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Abstract

Objectives: Our research adopts computational techniques to analyze disease outbreaks weekly over a large geographic area
while maintaining local-level analysis by incorporating relevant high-spatial resolution cultural and environmental datasets.
The abundance of data about disease outbreaks gives scientists an excellent opportunity to uncover patterns in disease
spread and make future predictions. However, data over a sizeable geographic area quickly outpace human cognition.
Our study area covers a significant portion of the African continent (about 17,885,000 km2). The data size makes computa-
tional analysis vital to assist human decision-makers.

Methods: We first applied global and local spatial autocorrelation for malaria, cholera, meningitis, and yellow fever case
counts. We then used machine learning to predict the weekly presence of these diseases in the second-level administrative
district. Lastly, we used machine learning feature importance methods on the variables that affect spread.

Results: Our spatial autocorrelation results show that geographic nearness is critical but varies in effect and space.
Moreover, we identified many interesting hot and cold spots and spatial outliers. The machine learning model infers a binary
class of cases or none with the best F1 score of 0.96 for malaria. Machine learning feature importance uncovered critical
cultural and environmental factors affecting outbreaks and variations between diseases.

Conclusions: Our study shows that data analytics and machine learning are vital to understanding and monitoring disease
outbreaks locally across vast areas. The speed at which these methods produce insights can be critical during epidemics and
emergencies.
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Introduction
Computational methods like machine learning are becom-
ing vital to analyzing disease spread because they are excel-
lent tools for quickly finding patterns in large and
complicated datasets.1,2 Our study investigated geospatial
technologies, artificial intelligence (AI), and data analytics
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methods to analyze disease outbreaks and their contributing
factors throughout the vast jurisdiction of the World Health
Organization (WHO) Regional Office for Africa (WHO
AFRO).

The land area covered by WHO AFRO is approximately
17,885,000 km2. To put this into perspective, the size of the
contiguous United States of America (without Alaska and
Hawaii) is 8,080,464 km2, or 45% of the WHO African
Region. Furthermore, the size of New York State is about
141,300 km2 or 0.79% of the area. Moreover, Central
Park is about 3.41 km2. Visualizing all of Central Park
while standing in it is challenging. Now, imagine
5,244,868 Central Parks. Throughout this massive land
area, one can only begin to comprehend the diversity of
the approximately 1,124,700,000 people, transportation
networks, schools, hospitals, landforms, water bodies,
vegetation, weather, and climate events. Finally, let us visu-
alize that most people, places, things, and events regularly
change over time.

Visualizing these vast areas and differing characteristics
can give us a sense of the challenge that WHO AFRO faces
in monitoring, analyzing, understanding, preparing for,
and predicting disease outbreaks throughout the Region.
Despite its many successes in mitigating disease outbreaks,
WHO AFRO will benefit from modern AI and data
analytics that can uncover patterns in disease outbreaks,
derive critical attributes affecting outbreaks, predict and
model future outbreaks, and detect and monitor outbreaks
through media.

Since our study area is massive, our analysis and pre-
dictions are weekly and at the local level, and we include
many diseases, we must surpass previous research to
analyze and monitor disease outbreaks. When research-
ers analyze data at a fine geographic granularity (like
districts), one method they use to circumvent computa-
tional method deficiencies is either limiting the study
area to a relatively small area or limiting the analysis to
one disease. Starting with studies to use machine learning
to predict disease, Atek et al.3 predicted spatial patterns
of the West Nile virus in Italy using machine learning
while grouping data by a few sub-country regions. Kim
et al.4 forecasted multiple diseases in South Korea.
Husin et al.5 used a machine learning neural network to
predict dengue in Malaysia, while Usmani et al.6

predicted cholera cases in Yemen. Bellocchio et al.7

forecasted COVID-19 in Europe, and Tian et al.8 tested
multiple machine learning models to predict meningitis
in Nigeria. Wang et al.9 predicted spatial and temporal
trends in infectious diseases in China. Also, in
China, Xu et al.10 took a slightly different approach by
using long short-term memory (LSTM) time-series pre-
dictions for dengue fever based on the temporal patterns
of past cases. These valuable studies using machine
learning to predict disease spread focused on individual
countries.

