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Coronavirus disease 2019 (COVID-19) has been a pandemic disease reported

in almost every country and causes life-threatening, severe respiratory

symptoms. Recent studies showed that various environmental selection

pressures challenge the severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) infectivity and, in response, the virus engenders new mutations,

leading to the emergence of more virulent strains of WHO concern. Advance

prediction of the forthcoming virulent SARS-CoV-2 strains in response

to the principal environmental selection pressures like temperature and

solar UV radiation is indispensable to overcome COVID-19. To discover

the UV-solar radiation-driven genomic adaption of SARS-CoV-2, a curated

dataset of 2,500 full-grade genomes from five di�erent UVindex regions

(25 countries) was subjected to in-depth downstream genome-wide

analysis. The recurrent variants that best respond to UV-solar radiations

were extracted and extensively annotated to determine their possible

e�ects and impacts on gene functions. This study revealed 515 recurrent

single nucleotide variants (rcntSNVs) as SARS-CoV-2 genomic responses

to UV-solar radiation, of which 380 were found to be distinct. For all

discovered rcntSNVs, 596 functional e�ects (rcntE�s) were detected,

containing 290 missense, 194 synonymous, 81 regulatory, and 31 in the

intergenic region. The highest counts of missense rcntSNVs in spike (27)

and nucleocapsid (26) genes explain the SARS-CoV-2 genomic adjustment

to escape immunity and prevent UV-induced DNA damage, respectively.

Among all, the most commonly observed rcntE�s were four missenses

(RdRp-Pro327Leu, N-Arg203Lys, N-Gly204Arg, and Spike-Asp614Gly)

and one synonymous (ORF1ab-Phe924Phe) functional e�ects. The
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highest number of rcntSNVs found distinct and were uniquely attributed to the

specific UVindex regions, proposing solar-UV radiation as one of the driving

forces for SARS-CoV-2 di�erential genomic adaptation. The phylogenetic

relationship indicated the high UVindex region populating SARS-CoV-2 as the

recent progenitor of all included samples. Altogether, these results provide

baseline genomic data that may need to be included for preparing UVindex

region-specific future diagnostic and vaccine formulations.

KEYWORDS

SARS COVID-19, genomic adaptation, UV-solar radiation, COVID diagnosis,

comparative genomics

Introduction

In December 2019, clusters of pneumonia cases were

reported from the Wuhan city, Hubei province, China. Some of

the early disease cases were reported working in the live animal

market. On 11 March 2020, the WHO announced the disease

outbreak, now named coronavirus diseases 2019 (COVID-19),

as a public health emergency of international concern and

declared it a pandemic (Koyama et al., 2020). As of June 2022,

∼ >528.82 million positive cases were reported to WHO across

the world [WHO Coronavirus (COVID-19) Dashboard, 2022],

with more than 6.29 million deaths. The COVID-19 symptoms

range from mild fever, cough and fatigue to severe shortness

of breath, and loss of taste and smell (Guan, 2020; Wang D.

et al., 2020), with the 5% average fatality rate of all confirmed

positive cases, which is of lower than SARS-CoV (9.6%) and

MERS (34.3%) (World Health Organization., 2003, 2019; Wang

C. et al., 2020).

After the preliminary etiological investigations based on

the exclusion of all common respiratory pathogens, the deep

meta-transcriptomic sequencing of the patient’s bronchoalveolar

lavage fluid revealed the abundance of a viral strain from β-

coronavirus (CoV) genus (Shi et al., 2016, 2018; McMullan

et al., 2019; Yadav et al., 2019; Abdelrahman et al., 2020; Wu

et al., 2020). The COVID-19-causing virus showed 89.1%, 79.5%,

and 50% sequence homology to previously reported SARS-like

coronavirus strains, namely, bat SL-CoVZC45, SARS-CoV, and

MERS, respectively (Wang et al., 2015; Wu et al., 2020). Based

on the sequence homology to SARS-like viruses, the crown-

like viral structure, and the consequent manifestation of severe

respiratory disease symptoms, the COVID-19-causing virus is

designated as SARS-CoV-2 (severe acute respiratory syndrome

coronavirus-2) (Lu et al., 2020; Wu et al., 2020). Furthermore,

most SARS-like coronaviruses have been identified in bats

(Hamre and Procknow, 1966; McIntosh et al., 1967; Li et al.,

2005), and the SARS-CoV-2 shares 100% amino-acid sequence

similarity with NSP7 and E protein of the bat SARS-like

coronavirus strain (bat SL-CoVZC45) (Wu et al., 2020). These

findings suggest that bats are the possible natural reservoirs for

most SL-CoVs, including SARS-CoV-2.

