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ABSTRACT
Background  The AT(N) classification was proposed for 
categorising individuals according to biomarkers. However, 
AT(N) profiles may vary depending on the markers chosen 
and the target population.
Methods  We stratified 177 individuals who participated in the 
Japanese Alzheimer’s Disease Neuroimaging Initiative by AT(N) 
classification according to cerebrospinal fluid (CSF) biomarkers. 
We compared the frequency of AT(N) profiles between the 
classification using total tau and neurofilament light chain (NfL) 
as N markers (AT(N)

tau and AT(N)NfL). Baseline characteristics, 
and longitudinal biological and clinical changes were examined 
between AT(N) profiles.
Results  We found that 9% of cognitively unimpaired subjects, 
49% of subjects with mild cognitive impairment, and 61% 
of patients with Alzheimer’s disease (AD) dementia had the 
biological AD profile (ie, A+T+) in the cohort. The frequency 
of AT(N) profiles substantially differed between the AT(N)

tau 
and AT(N)NfL classifications. When we used t-tau as the N 
marker (AT(N)tau), those who had T− were more frequently 
assigned to (N)−, whereas those who had T+were more 
frequently assigned to (N)+ than when we used NfL as the N 
marker (AT(N)

NfL). During a follow-up, the AD continuum group 
progressed clinically and biologically compared with the normal 
biomarker group in both the AT(N)tau and AT(N)NfL classifications. 
More frequent conversion to dementia was observed in the 
non-AD pathological change group in the AT(N)tau classification, 
but not in the AT(N)NfL classification.
Conclusions  AT(N)tau and AT(N)NfL in CSF may capture 
different aspects of neurodegeneration and provide a different 
prognostic value. The AT(N) classification aids in understanding 
the AD continuum biology in various populations.

INTRODUCTION
As the population ages, the number of 
patients with dementia is expected to 
increase worldwide including in Asia.1 
Alzheimer’s disease (AD) is pathologically 
characterised by β-amyloid (Aβ) deposition 
and fibrillar phosphorylated tau accumu-
lation.2 Biofluid and molecular neuroim-
aging biomarkers have been explored to 

capture key aspects of the neuropatholog-
ical changes of AD.

A research framework biologically defines 
AD by using biomarkers that reflect the brain 
pathology in vivo independent of clinical 
symptoms.3 In the framework, each indi-
vidual is classified into one of eight categories 
by dichotomous determination according to 
the AT(N) system, where the cerebrospinal 
fluid (CSF) biomarkers of Aβ deposition (A), 
fibrillar tau (T) and neurodegeneration or 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Previous studies showed the usefulness of the AT(N) 
classification, which biologically defines Alzheimer’s 
disease (AD) using biomarkers in, Caucasians. The 
prevalence of the AT(N) classification may differ 
depending on the selected markers and the target 
population. Investigations comparing different N 
markers (total tau vs neurofilament light, NfL) for the 
AT(N) classification are limited.

WHAT THIS STUDY ADDS
	⇒ Our research using Japanese Alzheimer’s Disease 
Neuroimaging Initiative samples supported the useful-
ness of the ATN classification for predicting clinical and 
biological progressions. The frequencies of AT(N) profiles 
and conversion to dementia were different between two 
N markers (total tau and NfL). Our results suggest that 
the total tau and NfL in cerebrospinal fluid may capture 
different aspects of neurodegeneration and provide a 
distinct prognostic value.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The AT(N) classification aids in understanding 
the AD continuum biology and non-AD patho-
logical changes in various populations. It should 
be noted that different biomarkers have dis-
tinct effects on clinical parameters and disease 
progression.
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neuronal injury (N) are defined by the Aβ42 or Aβ42/40 
ratio, phosphorylated tau (p-tau) and total tau (t-tau), 
respectively.3 Through this research framework, AD has 
been conceptualised as a continuum covering asymp-
tomatic, mild cognitive impairment (MCI) and dementia 
stages. The prevalence of the AT(N) classification has 
been investigated mostly among Caucasians, although 
a few studies have been reported for other ethnic 
groups.4–6 Studies on Asian populations did not address 
the longitudinal clinical and biological changes among 
AT(N) profiles.5 6 Because the prognostic value of AT(N) 
profiles may vary depending on the target population, 
the research framework should be further investigated in 
various populations including Asians.