Some literature analyzed spatial correlations and distri-
butions, but, again, only across relatively small geographic
areas. Sirisena et al.11 used spatial autocorrelation to find
spatial relationships of dengue in Sri Lanka. Ali et al.12

identified spatial patterns and risk factors for cholera in
Bangladesh.

When data covers a sizeable geographic area or even the
entire globe, past studies aggregated the data into large divi-
sions like countries. Dixon et al.13 compared machine learn-
ing forecasting methods of infectious disease using
country-level data for a few countries globally. Also,
Liang et al.14 predicted global African swine fever out-
breaks at the country level using machine learning.
Finally, Hess et al.15 provided a thorough global spatial
analysis of West Nile virus.

As data has grown, computational techniques have
improved that can surpass the literature by maintaining
fine geographic scales in analyses and predictions over
large areas across many diseases. Our research aims to
explore computational methods that have the advantage of
performing continental-scale analyses while maintaining
detailed geographic granularity, as advocated for by Koua
and Kraak,16 Desai et al.,17 Gwenzi and Sanganyado,18

and Neill.19 Moreover, once developed and created, our
analyses can be re-run in fractions of a second. Obtaining
our goals means that international organizations and gov-
ernments will have enhanced tools to understand, prevent,
address, and recover from outbreaks.

We organize our article by the current Introduction
section followed by the Methodology section. We begin
the Methodology section by discussing our data sources.
For disease data analysis, our primary data is the WHO
AFRO Integrated Disease Surveillance and Response
(IDSR) dataset which provides our independent variable
of various disease suspected cases and one dependent vari-
able, the week of outbreaks. Next, we report on the depend-
ent variables that represent factors we believe influence
outbreaks and processing steps to derive them from mul-
tiple high-spatial-resolution datasets.

After describing our data, we detail our computational
analysis methods, beginning with exploratory spatial data
analysis (ESDA) and global spatial autocorrelation to
understand the importance of nearness. We also used
local spatial autocorrelation to uncover detailed relation-
ships and patterns like hot and cold spots. Our second
method involved predicting disease spread using machine
learning. Our third method employed machine learning
feature importance techniques to derive the vital contribut-
ing factors to outbreaks.

We highlight our key research findings in our Results
section. First, geographic proximity strongly influences
disease outbreaks but at varying levels per disease.
Second, individual diseases show different geographic
dispersion patterns with distinctive local hot and cold
spots and outliers. We identified multiple local geographic
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locations that offer fascinating patterns. Above and beyond
the direct ESDA findings, the results dictated some of the
contributing datasets we acquired for our machine learning
methods. Third, our machine learning model trained on our
dependent datasets successfully predicts our independent,
district-level disease cases at various rates for four diseases
on a weekly basis. Our best result predicted the weekly
presence of malaria with an F1 score of 0.96. Fourth, we
found that the dependent datasets of disease-contributing
factors were of differing importance in predicting these
four diseases.

We conclude our article with a Discussion section where
we interpret our geospatial and machine learning findings
and suggest future work and datasets to add to our analysis.
One proposed future study entails performing a detailed
local analysis using more detailed supplementary datasets
like Zheng et al.20 and Li et al.,21 which can be scaled up
to a larger geographic area.

Although some of our findings about disease patterns are
not unique, our novel application of geospatial analysis and
AI to comprehensive outbreak data combined with high
spatial and temporal-resolution continental-scale data pre-
dictors can significantly contribute to data-driven global
public health monitoring and outbreak control, prevention,
and response. Furthermore, we must emphasize again that
our research contributions go beyond existing literature23,22

because our computational methods are scalable geograph-
ically and temporally to large areas while maintaining local-
level analysis across many diseases. Moreover, they can be
performed quickly, allowing for rapid results that can be
repeated regularly, frequently, and in crisis events.