The SARS-CoV-2 genomic characterization revealed 29,903

nucleotide long single-stranded positive-sense RNA (ribonucleic

acids) comprising a multi-domain nonstructural protein (NSP)

encoding ORF1ab, four structural protein genes (spike “S,”

envelope “E,” membrane “M,” and nucleocapsid “N”), and

six accessory protein-encoding genes (ORF2a, ORF6, ORF7a,

ORF7b, ORF8, and ORF10) (Koyama et al., 2020). The SARS-

CoV-2 was found capitalizing its spike structural protein for host

cell (respiratory epithelial) attachment and subsequent entries

via the angiotensin-converting enzyme 2 (ACE2) receptor

(Hoffmann et al., 2020).

Since December 2019, whole-genome sequence analysis

revealed hundreds of viable genetic variants of SARS-CoV-

2 from different parts of the globe. Within SARS-CoV-2,

the observed predominating drivers of genetic variation are

the single-nucleotide variants (SNVs) caused by the error-

prone viral polymerases (Smertina et al., 2019; Lu et al.,

2022) and endogenous mutagenesis via the host RNA-editing

enzymes (nucleotide deaminases APOBEC: C>U and ADAR:

A>G) (Placido et al., 2007; Moris et al., 2014; Mourier

et al., 2021; Tong et al., 2022). The genome-wide studies

of large sets of SARS-CoV-2 revealed SNV-based nucleotide

substitution rate of ∼1 × 10−3 per year (Duchene et al.,

2022), closer to the 1.42 × 10−3 Ebola virus substitution

rate reported from West Africa during 2013–2016. However,

SNVs are not the only genetic variations discovered in

coronaviruses, but the small insertions/deletions of viral or

non-viral sequences were also reported in various genetic

variants of coronavirus genomes possibly caused by the

discontinuous nature of viral transcriptase for sub-genomic

mRNA synthesis (Licitra et al., 2013; V’kovski et al., 2021).

In total, a large proportion of the mutations represent neutral

“genetic drift” or have died out quickly, and a small subset is

affecting viable viral traits, such as host range, transmissibility,

antigenicity, pathogenicity, and adaptability of the virus to

various selection pressures.
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Various biotic and abiotic selection pressures challenge

the SARS-CoV-2 persistence, transmission, infectivity, host cell

entry efficacy, and pathogenesis (Pica and Bouvier, 2012).

Since RNA viruses, via high mutation rate, have demonstrated

a great potential for rapid evolution and adaptation to

new environmental conditions in the absence of a proper

proofreading RNA polymerases activity (Holland et al., 1982;

Rubio et al., 2013). Therefore, to escape stress conditions, the

coronaviruses continuously engender new genomic variations,

potentially resulting in the emergence of more virulent SARS-

CoV-2 strains of WHO concern with higher transmission and

mortality rates (Sanjuán and Domingo-Calap, 2016; Chin et al.,

2020; Koyama et al., 2020; Seyer and Sanlidag, 2020; Kumar

et al., 2021; Soh et al., 2021). The commonly experienced

biotic selection pressures in human hosts may include natural

immunity (Clapham et al., 2020), host genetic makeup (COVID-

19 Host Genetics Initiative, 2021), monoclonal antibodies

produced in response to vaccines (Rella et al., 2021; Shah

et al., 2021), antiviral drugs, and convalescent sera, whereas

solar radiation (Chiyomaru and Takemoto, 2020) (ultraviolet

radiations) (Seyer and Sanlidag, 2020), temperature (Chin et al.,

2020; Wang J. et al., 2020), relative humidity (Ahlawat et al.,

2020; Ghoushchi et al., 2020), and air pollutants (Coccia, 2020)

are the widely studied abiotic selection pressures on viral

populations (Tan et al., 2005; Shaman et al., 2010; Otter et al.,

2016; Chattopadhyay et al., 2018; Dalziel et al., 2018; Gardner

et al., 2019). Studies revealed a negative correlation between

the environmental conditions (temperature and humidity) and

the H3N2 strain of the influenza flu virus (Lowen et al.,

2007; Reich et al., 2019). Additionally, ultraviolet radiation

imposed negative selection pressure on strains of influenza and

related coronaviruses (Darnell et al., 2004), and more recently,

Ratnesar-Shumate et al. showed that the UV-solar radiation

induced SARS-CoV-2 nucleic-acid damage and subsequent viral

inactivation (Ratnesar-Shumate et al., 2020).

Predicting genomic level adaptation of SARS-CoV-2 in

response to various selection pressures is indispensable in

understanding the viral spread, mutation, pathogenicity,

control, and future treatment options to effectively tackle

COVID-19 (O’Reilly et al., 2020). Solar ultraviolet radiation

is thought to have a great impact on the formation of viral

populations by selecting variants that can withstand UV-solar

radiations (Ratnesar-Shumate et al., 2020). In this study, to

investigate the SARS-CoV-2 genomic adaptation in response to

UV solar radiation, we analyzed 2,500 high-quality, full-length

genomes from five different WHO’s defined UVindex regions.

The comparative genome-wide analysis of SARS-CoV-2

populations revealed differential genomic adjustments in

response to different ultraviolet solar radiations. All identified

differential genomic signatures in response to various UVindex

ranges provide baseline data for future more effective molecular

COVID-19 diagnosis and region-specific vaccine production

against COVID-19.