Another issue of the AT(N) system is with regard to a 
biofluid N marker. Currently, CSF t-tau is assigned to the 
N maker. Since the research framework was advocated, 
evidence of CSF neurofilament light chain (NfL) as an N 
marker have been accumulated.7 8 NfL and t-tau in CSF are 
not always well correlated, suggesting that these markers 
may reflect different aspects in neurodegeneration.9–11

Using CSF samples collected by Japanese Alzheimer’s 
Disease Neuroimaging Initiative (J-ADNI),12 this study 
aimed to clarify (1) the characteristics of CSF biomarkers 
in a J-ADNI cohort, (2) the frequencies of AT(N) profiles 
by comparing two different N markers (t-tau and NfL), and 
(3) the clinical and biological characterisations according 
to AT(N) profiles at both baseline and follow-up.

METHODS
Participants
J-ADNI was initiated to discover the fluid and imaging 
biomarkers of AD using a harmonised protocol with 
ADNI.12 13 Briefly, volunteer participants aged between 60 
and 84 years were recruited from 38 clinical sites in Japan. 
Cognitively unimpaired (CU) subjects, subjects with MCI, 
and patients with AD dementia (ADD) were enrolled into 
J-ADNI using criteria consistent with those of ADNI.13 
Their clinical and neuropsychological data were obtained 
from the National Bioscience Database Center (https://​
humandbs.biosciencedbc.jp/en/hum0043-v1).

Out of 715 volunteers assessed for eligibility, 537 met 
the criteria and were enrolled. Out of 537 participants 
recruited in J-ADNI (CU, 154; MCI, 234; ADD, 149), 4 
withdrew their consent. Of the 533 remaining partici-
pants, 194 (CU, 53; MCI, 86; ADD, 55) underwent lumbar 
puncture. The incidence of postdural puncture headache 
was 2.6%, and that of severe postdural puncture head-
ache that required hospitalisation was 0.7%. All these 
194 participants were analysed using AD core biomarkers 
including Aβ42, tau phosphorylated at threonine 181 
(p-tau181), and t-tau. Due to sample availability, CSF 
NfL was measured in 177 participants (CU, 46; MCI, 82; 
ADD, 49). At 12 months, longitudinal changes in CSF 
biomarkers classified by AT(N) profiles were analysed 
in 126 participants (CU, 38; MCI, 56; ADD, 32) (online 
supplemental figure 1).

Lumbar puncture and biochemical analysis
CSF was collected by lumbar puncture, transferred into 
polypropylene tubes followed by freezing and shipped to 
the J-ADNI Biomarker Core at Niigata University. CSF was 
aliquoted at a volume of 0.5 mL and stored at ‒80℃ until 
the assay. The CSF concentrations of Aβ42, p-tau181, 
and t-tau were examined using on AlzBio3 kit (Fuji-
rebio, Ghent, Belgium), and that of NfL was measured 
using R-PLEX Human Neurofilament L Antibody Set 
(Meso Scale Discovery, Rockville, MD). All analyses 
were conducted in duplicate by experienced laboratory 
personnel blinded to the clinical diagnosis. The intra-
assay and interassay coefficients of variation were <20% 
for all assays. The laboratory at Niigata University partic-
ipates in the Alzheimer’s Association external quality 
control programme for CSF biomarkers.14

We previously used CSF Aβ42<333 pg/mL as the cut-off 
value for Aβ positivity.12 15 Thereafter, we have established 
a protocol for AD core biomarker measurements unified 
with the ADNI Biomarker Core (PI: Leslie M. Shaw, PhD). 
We used this unified protocol for remeasuring the CSF 
biomarkers. Subsequently, we conducted the area under 
the receiver operating characteristic curve analysis (PET 
Aβ negative (PET Aβ−, n=47) vs positive (PET Aβ+, n=53); 
CU with PET Aβ− (n=31) vs ADD with PET Aβ+ (n=22); 
CU (n=53) vs ADD (n=56)), and calculated the optimal 
cut-off values according to Youden’s index (online supple-
mental figures 2 and 3). Furthermore, we used Gaussian 
mixture models (GMMs) for calculating the cut-off value 
of CSF biomarkers (n=194), excluding NfL, which was 
unsuitable for GMMs because of the unimodal distribu-
tion (online supplemental figure 2).