Methodology
Our study investigated how modern computing techniques
can aid the understanding, monitoring, and prediction of
disease outbreaks. In this section, we first describe the data-
sets and respective processing steps we used for our study,
divided into a Disease surveillance data and selection sub-
section about disease case counts and a Sources and pro-
cessing of datasets that affect outbreaks subsection where
we list datasets that can impact the spread of disease.
Then, we describe our initial methods to uncover spatial
patterns in the ESDA for spatial patterns and relationships
subsection. Next, we employed data science and machine
learning computational techniques to predict the presence
of disease based on these case counts from environmental
and demographic data described in the Machine learning
methods to predict disease cases subsection. Lastly, the
Machine learning methods for feature importance subsec-
tion describes machine learning techniques to identify the
most critical contributing factors to predicting outbreaks.

We collected the disease surveillance data from the third
edition of the IDSR dataset, which was gathered and
curated between January 2019 and December 2022. We

processed, analyzed, and interpreted all the data between
June 2022 and October 2023. All research for this study
was based out of WHO AFRO in Brazzaville, Congo.

Data sources and processing steps

The WHO AFRO IDSR dataset is our primary dataset that
tracks infectious diseases. To support our macro geographic
scale analysis, we added many additional high-spatial-
resolution datasets to help us understand the spatial and
temporal patterns of disease outbreaks. In statistical terms,
the IDSR dataset case counts are the dependent variable
we analyze and try to predict with machine learning,
while time and the supplementary datasets are independent
variables.

Disease surveillance data and selection. The WHO AFRO
IDSR dataset records suspected cases and deaths from
various diseases at the second administrative district level
on a weekly basis throughout the WHO African Region.
The dataset covers all countries under the jurisdiction of
WHO AFRO (that is most of the African continent). At
the time of our research, Algeria, Angola, Mauritius, and
South Africa did not participate in IDSR. Figure 1 shows
the countries monitored with their population density in
green (darker shades mean denser) and bar charts for each
country with log-normalized total deaths and cases in
purple and brown, respectively. The figure summarizes
the variability in disease spread throughout the Region
and outlines the spatial extent. We did not include a map
legend since we normalized the case and death counts to
show relative amounts. The Democratic Republic of the
Congo has the highest number of total disease cases
(109,384,201), whereas Lesotho has the lowest number
with 825. The mean number of cases per country is
12,397,797, while the first quartile, median, and third quartile
case counts are 76,637, 693,795, and 13,583,939, respect-
ively. Therefore, cases aggregated by country are right-
skewed, where a few large values significantly raise the
mean. Our initial analysis focused on cases and not deaths
since cases provide a good indication of disease distribution.

The IDSR dataset we used was exported at the end of
2022 and contained entries from 1 January 2019 through
24 December 2022 (209 weekly entries). Furthermore,
there are entries for every second-level administrative dis-
trict (4506 districts). Moreover, IDSR records most diseases
present in the study area. Table 1 shows a selected sample
of five rows to illustrate the dataset. Each row corresponds
to the number of cases and deaths per disease occurring in
each administrative district in each week of the year.
Thus, if two diseases occur in two districts over 2 consecu-
tive weeks, this will produce eight rows, as shown in equa-
tion (1).

2 diseases × 2 districts × 2 weeks = 8 rows (1)

Pezanowski et al. 3



We chose the four diseases (malaria, cholera, meningitis,
and yellow fever) because they are prevalent and severe on
the continent. They are also infectious diseases and are
known to be influenced by many of the environmental
factors we chose to focus on in our analysis. When we
queried the IDSR dataset for geospatial analysis and
machine learning, we queried cases for only one disease
at a time.