Methods

Sampling

In this study, to reveal the genomic adaptation of SARS-

CoV-2 in response to UV-radiation, all COVID-19 experienced

countries, which have uploaded at least 100 full-length, high-

quality SARS-CoV-2 genomes, are included. Based on theWHO

and US-EPA ultraviolet (UV) radiation exposure categories

(Table 1), all included countries are divided into the following

five groups according to their respective ultraviolet index

(UVindex) records (World Health Organization, 2002; Fioletov

et al., 2004). Low UVindex countries (UVindex range: <2),

Moderate UVindex countries (UVindex range: 3–5), High

UVindex countries (UVindex range: 6 to 7), Very_High

UVindex countries (UVindex range: 8–10), and Extreme

UVindex countries (UVindex range: >11).

UVindex mean data for 12 months (from 7 December 2020

to 8 December 2021) for all included countries were obtained

from the monthly weather forecast and climate byWeatherAtlas

(retrieved on 08 December 2021, at 15:30 GMT/UTC +

5h; https://www.weather-atlas.com/). The UVindex value for

each country was presented as a single value rounded to

the nearest whole number. For each category, irrespective of

the country’s geographical location, the most relevant (top

of the category’s list) five countries were selected provided

that the country experiencing UVindex falls in the specified

category range and must have at least 100 full-length, high-

quality genome sequences reported in publicly accessible

databases (Supplementary Table 1). Initially, for all UVindex

categories, the all available (total of 8,631) full-length SARS-

CoV-2 genomes were downloaded from GISAID on 11

December 2021, GenBank on 15 December 2021, the Chinese

National Genomics Data Center Genome Warehouse on 23

December 2021, and the Chinese National Microbiology Data

Center on 23 December 2021 (Benson et al., 2012; Shu and

McCauley, 2017; CNCB-NGDC Members and Partners, 2021).

To process high-quality, full-length genomes in each of the

UVindex category, downloaded sequences shorter than 29,700

TABLE 1 Ultraviolet radiation exposure categories by WHO UVindex

guide.

Exposure categories UVindex range

Low ≤2

Moderate 3–5

High 6–7

Very high 8–10

Extreme ≥11

Each row is filled with different shade using the WHO assigned color for each UVindex

range.
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bps and containing seven consecutive ambiguous nucleotides

(NNNs) were excluded from the downstream analysis. The

China National Center for Bioinformation annotations was

used to remove redundancy (Gong et al., 2020). Downloaded

sequences containing 50 ambiguous bases were removed from

the downstream analysis to reduce the number of false-positive

variants using Trimmomatic version 0.39 (Bolger et al., 2014).

Finally, using the accustomed Perl script, a 100 high-quality

genome sequences from each of the five included countries in

a UVindex category were randomly selected, so in a nutshell,

for all five UVindex categories, 2,500 full-length SARS-CoV-2

reported genomes were retained for analysis.

Reference genome

The SARS_CoV-2 (NC_045512.2) sequence was used as

a reference genome in this study. The NC_045512.2 was

sequenced in December 2019 from a sample recovered from

Wuhan, China (Wu et al., 2020). According to the standard

procedure for variant detection (DePristo et al., 2011), to retrieve

high-quality variants, first, each sample was converted to short

FastQ reads using emboss-splitter (Rice et al., 2000) and an

accustomed fasta-to-fastq.pl script available in GitHub (Dabbish

et al., 2012).

Read mapping

High-quality reads from each sample were mapped to the

latest available reference SARS-CoV-2 genome NC_045512.2

using the BWA-MEM algorithm with the default minimum

seed length of 20, gap open penalty 6, gap extension penalty

1, and matching score 1 (Li, 2013). For variant identification

and downstream processing, open-source software packages

were used. The “RealignerTargetCreator” and “InDelRealigner”

command-line tools of the Genome Analysis Toolkit (GATK

version 3.3.0) were used to fix all mapping issues through locally

realigning improperly mapped reads, possessing variant artifacts

at their terminals (McKenna et al., 2010). Before calling variants,

Picard, Samtools, and BWA were used to generate the reference

and bam file indexes (Li and Durbin, 2009; Li et al., 2009;

McKenna et al., 2010; DePristo et al., 2011).

Variant calling and quality filtration

Any deviation of the properly mapped read sequence to the

reference genome NC_045512.2 was called as a variation. For

variant discovery, initially, the “mpileup” utility of bcftools, with

default parameters, was used to call genotypes for each of the

samples included in this study. From the derived genotypes,

high-quality variants were identified as any deviation of the

mapped read sequences from the reference genome using the

bcftools “call” command (Li, 2011). To differentiate between

real hereditary variants from the false-positive data-processing

artifacts (caused ambiguous bases), a calibrated statistical

likelihood was generated for each of the identified variant loci

using the GATK “Variant Recalibrator” and “ApplyRecalibrator”

functions (McKenna et al., 2010). Finally, false-positive data-

processing artifacts were removed using the following options

of bcftools filter and GATK variant filtration; (a) variants were

removed with a Phred quality score ≤20; (b) since Fisher’s exact

test-based Phred-scaled P-value (FS) represents strand bias for

the reference and alternative allele, a sign for the false-positive

variant. Therefore, variants with FS values >60 were filtered out

from the downstream analysis (Kim et al., 2017; Iqbal et al.,

2019).

