wavelengths) with a tendency to widen as the incidence wavelength increases.

Experimental results.  Prototypes with the parameters mentioned in Table 1 were fabricated. The single-
material dielectric cuboid prototype is labelled P1 whereas the dual-material one is labelled P2 henceforth. 
Figure 3a–c show snapshots of the dual-material dielectric cuboid, the experimental apparatus and the electric 
dipole source antenna used to characterize the response of the system in this study, respectively.

Figure 4a is an experimental measurement of electromagnetic field intensity (y) at the shadow side of proto-
types P1 and P2 kept at a fixed distance of z = 3.75 cm from the sensor and illuminated by plane waves of 4 GHz. 
The intensity values are normalized according to the following relation:

where ymin and ymax are the minimum and maximum values of the electromagnetic field intensity, respectively. 
We observe that for both prototypes the intensity profile is a bell-curve confirming the generation of a micro-
wave jet with the maximum for P1 along the vertical axis of symmetry of the system while that of P2 shifted by a 
certain distance. This shift of the peak position is attributed to relative permittivity difference of the constituents 
of P2 and is coherent with Fig. 2a(i). Figure 4b demonstrates the electromagnetic field intensity profile for P2 
at 5 GHz incidence for different separation distances from the sensor. The inset of Fig. 4b shows the EM field 
intensity variation along ẑ of the microwave jet hotspot peak at y = 2 cm measured experimentally (orange curve) 
and numerically (blue curve) as a function of the separation distance. We experimentally observe the hotspot 
maximum to be at a distance of z = 3.75 cm from the system which is close to that expected from simulations 
(z = 3.3 cm). Moreover, the trend of width of the intensity curves at different positions of z is also coherent with 
the simulations. Figure 4c, d compare the experimental (top) measurement of microwave jet intensity for P2 for 
three different frequencies at a separation distance of z = 3.75 cm with corresponding simulations (bottom) at 
a separation distance of 2 cm. The reason for this discrepancy in the separation distance is attributed to experi-
ment imperfections. Nonetheless, we are still in the microwave jet region to say the behavior at each frequency 
is coherent with what is expected from simulations. We observe the microwave jet for 4 GHz frequency is the 
strongest which then drops monotonically with the incident frequency.

Figure 5 demonstrates the experimentally measured electric field response in the FF domain for prototypes P1 
(orange curves) and P2 (blue curves) at illuminating frequencies of 4 GHz (Fig. 5a), 5 GHz (Fig. 5b) and 6 GHz 
(Fig. 5c), respectively. According to antenna theory, the criterion of FF region starting from 2D

�
 where, D is the 

maximum linear dimension of the antenna (= 3 cm), leads to a value of 2.4 cm for 4 GHz, 3 cm for 5 GHz and 
3.6 cm for 6 GHz. For prototype P1 (single-material cuboid), due to the symmetry of the physical system, we 
detect a symmetric FF profile of the electric field radiation with a strong principal lobe oriented along the axis 
of symmetry, irrespective of the structure size to wavelength ratio (W/(2λ)). However, for the case of prototype 
P2 (dual-material cuboid), due to relative permittivity difference of the constituent materials, we observe an 

(5)ynormalized = y− ymin

ymax − ymin
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asymmetry in the response of the electric field radiation pattern in the FF primarily manifested as a deviated 
principal lobe and a stronger secondary lobe on the higher permittivity material side. The degree of deviation of 
the principal lobe increases with W/(2λ). This asymmetric behavior seen for the dual-material system is coher-
ent with the numerically simulated response shown in Fig. 5d–f. We observe a symmetric E-pattern for the 
single-material cuboid (orange curves) having its principal lobe pointing in the direction of propagation for the 
considered incident frequencies. This is an expected behavior considering the symmetrical nature of the system. 
However, for the dual-material cuboid (blue curves) the pattern gets asymmetric:

Figure 2.   Numerical simulations of power (a) for single- and dual-material systems, and edge wave pattern (b) 
for dual-material systems at three different incident frequencies of 4 (i), 5 (ii) and 6 (iii) GHz. The incident wave 
illuminates the systems from the bottom. (c) FWHM of the microwave jets at different incident wavelengths.
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•	 For 4 GHz: simulations (Fig. 5d) predict a principal lobe pointing towards the vertical direction and a sec-
ondary lobe at ̴45° (on the higher permittivity material side), marked with a solid blue arrow, stronger in 
amplitude than the corresponding secondary lobe for single material system. In the experimental measure-
ments (Fig. 5a) we see the principal lobe pointing along the vertical with a secondary lobe at ̴50° (on the 

Figure 3.   (a) Dual-material dielectric cuboid with relative permittivities of εr = 3.2 and εr = 2.6 The physical 
dimensions are H = 8.5 cm, W = 12 cm, D = 8.5 cm. (b) Snapshot of the STARlab apparatus with a schematic of 
the set-up. (c) Snapshot of the electric dipole source antenna used in this study.