PET image acquisition and clinical evaluation
All PET images underwent the J-ADNI PET quality control 
process as previously described.16 Cognitive performance 
was assessed using the Mini-Mental State Examination 
(MMSE), Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale (ADAS-Cog), and the sum of boxes of the Clin-
ical Dementia Rating (CDR-SB). Instrumental activities 
of daily living were assessed using the Functional Assess-
ment Questionnaire (FAQ). In this study, when the CDR 
changed from 0 or 0.5 to ≧1 during a follow-up, the 
patient was considered to have progressed to dementia.

Statistical analysis
Data were analysed statistically using GraphPad Prism 
(V.8.2.0; GraphPad Software, La Jolla, California, USA) 
and the software R. For continuous variables, we used 
the Mann-Whitney U test for comparing two groups and 
the Kruskal-Wallis test for comparing multiple groups, 
followed by Dunn’s multiple-comparison test. For cate-
gorical variables, groups were compared using the χ2 test. 
The correlation between two data sets was assessed using 
Spearman’s rank-correlation coefficient. For the longitu-
dinal analyses of changes in CSF biomarker, we compared 
slopes with zero by linear regression model analyses. The 
covariates included age, sex and education years. For 
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the longitudinal analyses of clinical score changes, inde-
pendent variables including combined AT(N) groups, 
follow-up time, age, sex, education years and the inter-
actions between AT(N) groups and follow-up time were 
examined using the linear mixed model (LMM). Addi-
tionally, random slopes and random intercepts of the 
follow-up time within subjects served as the random 
factors for the longitudinal analyses of the clinical scores. 
P values were adjusted by false discovery rate to avoid type 
I error.

RESULTS
Demographics of participants
At baseline, CSF samples were collected from 194 partic-
ipants with CU (n=53, 27.3%), MCI (n=86, 44.3%) and 
ADD (n=55, 28.4%). Of the 194 participants, 100 (51.5%) 
were analysed by Aβ PET imaging, and half of them 
(53.0%) were Aβ-positive (online supplemental table 1). 
Due to sample availability, 177 (91.2%) of the 194 partic-
ipants had CSF NfL measurements at the baseline, and 
126 (64.9%) underwent follow-up lumbar puncture after 
12 months.

Cross-sectional analysis of CSF biomarkers
The correlations between baseline characteristics and 
CSF biomarkers were analysed. Both the MCI and ADD 
groups showed significantly lower CSF Aβ42 level and 
higher p-tau181, t-tau and NfL levels than the CU group. 
Additionally, the CSF Aβ42 level was significantly lower in 

the ADD group than in the MCI group (online supple-
mental figure 4A). In all groups, age showed a significant 
positive correlation with p-tau181, t-tau, and NfL level 
except for Aβ42 (online supplemental figure 4B). Years 
of education also positively correlated with CSF Aβ42 
level but not with p-tau181, t-tau, nor NfL level (online 
supplemental figure 4C). In addition, males showed 
significantly higher CSF NfL levels than females (online 
supplemental figure 4D). Both APOE ε4 heterozygous 
and homozygous carriers showed significantly lower CSF 
Aβ42 levels and higher p-tau181, t-tau and NfL levels than 
non-carriers (online supplemental figure 4E).

Next, correlations among CSF biomarkers were analysed. 
We found that Aβ42 level moderately negatively correlated 
with p-tau181, t-tau, and NfL levels. As expected, p-tau181 and 
t-tau levels were highly correlated (r=0.7923, p<0.0001). NfL 
level showed moderately positive correlations with p-tau181 
(r=0.2487, p=0.0008) and t-tau levels (r=0.4907, p<0.0001) 
(online supplemental figure 5).

AT(N) classification at baseline
We used CSF Aβ42 as the A marker, p-tau181 as the T 
marker, and t-tau or NfL as the N marker. AT(N)tau and 
AT(N)NfL were defined using t-tau and NfL as the N 
marker, respectively. We classified the participants into 
eight AT(N) categories.