Variant functional annotation and
prioritization

After filtration, high-quality variants were retained for each

of the UVindex categories. Furthermore, high-quality variants

to predict possible variant functional effects, impact, and

their respective distribution across the reference NC_045512.2

genome were comprehensively investigated. The SnpEff_4.3 was

used to attribute each variant by a functional class and offered

various annotation levels to identify potential coding variants.

For functional annotation, the SnpEff database was developed

according to the SnpEff database building protocol (Cingolani

et al., 2012) using the NCBI SARS-CoV-2 sequence annotation

resources (NC_045512.2; Bio-Project, PRJNA485481; https://

www.ncbi.nlm.nih.gov/sars-cov-2/). For all potential coding

variants, the assigned SnpEff functional class vocabularies

were UTR 3 prime, UTR 5 prime, splice site donor, splice site

acceptor, splice site region, downstream, upstream, disruptive

in-frame deletion and insertion, and conserved in-frame

insertion and deletion. The results are provided in the list

of functionally annotated variants (Supplementary Material:

rcntSNV_UVindex.snpEff.vcf). A customized script was

developed in Python to extract all identified variants for each of

the genes in all UVindex categories (Supplementary Material:

rcntSNVs_genes_functional_effects_UV.Case.genes). Following

variant functional annotation, all coding region variants were

compared to find UVindex category-specific and overlapping

variants using vcftools (Danecek et al., 2011), the bioinformatics,

and evolutionary genomics resources (http://bioinformatics.

psb.ugent.be/webtools/Venn/).

Phylogeny

For phylogeny, sequences were precisely chosen with <30

variations, and the lengths were adjusted by 5
′

UTR and 3
′
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FIGURE 1

Total and recurrent SNVs (rcntSNVs) count in all examined 2,500 SARS-CoV-2 genomes, grouped in five distinct UVindex-based categories. For

each WHO’s defined UVindex category, the outer bar represents total identified SNVs, whereas the inner short bar represents predicted rcntSNVs.

FIGURE 2

The SARS-CoV-2 genome-wide distribution of all observed high-quality rcntSNVs. Structural protein-encoding genes category is shown in

orange (left-most), non-structural protein-encoding genes category is represented in blue (in the middle), whereas accessory genes category is

shown in gray blocks (right-most). In each category, the smaller blocks and their sizes represent genes in a particular category and their

respective rcntSNVs load, respectively.

UTR truncation, without losing the key sequence sites. From this

sequence pool, for an optimal phylogenetic relationship, a subset

of 125 high-quality SARS-CoV-2 whole-genome samples (25

from each of the UVindex category) randomly selected in Perl

by using a random number generator. All selected genomes were

first aligned using the progressive multiple sequence alignment

method of ClustalW (Thompson et al., 1994). The MEGA

X (version 11.0.10) was used to produce and visualize the

phylogenetic tree (Kumar et al., 2018). The maximum likelihood

approach with Tamura-Nei substitution model, uniform rates

among sites, all sites’ data treatment, 1,000 bootstrap value, and

nearest neighbor interchange (NNI) heuristic method was used

for the best interfacing of a tree.

Results and discussions

To determine the differential genomic adaptation of SARS-

CoV-2 in response to different UVindex ranges, 2,500 full-

length, high-quality reported genomes were investigated from

25 countries, classified into five distinct categories based on

the country’s UVindex exposures. UVindex-based categories

are described in the “Methods” section (Table 1). A total

of 500 full-grade genomes were included from each of the

defined UVindex-based categories; for the Low UVindex

category, genomes were obtained from Estonia, Faroe Islands,

Iceland, Norway, and Sweden; for the Moderate UVindex

category, genomes were retained from Kazakhstan, North

Macedonia, South Korea, Spain, and Georgia, the United States;

for the High UVindex category, genomes were maintained

from Cyprus, Iran, Japan, New Zealand, and Florida, the

United States; for the Very_High UVindex category, genomes

were acquired from Bahrain, Bangladesh, Egypt, Kuwait, and

Saudi Arabia; and for the Extreme UVindex category, genomes

were included from Brazil, Ecuador, Singapore, Suriname, and

Uganda (Supplementary_info_file.docx, Supplementary Table 1,

and for geographical location, please see the map from

Supplementary_map1, Supplementary Material). Accustomed
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FIGURE 3

rcntSNVs load on structural protein-encoding genes per UVindex category. Each UVindex category is represented by a stacked column, whereas

the bars in gray, yellow, blue, and pink represent numbers of recurrent SNVs in nucleocapsid (N), spike (S), membrane (M), and envelope (E)

structural protein-encoding genes, respectively. For each UVindex categories, the rcntSNVs count for all proteing-encoding genes are given on

the right-hand side of stacked-bars.