Figure 4.   Experimental NF electric field intensity measurements (a) along y-axis for prototypes P1 and P2 at a 
fixed separation distance of z = 3.75 cm from the sensor for illumination frequencies of 4 GHz, (b) along y-axis 
for just prototype P2 at 5 GHz for different separation distances, z (inset: EM field intensity variation along 
z-axis measured experimentally (orange curve) and numerically (blue curve) at y = 2 cm. (c, d) Comparison of 
NF intensities for P2 at illumination frequencies of 4, 5 and 6 GHz for experiments (c) and simulations (d).
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higher permittivity material side), marked with a dashed blue arrow, stronger than the corresponding lobe 
for the single material system.

•	 For 5 and 6 GHz: simulations (Fig. 5e, f) predict an asymmetric FF profile with the principal lobes being 
tilted slightly towards the lower permittivity material side (left) and a secondary lobe on the higher permit-
tivity material side at ̴28°, marked by blue solid arrows, stronger than that of the single material system. In 
the experimental measurements (Fig. 5b, c), we observe an asymmetric FF profile with their principal lobes 
tilted slightly towards the lower permittivity material side (left) and a secondary lobe at ̴40° for the 5 GHz 
and ̴35° for 6 GHz, marked by blue dashed arrows.

We attribute this asymmetric FF behavior of the lobes to the input of three edge waves generated by the 
vertical edges of the system as can be seen in Fig. 2b for the edge wave pattern for different incident frequencies.

Conclusion
In conclusion, an experimental generation of a microwave photonic jet and the possibility to spatially shift 
its position in the NF zone was confirmed with a dual-material structure illuminated by a plane wave in the 
microwave domain. A microwave jet is the result of constructive interference between the transmitted plane 
wave and an edge wave generated by the edges of two separate media. By varying the relative structure size and 
relative permittivity, we can change the behavior of the combined edge wave and the resultant microwave jet. 
We have examined the dependence of microwave jet behavior and orientation on the materials, frequency, and 
dimensions of the constitutive parts in the NF. The asymmetric FF electric field pattern observed experimentally 
for a dual-material system is linked with an asymmetric orientation of the combined edge wave generated by 
the element. The system proposed here could be scaled down to be used at optical frequencies with the results 
potentially contributing to the development of a new type of optical manipulation device for trapping or moving 
micro/nanoparticles or help in designing diffraction grating elements.

Methods
The electromagnetic responses of the single-material and dual-material systems were numerically simulated 
using the time-domain solver of commercially available software CST Microwave Studio. Transverse Magnetic 
(TM) polarized plane wave propagating along ẑ(refer Fig. 1) illuminated the system immersed in air medium 
bounded by perfectly matched layers to absorb undesired back reflections by the boundaries. At the cuboid’s 
shadow side, an additional space of 6λ was added to properly visualize the resulting photonic jet characteristics.

Figure 5.   Experimental (a–c) FF electric field radiation pattern for prototypes P1 (orange) and P2 (blue) with 
numerically simulated FF radiation pattern (d–f) for single-material (orange) and dual-material (blue) systems 
at illumination frequencies of 4, 5 and 6 GHz.
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To experimentally observe the microwave jets for the simulated cases, we fabricated the dielectric cuboids 
with the parameters mentioned in Table 1. The prototypes were made from solid PREPERM foams with the 
respective permittivities at the required frequencies. The roughness of the cuboids used in this study were very 
low compared to the incident wavelengths to have negligible impact on EM wave scattering/loss. Microwave jet 
characteristics of prototypes P1 and P2 were experimentally measured using MVG group STARLab apparatus 
(refer Fig. 3b) typically used for antenna pattern and NF electric field measurements of devices. The far-field 
measurements were done by placing the system and source in the center of STARLab apparatus on the rotat-
ing stage which then rotated in the y–z plane measuring the FF electric field intensity. The apparatus is a small 
anechoic chamber 90 cm in diameter consisting of a graduated rotating stage on a rigid mast. The arching walls 
of the apparatus consist of bipolarized Vivaldi antennas as probes with an angular spacing of 22.5° between 
two probes, each capable of measuring the vertical and horizontal components of electric field. For our NF 
study, only the sensor straight in front of the system was utilized. The source of incident EM waves used in the 
experiment to illuminate the single- and dual-material system was a Wi-Fi dual-band electric dipole antenna, 
3 cm × 1.2 cm in size capable of emitting radiations of 4 GHz to 6 GHz. The theory of microwave jet formation 
requires a plane wave illuminating an interface. Since the source antenna emits spherical waves, it was necessary 
to place it at a sufficiently far away distance from the dielectric blocks to make sure that the waves that hit it are 
quasi-planar, not spherical. Graduations on the stage permit displacement of the cuboids and the measurement 
of its influence on the generated microwave jet characteristics. The prototypes were studied one at a time for 
each frequency. Using this set-up, we were able to study/measure the NF and 3D FF radiation pattern of the two 
dielectric cuboids successfully.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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