The cut-off value was compared by different methods. 
When comparing clinical status (CU vs ADD) with PET 
status (PET Aβ− vs PET Aβ+), the cut-off values were 

Table 1  Cut-off values of AT(N) biomarkers based on different models

Analysed samples Aβ42 p-tau181 t-tau NfL

Aβ PET− (n=47) vs Aβ PET+ (n=53)

 � Area under the ROC curve (95% CI) 0.940 (0.885 to 0.995) 0.868 (0.794 to 0.941) 0.898 (0.832 to 0.963) 0.706 (0.591 to 0.821)

 � Cut-off value, pg/mL 378.7 26.8 85.7 2428

 � Sensitivity, % (95% CI) 98.1 (90.1 to 99.9) 83.0 (70.8 to 90.8) 90.6 (79.8 to 95.9) 89.1 (77.0 to 95.3)

 � Specificity, % (95% CI) 85.1 (72.3 to 92.6) 80.9 (67.5 to 89.6) 80.9 (67.5 to 89.6) 57.1 (42.2 to 70.9)

CU, Aβ PET− (n=31) vs ADD, Aβ PET+ (n=22)

 � Area under the ROC curve 0.962 (0.907 to 1.000) 0.912 (0.834 to 0.990) 0.963 (0.917 to 1.000) 0.852 (0.735 to 0.969)

 � Cut-off value, pg/mL 361.6 29.1 88.8 2650

 � Sensitivity, % (95% CI) 100 (85.1 to 100) 95.5 (78.2 to 99.8) 95.5 (78.2 to 99.8) 85.0 (64.0 to 94.8)

 � Specificity, % (95% CI) 87.1 (71.2 to 94.9) 80.7 (63.7 to 90.8) 90.3 (75.1 to 96.7) 80.8 (62.1 to 91.5)

CU (n=53) vs ADD (n=56)

 � Area under the ROC curve 0.888 (0.821 to 0.954) 0.805 (0.723 to 0.888) 0.882 (0.818 to 0.947) 0.831 (0.747 to 0.915)

 � Cut-off value, pg/mL 288.6 29.0 91.0 3120

 � Sensitivity, % (95% CI) 82.1 (70.2 to 90.0) 73.2 (60.4 to 83.0) 76.8 (64.2 to 85.9) 69.4 (55.5 to 80.5)

 � Specificity, % (95% CI) 88.7 (77.4 to 94.7) 79.3 (66.5 to 88.0) 88.7 (77.4 to 94.7) 89.1 (77.0 to 95.3)

Gaussian Mixture Model (n=194)

 � Cut-off value, pg/mL 359.6 30.6 105.3 NA*

The cutoffs were established at the highest Youden Index (sensitivity +specificity – 1) when comparing Aβ PET− with Aβ PET+, or comparing CU, Aβ 
PET− with ADD, Aβ PET+, or comparing CU with ADD. The sensitivity and specificity are for each cut-off value.
*Due to unimodal distribution.
ADD, Alzheimer’s disease dementia; Aβ, β-amyloid; CU, cognitively unimpaired subjects; NA, not available; NfL, neurofilament light chain; p-tau181, 
tau phosphorylated at threonine 181; ROC, receiver operating characteristic; t-tau, total tau.
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lower for Aβ42 and higher for p-tau181, t-tau and NfL 
(table 1). When the PET Aβ status and clinical status were 
combined (CU with PET Aβ− vs ADD with PET Aβ+), 
the cut-off values were intermediate between the PET 
Aβ status and the clinical status only, and close to GMM-
calculated cut-off values (table  1). Thus, hereafter, the 
cut-off values used in this study were CSF Aβ42<359.6 pg/
mL (A+), p-tau181  >30.6 pg/mL (T+), t-tau  >105.3 pg/
mL (N+) and NfL >2650 pg/mL (N+).

We showed the demographic and clinical variables 
among the eight AT(N) biomarker categories in the 
AT(N)tau classification (table 2, upper half). The propor-
tion of CU decreased from 33% to 60% in the A− groups 
to 0%–19% in the A+ groups, whereas that of ADD 
increased from 0% to 25% in the A− groups to 40%–50% 
in the A+ groups.