FIGURE 4

The overall genomic and functional e�ect-based distribution of all identified rcntSNV-e�ects (rcntE�s). (A) Displays the distribution of all

predicted rcntE�s into coding/genic and non-coding/intergenic regions. (B) Upon further in-depth annotation, the genic region rcntE�s are

distributed among protein-coding (exons) and gene-regulatory (up/downstream) regions of all SARS-CoV-2 genes, whereas the bar chart (C)

represents the total missense and synonymous functional e�ects counts exhibited by all identified rcntE�s found segregating in the gene’s

exonic regions.

Perl script was used to randomly select 100 high-quality SARS-

CoV-2 genomes from each of the included countries.

Variant discovery (Total/RcntSNVs)

For 2,500 SARS-CoV-2 complete genome samples, we

discovered a total of 10,228 single nucleotide variants (SNVs)

with an average variation load of one SNV after every

15.49 nucleotides per UVindex category (averaging ∼3.92

SNVs/sample). In each UVindex category, countries are

included based on their commonly shared UVindex ranges,

irrespective of their relative humidity, temperature, altitude,

geographical location, and many other selection pressures.

Considering our sampling strategy, all identified SNVs in
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FIGURE 5

Di�erent functional e�ects (rcntE�s) predicted for all rcntSNVs in all five WHO’s defined UVindex categories are shown using a combo bar-line

chart. The most prevalent rcntE�s missense are displayed using red-pointed gray line, whereas the synonymous, regulatory, and non-coding

rcntE�s are represented here in blue-, gray-, and yellow-stacked columns, respectively.

FIGURE 6

A Venn diagram depicting the overlap of recurrent single nucleotide variants (rcntSNVs) found across di�erent SARS-CoV-2 populations from

five WHO’s defined UVindex country categories. The comparison based on total identified rcntSNVs across all 2,500 SARS-CoV-2 genomes from

UVindex categories; Extreme (blue), Very_High (red), High (green), Moderate (yellow), and Low (brown) revealed a total of seven commonly

shared variants (A). The complete description of all UVindex categories is presented in the method section. Upon detailed functional annotation,

all seven commonly shared rcntSNVs are found with five shared missense functional e�ects (rcntMissense-e�ects) on gene’s functions (B), of

which three shared rcntMissense-e�ects are revealed in structural protein-encoding genes (C), comprising two in nucleocapsid (D) and one in

spike (E). In all Venn diagrams, the UVindex-specific rcntSNVs/Missense-e�ects (CaSp-rcntSNVs/E�s) counts are given near the outer edges,

whereas the shared rcntSNVs/e�ects are represented in the dark brown core middle of each diagram.
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TABLE 2 Functional e�ects of all identified category-specific recurrent SNVs (CaSp-rcntE�s) counts identified in all 2,500 SARS-CoV-2 genomes

and their respective per WHO’s defined UVindex category distribution.

rcntEffs load on Structural Genes non-Structural

Protein gene

Accessory Protein Genes T
o
tal

N gene S gene M gene E gene ORF1ab ORF3a ORF10 ORF8 ORF7b ORF7a ORF6

Extreme 07 06 03 01 38 01 02 03 00 01 02 64

Very_High 02 11 02 02 37 05 01 01 02 03 02 68

High 16 15 05 02 60 02 04 07 03 04 02 120

Moderate 11 07 03 02 54 06 03 05 02 00 01 94

Low 05 10 01 02 45 07 02 02 00 00 00 74

TOTAL rcntEffs 41 49 14 09 234 21 12 18 07 08 7 420

TABLE 3 Functional e�ects of all identified category-specific recurrent SNVs (CaSp-rcntE�s) count across all SARS-CoV-2 genes.

Genes groups Genes Missense

*[Ex:Vh:Hi:Mo:Lo]

Synonymous

[Silent]

Regulatory Total Effects per gene

group

Non-structural genes ORF1ab 141 [22:21:42:32:24] 85 08 234 234

Structural genes E Protein 03 [0:1:1:0:1] 01 05 09

M Protein 02 [1:1:0:0:0] 08 04 14

N Protein 26 [7:1:11:5:2] 08 07 41 113

S Protein 27 [3:5:11:4:4] 20 02 49

Accessory genes ORF3a 09 [1:1:1:2:4] 07 05 21

ORF6 03 [1:0:1:1:0] 00 04 07

ORF7a 03 [0:2:1:0:0] 02 03 08 73

ORF7b 00 [0:0:0:0:0] 01 06 07

ORF8 07 [1:0:4:2:0] 04 07 18

ORF10 01 [0:0:1:0:0] 00 11 12

Grand total 222 136 62 420

The horizontal-rows and vertical columns represent the CaSp-rcntEffs count by functional effect classes and by gene groups, respectively.