Next, we determined the characteristics of the eight 
AT(N) profiles in the AT(N)NfL classification (table  2, 
lower half). The proportion of CU decreased from 31% 
to 69% in the A− groups to 0%–35% in the A+groups, 

whereas that of ADD increased from 0% in the A− groups 
to 25%–62% in the A+ groups.

To determine the frequency of biological AD, we classi-
fied 177 subjects by using the AT system comprising CSF 
Aβ42 and p-tau181. The subjects were then classified into 
A−T− (n=55, 31.1%), A−T+ (n=7, 4.0%), A+T− (n=41, 
23.2%) and A+T+ (n=74, 41.8%) (figure  1). A−T− 
accounted for 69.9% in CU, whereas A+T− and A+T+ 
accounted for 68.3% in MCI. In ADD, A+T− was 36.7% 
and A+T+ was 61.2%.

AT(N) classification: comparison between t-tau and NfL
We compared the frequencies of AT(N) categories 
between AT(N)tau and AT(N)NfL. In AT(N)tau, the most 
common was A+T+(N)+ (n=64, 36.2%), followed by A−
T−(N)− (n=52, 29.4%) and A+T−(N)− (n=37, 20.9%) 
(figure  1). Considering the high correlation between 
t-tau and p-tau181 (online supplemental figure 5), CSF 
t-tau may not be a fully independent marker of neurode-
generation in the AD continuum.

In AT(N)NfL, the frequencies of the A−T−(N)−, A+T−
(N)−, and A+T+(N)+ categories decreased to 22.0% 
(n=39), 11.3% (n=20), and 23.7% (n=42) compared with 
AT(N)tau, respectively (figure  1). Thus, the subsets of 
participants in the A−T− and A+T− categories with neuro-
degeneration (A−T−(N)NfL + and A+T−(N)NfL+) were clas-
sified into (N)− in AT(N)tau (figure  1). Supporting this 
finding, the subsets of participants in the A−T−(N)tau− 
and A+T−(N)tau− categories showed elevated NfL levels 
(online supplemental figure 6). In contrast, a subset 
of participants in the A+T+ category with undetectable 
neurodegeneration (A+T+(N)NfL−) showed elevated t-tau 
levels (online supplemental figure 6); thus, they were 
classified into (N)+ in AT(N)tau (figure 1).

Longitudinal changes of AT(N) profiles
In 126 participants with follow-up CSF examination at 12 
months, changes in the levels of most of the biomarkers 
were not statistically significant. After 12 months, the 
p-tau181 level significantly elevated in the A−T−(N)− 
category by both AT(N) classifications, in A+T−(N)− by 
AT(N)tau classification, and in A+T−(N)+ by AT(N)NfL clas-
sification (online supplemental table 3, online supple-
mental figure 7).

We assessed the longitudinal changes of the AT(N) 
profiles at 12 months. The AD continuum biologically 
progressed, and the progression rate differed between 
AT(N) profiles at the baseline (figure 2). In the AT(N)tau 
classification, the progression rate was 2.1% (1 of 47) 
among A− groups. A+T−(N)− progressed to A+T+(N)− 
and A+T+(N)+ in five and two participants, respectively. 
All four participants with A+T−(N)+ progressed to 
A+T+(N)+. Thus, the progression rate of these A+T− 
to A+T+ was 42.3%. One participant with A+T+(N)− 
progressed to A+T+(N)+ (14.3%) (figure 2A).

In the AT(N)NfL classification, the progression rate was 
2.1% (1 of 47) in the A− groups. The progression rate from 
A+T− to A+T+ was 38.5%. Five A+T+(N)− participants 

Figure 1  Frequency of the AT(N) profiles in the Japanese 
ADNI cohort. Each AT(N) category is shown by different 
colours in the top panel: A−T−(N)− (light grey), A−T−
(N)+ (grey), A−T+(N)− (light blue), A−T+(N)+ (blue), A+T−
(N)− (light orange), A+T−(N)+ (orange), A+T+(N)− (lavender), 
and A+T+(N)+ (violet). The upper bar (AT(N)tau) shows the 
frequency of AT(N) categories based on CSF Aβ42, p-
tau181, and total tau used as the A, T and N markers, 
respectively. The lower bar (AT(N)NfL) shows the frequency 
of AT(N) categories based on CSF Aβ42, p-tau181, and 
NfL used as the A, T and N markers, respectively. Numbers 
on bars indicate the number of participants classified to 
each AT(N) profile. Arrows indicate three groups, namely, 
the normal biomarker (light grey), non-AD pathological 
change (dark blue), and AD continuum (dark red). ADD, 
Alzheimer’s disease dementia; CSF, cerebrospinal fluid; CU, 
cognitively unimpaired, MCI, mild cognitive impairment; NfL, 
neurofilament light chain.

https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
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progressed to A+T+(N)+ (20.0%) (figure  2B). Hence, 
participants with the A− profile rarely progressed to A+ 
within 12 months. Conversely, approximately 40% of 
participants with A+T− progressed to A+T+ and 10%–20% 
of participants with A+T+(N)− progressed to A+T+(N)+ 
within 12 months in either the AT(N)tau or AT(N)NfL 
classification (figure  2). Notably, longitudinal changes 
of AT(N) profiles were different in A+T−(N)+ and 
A+T+(N)− categories between the AT(N)tau and AT(N)NfL 
classifications (figure 2).

Longitudinal change of cognitive functions
Owing to the small sample size of some of the AT(N) 
categories, we categorised eight AT(N) profiles into three 
groups, namely, the normal biomarker (A−T−(N)−), AD 
continuum (A+T−/+(N)−/+) and non-AD pathological 
change (A−T−/+(N)−/+) groups. At the baseline, the 
AD continuum group showed significantly lower MMSE 
and higher ADAS-Cog, CDR-SB and FAQ scores than 
the normal biomarker group (figure  3, online supple-
mental table 2). In the AT(N)Nfl classification, the AD 
continuum group showed significantly lower MMSE and 
higher ADAS-cog, CDR-SB and FAQ scores than the 
non-AD pathological change group. No such significant 

differences were observed in the AT(N)tau classification 
(figure 3).

We conducted LMM analysis to evaluate cognitive 
decline assessed by four clinical measures (MMSE, 
ADAS-Cog13, CDR-SB and FAQ) during the follow-up 
period up to 36 months. All the clinical measures in the 
AD continuum and non-AD pathological change groups 
declined faster than in the normal biomarker group, 
except for the CDR-SB of the non-AD pathological change 
group in AT(N)NfL classification (table 3, figure 4).

Clinical conversion into dementia
Of 139 participants, 57 (41.0%) clinically converted into 
dementia during 36 months of follow-up. The subjects 
who converted to dementia exhibited significantly higher 
levels of t-tau and NfL at the baseline than the non-
converters (t-tau, p<0.001; NfL, p=0.0033).

Cox proportional hazard analysis showed that the AD 
continuum and non-AD pathological change groups 
converted into dementia more frequently than the 
normal biomarker group in the AT(N)tau classification 
(figure  5A). In the AT(N)NfL classification, only the 
AD continuum group converted into dementia more 

Figure 2  Longitudinal changes of AT(N) profile in AT(N)tau 
(A) and AT(N)Nfl classifications (B) during the 12-month follow-
up. The vertical bar on the left shows the frequency and 
number of subjects classified to each AT(N) profile at the 
baseline. The horizontal bars on the right show the AT(N) 
profiles at 12 months. The orange line under the horizontal 
bar indicates participants who showed biological progression 
within the AD continuum (ie, A−T−(N)−/+ to A+T−(N)−/+, 
A+T−(N))−/+ to A+T+(N)−/+, and A+T+(N)− to A+T+(N)+). AD, 
Alzheimer’s disease.

Figure 3  Clinical and cognitive scores at baseline among 
three groups. Upper panels show the clinical and cognitive 
scores of each group in the AT(N)tau classification. Lower 
panels show the clinical and cognitive scores of each group 
in the AT(N)NfL classification. *P<0.001 compared with normal 
biomarker group, †p<0.05 compared with normal biomarker 
group, ‡p<0.01 compared with non-AD pathological change 
group. AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s 
Disease Assessment Scale−Cognitive Subscale; CDR-
SB, sum of boxes of the Clinical Dementia Rating; FAQ, 
Functional Assessment Questionnaire; MMSE, Mini-Mental 
State Examination.

https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
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frequently than the normal biomarker group (figure 5B). 
Discordance of prognosis in the non-AD pathological 
change group between the AT(N)tau and AT(N)NfL clas-
sifications suggests that CSF t-tau elevation without Aβ42 
reduction (A−(N)tau+) may be related to a higher rate of 
conversion to dementia; conversely, no such relationship 
was found in the case of CSF NfL elevation without Aβ42 
reduction.