*[Ex:Vh:Hi:Mo:Lo] denotes the UVindex-specific rcntSNV-missense effect counts in Extreme, Very_High, High, Moderate, and Low categories, respectively.

each UVindex category are the probable genomic adjustments

against all experienced biotic and abiotic selection pressures,

whereas only the most common SNVs in a UVindex category

are the potential genomic adaptation of SARS-CoV-2 in

response to UVindex. Therefore, based on a 25% reoccurrence

rate in a UVindex category, a sum of 515 (5.03% of a

total of 10,228) recurring SNVs were carefully prioritized to

discover the SARS-CoV-2 genomic responses to a commonly

experienced environmental selection pressure, the UV solar

radiation. These SNVs with atleast 25% reoccurrences in each

UVindex category are termed recurrent-SNVs (rcntSNVs). For

all UVindex categories, lists of all discovered rcntSNVs are given

in Supplementary_info_file.docx Supplementary Tables 2–6. Of

the total, the least number of rcntSNVs (75) were observed

in SARS-CoV-2 genomes included from countries exposed to

Extreme UVindex solar radiation, revealing that the Extreme

UVindex solar radiation employs negative selection pressure

by damaging viral DNA and thus limits the diversity of

SARS-CoV-2 strains. Our finding is consistent with the

hypothesis that Extreme UVindex radiations induces viral

DNA damage to disinfect the SARS-CoV-2 without altering

its morphology (Lo et al., 2021). Furthermore, the solar UV

radiation of extreme intensity inactivates SARS-CoV-2 and other

related strains of corona and influenza viruses on surfaces

(Pi et al., 2003; Darnell et al., 2004; Ianevski et al., 2019;

Ratnesar-Shumate et al., 2020). On the contrary, the highest

number of rcntSNVs (141) was discovered in the High UVindex

region, suggesting that the large majority of SARS-CoV-2

variants/strains are adapted to High UVindex solar radiation.

A. Ianevski et al. also showed the highest counts for the active

influenza virus strains populating High UVindex experiencing

parts of Northern Europe from 2010 to 2018 (Ianevski et al.,

2019). Based on these findings, we propose that COVID-

19-causing viruses have had sufficient evolutionary time to

acquire genomic-level adaptation in High UVindex regions,

probably in their primary natural reservoir (bat). Our findings
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FIGURE 7

Per UVindex category-specific rcntMissense-e�ects (CaSp-rcntMissense) count. The bars from left to right shows the total identified number of

CaSp-rcntMissense e�ects in extreme (43; 14.8%), very high (40; 13.7%), high (92; 31.7%), moderate (65; 22.4%), and low (50; 17.2%) UVindex

categories. The plot (A) reveals countries with UVindex above seven impose strong negative selection pressure by allowing least number of

SARS-CoV-2 variants with minimal identified CaSp-rcntMissense e�ects (∼28.62%), whereas, (B) most number of CaSp-rcntE�s (∼71.38%) are

observed in group of countries experiencing UVindex from 0 to 7.

are scientifically in line with the Li et al.’s work that found

bats families, being the zoonotic origin of several SARS-like

coronaviruses, greatly enriched in tropical regions experiencing

High UVindex solar radiations (e.g., Guangdong, Guangxi,

Hubei, and Tianjin) (Hamre and Procknow, 1966; McIntosh

et al., 1967; Li et al., 2005; Wu et al., 2020). Figure 1 shows

the total number of identified and rcntSNVs in each of the

UVindex category.

rcntSNVs genomic distribution

The SARS-CoV-2 genome exhibits two non-structural

multi-domain protein-encoding genes (ORF1a and ORF1b),

four structural protein-encoding genes (SPeGs; S, E, M, and N),

and up to six genes that encode accessory proteins 3a, 6, 7a, 7b,

8, and 10a (Brant et al., 2021). Our in-depth analysis for gene-

set-based distribution of all potentially UVindex responding

variants revealed the large majority of the total rcntSNVs

(302: 53.45%) in the non-structural protein-encoding genes

(ORF1ab), followed by 168 (29.73%) in four SPeGs (N = 75,

S = 64, M = 20, and E = 9), whereas only 95 (16.81%)

were found in six accessory genes (Figure 2). These inferences

are in agreement with the genomic architecture of the SARS-

CoV-2 (Wu et al., 2020) and illustrate that SARS-CoV-2

has done most (approximately >53%) of the genomic-level

adaptation in non-structural multi-domain protein-encoding

genes (ORF1ab) to adapt various UVindex regions, where the

accessory protein-encoding genes were the most conserved

gene-set of SARS-CoV-2.