DISCUSSION
In this paper, we show the results of CSF biomarker anal-
ysis among J-ADNI participants from the preclinical stage 
to dementia who were longitudinally followed up for 3 
years. We found that 8.7%, 48.8% and 61.2% of the CU, 
MCI, and ADD groups had the biological AD profile (ie, 
A+T+), respectively (table 2, figure 1). By comparing the 
N marker between t-tau and NfL, we found that the AT(N) 
profiles showed different frequencies. When we used Ta
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Figure 4  Longitudinal changes of clinical and cognitive 
scores in three groups. We used linear mixed models to 
evaluate clinical and cognitive performances over time in 
three groups in the AT(N)tau classification (left panels) and 
AT(N)NfL classification (right panel). Asterisk indicates a 
significant progression compared with normal biomarker 
group (ie, A–T–(N)–). Dagger indicates a significant 
progression compared with non-AD pathological change 
group. AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s 
Disease Assessment Scale-Cognitive Subscale; CDR-
SB, sum of boxes of the Clinical Dementia Rating; FAQ, 
Functional Assessment Questionnaire; MMSE, Mini-Mental 
State Examination.
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t-tau as the N marker (AT(N)tau), those who had T− were 
more frequently assigned to (N)−, whereas those who 
had T+ were more frequently assigned to (N)+ compared 
with the case of using NfL as the N marker (AT(N)NfL) 
(table  2, figure  1). This finding may be explained by 
the high correlation between t-tau and p-tau181. Partic-
ipants with A− rarely changed to A+, but approximately 
40% of the participants with A+T− changed to A+T+ in 
12 months (figure 2). Finally, four A+ groups, that is, the 
AD continuum group declined clinically and cognitively 
compared with the normal biomarker group. Notably, 
when we used AT(N)tau classification, the non-AD patho-
logical change group showed a significantly higher conver-
sion rate than the normal biomarker group (figure 5).

Since the NIA-AA Research Framework was published, 
the prevalence of biological AD according to CSF 
biomarker analysis has been reported (online supple-
mental table 4).8 17–22 In the US-ADNI study, 21%, 84% 
and 82% of the CU, MCI (progressed to dementia later) 
and ADD groups showed the A+T+ profile, respectively.19 
A previous study with five cohorts showed biological AD 
in 11% of participants with CU.22 In the BioFINDER 
study, where CSF NfL was used as the N marker, 17% of 
the CU and 39%–86% of MCI and mild ADD groups had 
biological AD.8 Compared with these western cohorts, 
our Japanese cohort had slightly lower prevalence rates 
of biological AD, with 9%, 49% and 61% in the CU, MCI, 
and ADD groups, respectively. This lower prevalence 
rate is consistent with a recent study from South Korea, 
where the prevalence rate of biological AD are 2%, 30% 
and 57% in the CU, MCI and ADD groups, respectively.6 
These findings suggest that the lower prevalence rate 
of biological AD in east Asia could result from a slightly 
lower T+ prevalence rate (CU, 15‒18%; MCI, 39‒52%; 
ADD, 59‒63%) compared with the western cohorts (CU, 
23%–38%; MCI; ADD, 59–88%). This difference may 
be explained by whether the J-ADNI and Korean study 

recruited participants with an earlier AD stage, or the 
A+T+ prevalence rate is truly low in east Asian populations.