Of all the virion proteins, the structural gene products

were directly exposed to environmental selection pressures,

like solar UV radiation. Therefore, the downstream analysis

was focused to identify rcntSNVs in E, M, S, and N SPeGs

for each of the UVindex category (Figure 3). Of the total

identified 168 structural rcntSNVs, we discovered 75, 64, 20,

and 9 in nucleocapsid, spike, membrane, and envelope SPeGs,

respectively. Of all four SPeGs, the nucleocapsid gene has gone

through most of the genomic rearrangements, possibly to shield

the nucleic acid damaging effects of UV radiation via adaptation

in response to differential UVindex exposures. These findings

support recent studies on SARS-CoV-2, revealing the adverse

effects of UV radiation (UVC) on nucleic acid without affecting

viral proteins (Chang et al., 2014), and the nucleocapsid protein’s

key role in packaging and protecting COVID-19 viral genome

in a viable virion (Tahara et al., 1994, 1998; Lai and Cavanagh,

1997).

rcntSNVs functional e�ects

Since rcntSNVs in each of the five UVindex categories

best represent differentially adapted SARS-CoV-2 populations.

Therefore, all rcntSNVs were functionally annotated to predict

their direct effects and impacts on the genes’ functions. One

SNV may have more than one effects, possibly due to the gene

overlapping (Cingolani et al., 2012; Iqbal et al., 2019). As a

result, slightly more rcntSNV-effects (rcntEffs) were observed

compared to the total rcntSNV count. In this study, a total

of 596 functional rcntEffs were discovered for all rcntSNVs.
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FIGURE 8

Phylogenetic tree of SARS-CoV-2 genome sequences prevalent in five di�erent UVindex regions. The five beta corona viral populations

constituted five di�erent clades. The SARS-CoV-2 population from high UVindex regions was found as the outgroup clade, whereas the

SARS-CoV-2 populations from extreme, low, very high, and high UVindex regions formed three descendant clades within the ingroup.

Functional annotation revealed only 31 (5.2%) rcntEffs in the

non-coding intergenic regions, and the remaining 565 (94.8%)

were located in the genic regions of the SARS-CoV-2 genome.

Of the total genic region rcntEffs, 81 (14.3%) were detected in the

gene’s regulatory regions, positioned 200 bp upstream (34 count)

and downstream (47 count) of all genes, and the remaining

484 (85.7%) were found in the coding regions (exonic). These

results are scientifically in line with the genomic architecture

of the SARS-CoV-2, and similar results were also shown by

Koyama et al. (2020). The overall functional rcntEffs count for

all rcntSNVs and their corresponding distribution across the

SARS-CoV-2 genome are shown in Figure 4.

The exonic rcntEffs set comprises 290 missenses and 194

synonymous genes’ functional effects. Interestingly, of the total

identified rcntSNVs in all UVindex categories, the highest

number of the variants are with missense functional effects

(290; 48.7%), suggesting that in response to immense selection

pressure imposed by varying degrees of UV radiation, the SARS-

CoV-2 has capitalized on the high impact missense variation

enrichment to qualify for UV radiation stress. More than 71.38%

(∼207) of the total missense rcntEffs are found segregating in

High (92; 31.7%), Moderate (65; 22.4%), and Low (50; 17.2%)

UVindex categories. Suggesting that the UVindex range≤ seven

allowsmore SARS-CoV-2 strains to survive. On the contrary, the
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UVindex ≥ eight imposes strong negative selection pressure on

SARS-CoV-2 as only∼28.62% (83) of the total missense rcntEffs

are identified segregating in the Extreme (43; 14.8%) and the

Very_High (40; 13.7%) UVindex categories. Furthermore, the

ORF1ab, which occupies two-thirds of the SARS-CoV-2 genome

and expresses into 16 non-structural proteins (NSPs), harbors

the highest number (163) of missense rcntEffs.We also observed

that the nucleocapsid protein (N) and spike glycoprotein (S)

encoding genes carry the second and third highest number of

missense rcntEffs, 43 and 40, respectively. The rcntEffs counts

observed in all UVindex categories are presented in Figure 5.

Comparative genomic analysis

The rcntSNVs-based comparative analysis of all studied full-

length SARS-CoV-2 genomes revealed a total of 380 (∼73.8%

of the all rcntSNVs) UVindex category-specific rcntSNVs

(CaSp-rcntSNVs), not being shared among any two or more

categories (Extreme 58, Very_High 63, High 107, Moderate 84,

and Low 68). The comprehensive annotation of each category-

specific rcntSNV is given in Supplementary_info_file.docx,

Supplementary Tables 2–6. A total of seven rcntSNVs, five

missense and two synonymous, observed commonly shared

among all UVindex categories, with at least 3,217 overall

recurrences, suggesting that all these common rcntSNVs are

conserved and near to fixation (rcntSNVs-based comparison is

shown in Figure 6A). Of seven shared rcntSNVs, the ORF1ab

14159C>T (missense; Pro4720Leu) is the most common

rcntSNV found in RNA-dependent RNA polymerase (missense;

RdRp Pro327Leu; 4,683/8,631 samples), followed by the N

gene 608G>A (missense; N Arg203Lys; samples 35,98/8,631),

610G>C (missense; N Gly204Arg; 3,384/8,631 samples), S

gene 1841A>G (missense; S Asp614Gly; samples 3,259/8,631),

ORF1ab gene 2772C>T (synonymous; ORF1ab Phe924Phe;

samples 3,238/8,631), and N gene 610G>C (synonymous;

N Gly204Arg; samples 3,217/8,631). All commonly shared

rcntSNVs and their respective annotations are given in

Supplementary_info_file.docx, Supplementary Table 8. To

effectively combat COVID-19, all seven commonly shared

rcntSNVs may play a key role in universal vaccine preparation

against SARS-CoV-2.