We demonstrated the different characteristics between 
t-tau and NfL used as N markers. Results showed that 
t-tau moderately correlated with NfL (r=0.49; online 
supplemental figure 5), but highly correlated with 
p-tau181 (r=0.79), consistent with previous reports.23–25 
In the AT(N)tau classification, participants with T− 
showed the (N)− profile more frequently, whereas 
those with T+ showed the (N)+ profile more frequently 
(table 2, figure 1). CSF NfL has been reported to reflect 
neurodegeneration more closely than t-tau in the AD 
continuum.8 10 Recently, it has been reported that Aβ 
deposition in the brain facilitates the secretion of tau 
fragments in CSF.26 Thus, the mechanism of tau elevation 
in CSF in the AD continuum may differ from the mech-
anism(s) underlying other types of neuronal injury with 
the non-AD pathology. It should be noted that each of the 
fluid and imaging biomarkers have a different prognostic 
value.

Considering that both fluid and imaging biomarkers are 
continuous values along the course of the AD continuum, 
AT(N) classification defined by dichotomising the cut-off 
value should be cautiously interpreted. In our compar-
ison, the cut-off value used for distinguishing PET Aβ+ 
individuals from PET Aβ− individuals was substantially 
higher than that used for distinguishing individuals with 
ADD from those with CU (378.7 pg/mL vs 288.6 pg/
mL, table 1). Similarly, the cut-off values for the T and N 
markers that discriminate the PET Aβ status were lower 
than those that discriminate the clinical status. Consid-
ering that approximately 20% of ADD cases could be 
clinically misdiagnosed as dementia with the non-AD 
pathology and 30% of elderly people without cognitive 
impairment have the AD pathology,27 28 determination of 
the cut-off value using clinically diagnosed samples should 
be conducted with caution. An unbiased method has 

Figure 5  Conversion to dementia in three groups classified using AT(N)tau (A) and AT(N)NfL classification (B). Survival curves 
of participants without dementia at the baseline (CDR 0, n=46; CDR 0.5, n=116) illustrate the time of progression to CDR>0.5. 
Asterisk indicates a significantly frequent conversion to dementia compared with the normal biomarker group as a reference. 
AD, Alzheimer’s disease; CDR, Clinical Dementia Rating.

https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
https://dx.doi.org/10.1136/bmjno-2022-000321
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been reported to overcome this problem, because it does 
not depend on the clinical information of the samples.29 
Notably, there is discrepancy in the cut-off value of CSF 
Aβ42 between ADNI and our study (J-ADNI).12 13 The 
discrepancy may be explained by the differences in the 
methods used to determine the cut-off value, background 
characteristics and ethnic background.

Our study revealed that CSF biomarkers were useful in 
predicting longitudinal progression in the J-ADNI cohort, 
as reported in western cohorts (table  3, figure  5).8 22 
Conversion to dementia was most frequent in participants 
in the AD continuum group. Biologically, A− participants 
rarely converted into A+; however, approximately 40% of 
A+T− participants converted into A+T+ within 12 months 
(figure 2). In the US-ADNI study, CSF p-tau has a faster 
annual rate of change than CSF Aβ42, consistent with our 
results.30 Taken together, A+ participants have a high risk 
of clinical and biological progression.

This study has several limitations. First, some AT(N) 
profiles had a small sample size, possibly yielding an insuf-
ficient statistical power for detecting significant differ-
ences between groups. Second, the follow-up period of 12 
months for CSF assessment was relatively short. Thus, the 
longitudinal changes of biomarkers shown in previous 
reports could not be detected in our study.31–33 Third, 
participants of J-ADNI were clinically evaluated and not 
diagnosed by autopsy. For example, the aetiological 
cause in subjects with the A−T− (N)+ profile is likely to 
be small vessel diseases and non-tau dementia; however, 
this assumption needs to be confirmed by further study. 
Finally, to better understand the optimal N marker, 
further studies are required to confirm the correlation 
between biofluid markers and neuroimaging markers 
such as volumetric MRI.

CONCLUSION
In this study, we determined the frequency of the AT(N) 
profiles in the J-ADNI cohort using two different N 
markers in CSF. The biological AD profile (A+T+) was 
found in 9%, 49%, and 61% of participants with CU, 
MCI and ADD, respectively. The AT(N) profile showed 
different frequencies between AT(N)tau and AT(N)NfL. 
Irrespective of the classification, participants with the AD 
continuum group progressed clinically and biologically. 
CSF NfL may be more reflective N-marker than t-tau in 
AD continuum. The AT(N) classification would aid in 
understanding the AD continuum biology in various 
populations.
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