Functional annotation of all 380 CaSp-rcntSNVs revealed a

sum of 420 category-specific rcntSNV effects (CaSp-rcntEffs) on

genes products (Extreme 64, Very_High 68, High 120, Moderate

94, and Low 74). Of the total genes, the ORF1ab harbors the

highest number of CaSp-rcntEffs (234), followed by all four

structural genes (103) and six accessory genes (73). The detailed

number of CaSp-rcntEffs loads per gene for each of the UVindex

categories is given in Table 2.

Of the total Uvindex CaSp-rcntEffs, 222 are found changing

codons to specify biochemically different amino acids (CaSp-

rcntMissense-effects), 136 are observed without consequent

changes in the amino-acid compositions (CaSp-rcntSilent-

effects), and 62 are detected in the genes’ regulatory region

(CaSp-rcntRegulatory-effects). Most CaSp-rcntMissense effects

observed in ORF1ab (141), S (27), and surprisingly, the N (26)

protein-encoding structural genes. These results showed that

SARS-CoV-2 capitalized CaSp-rcntMissense, likely the gain of

function variant, in ORF1ab and structural protein-encoding

genes to adapt to varying UVindex ranges (Table 3).

Approximately 69.4% (154/222) of the overall CaSp-

rcntMissense effects are detected in the UVindex range ≤ 7

(UVindex categories: Low 35, Moderate 46, and High 73),

whereas the remaining 30.6% (68/222) are observed in the

Extreme UVindex (36) and Very_High UVindex (31) categories

(for details, see Figures 6B–E). The negatively related linear-

trending line with the UVindex implies that the UVindex

is inversely proportional to the CaSp-rcntMissense effects

count. Suggesting that a higher UVindex (mostly ≥ 8) allows

significantly fewer SARS-CoV-2 viral strains to survive hence

imposing strong negative selection pressure (Figure 7). A set

of all category-specific rcntMissense effects causing rcntSNVs

may serve as potential resource for considerably more effective

region-specific vaccine production.

Phylogeny

To find the evolutionary relationship between SARS-CoV-

2 populations prevailing in different UVindex regions, we

constructed a phylogenetic tree based on high-quality whole-

genome sequences of 125 randomly selected SARS-CoV-2

samples, 25 from each of the UVindex categories (Figure 8).

Our phylogenetic analysis revealed five different branches

for all randomly selected 125 high-quality SARS-CoV-2

genome samples (25 from each of the UVindex region). The

tree displays separate branches for SARS-CoV-2 retrieved

from UVindex regions, namely High (orange), Extreme

(purple), Low (green), Very_High (red), and Moderate

(yellow). The phylogenetic analysis has shown High UVindex

inhabiting SARS-CoV-2 population as an outgroup and

the SARS-CoV-2 prevailing Extreme, Low, Very_High,

and Moderate UVindex regions as ingroup populations.

To accommodate four SARS-CoV-2 populations, three

main lineages were found within the ingroup, revealing the

extent of relationships between different populations. The

Extreme and Low UVindex populations are placed in two

separate ingroup lineages and SARS-CoV-2 populations from

the Very_High and Moderate UVindex regions are found

sharing the third lineage. This relationship reflects that all

SARS-CoV-2 samples, which are included in this study,

are descended from the High UVindex region’s inhabiting

populations, whereas the SARS-CoV-2 populations from

Very_High and Moderate UVindex regions are closely related

to others.
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Conclusion

SARS-CoV-2 is the pandemic COVID-19-causing

coronavirus, which has raised a great threat to human health

in almost all regions of the world. The genome-wide analysis of

the rapidly evolving SARS-CoV-2 genomes discovered a large

majority of the rcntSNVs as distinctive (found uniquely in a

specific UVindex region), revealing the SARS-CoV-2 differential

genomic responses to WHO’s defined five different UVindex

regions. Based on the total number of rcntSNVs predicted

in all included SARS-CoV-2 genomes, our analysis showed

that the Extreme UVindex applies negative selection pressure,

whereas UVindex range of 6–7 provides the most suitable

conditions for SARS-CoV-2 endurance. The phylogenetic

relationship indicated the high UVindex region inhabiting the

SARS-CoV-2 population as the recent progenitor of all included

samples. To help in immune evasion and tolerate the DNA

damaging effects of varying UV-solar radiation, the SARS-

CoV-2 has acquired the highest number of missense rcntSNVs

in their spike glycoprotein and nucleocapsid-encoding genes.

Since COVID-19 diagnostic tests and vaccines are based on

the spike or the nucleocapsid viral proteins, all missense

rcntSNVs may need to be included in future diagnostic and

vaccine formulations.
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