Sources and processing of datasets that affect outbreaks. The
supporting datasets used to analyze disease outbreaks with
machine learning include several continent-wide, high-
resolution datasets. These datasets include elevation, land
cover, precipitation, temperature, population density, and

relative wealth estimates. Other research projects similarly
attempted to use environmental and demographic data to
predict diseases, but each focused only on small geographic
areas or single diseases.12,7,18,15,4,14,11,6,20,24

We chose our dependent variables because of their
known influence on many infectious disease outbreaks.
Furthermore, because climatic factors are changing, we
would like a way to model the potential impact of climate
change on disease outbreaks. Moreover, our local indicators
of spatial association (LISA) results (presented in Figure 2
and the “Spatial proximity’s impact on disease outbreaks”
subsection) showed a strong impact of climate on disease
outbreaks. Our goal in this study was not to uncover new
factors influencing disease outbreaks. Instead, methods

Figure 1. Countries monitored by WHO AFRO with their population density in green (darker shades mean denser) and bar charts with
normalized total deaths and cases derived from the IDSR dataset in purple and brown bars, respectively. WHO AFRO: World Health
Organization Regional Office for Africa; IDSR: Integrated Disease Surveillance and Response.
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must be developed to analyze and monitor their influence
on disease over the vast study area.

Some dependent variables were considered and tested
but ultimately excluded because of inadequate spatial or
temporal resolution. For example, water, sanitation, and
hygiene (WASH) data shows sanitary measures but only
aggregates to the country level.25 Using WASH data in
machine learning to predict disease at the district level
would not be appropriate.

In summary, data was included and excluded because of
its potential effect on the disease, its current importance in
our environment, and its availability, quality, and temporal
and spatial fit with our analysis. The supporting datasets are
summarized in Table 2.

After choosing and gathering the supporting datasets, we
needed to perform processing to transform them into data
suitable for our machine learning challenge. We extracted
multiple land cover classifications from the single land
cover dataset. For each land cover class extracted, we calcu-
lated the total area covered and the percentage of the district
covered. Then, for each class, we used a min–max scaler to
scale the area covered, percent covered, and relative popu-
lation. We then proceeded to add the three scaled values
together to produce the land cover class value used in
machine learning. We calculated this to ensure that large
districts with a small percentage of area covered, small dis-
tricts with a large percentage of area covered, or districts
with a large land cover in a class where people do not
live were assigned the correct weight by the model. The
land cover classes we extracted include:

• vegetation
• crops
• built-up areas
• bare ground
• and rangeland

As our final feature, in addition to overall population dens-
ities, we calculated each district’s population close to water

bodies. We added this feature because many infectious dis-
eases have a higher transmission rate when they occur near
water bodies (either directly through the water itself or
because the water promotes insects that transmit the
disease). To compute the population for each district near
a water body, we downloaded OpenStreetMap (OSM)
data for Africa and selected water bodies (using the OSM
tags “natural” = “water” OR “water” IS NOT NULL).
This query produced vector features for all inland water
bodies and rivers. Next, we computed 1, 3, and 6 km
buffers around every inland water body using the PostGIS
ST_Buffer function. We chose multiple distances for the
test since we did not know precisely the extent of the influ-
ence of the water body. Then, we converted the vector
buffers to a raster that matched the population dataset in
resolution. We used the ArcGIS Pro Conditional tool33 to
create a new raster with the population density where the
buffer overlaps with a zero value outside the buffer.

We acquired all supporting datasets as continuous
rasters, except for relative wealth, because this is distributed
as point data where points correspond to a significant popu-
lation. To match the spatial resolution of these datasets with
the IDSR districts, we aggregated them with the mean value
within each district to produce a single value. To aggregate
them, we used the ArcGIS Pro Zonal Statistics as
Table tool,34 which calculates single summary values for
each district per dataset. Because the land cover dataset is
multiclass, we used the ArcGIS Pro Tabulate Area tool,35

which produces the same result but on multiclass data.
Finally, we joined the IDSR dataset using the week and

district. For datasets updated less than weekly, we joined
them in a one-to-many relationship. For example, the
single land cover value per year was assigned to each
data record in that corresponding year. In contrast, we com-
puted an aggregate value for datasets updated more fre-
quently than a week (such as the mean temperature).
Table 3shows a sample of the data after these processing
steps (described in the “Machine learning methods to
predict disease cases” subsection).

Table 1. A five-row sample of the Integrated Disease Surveillance and Response (IDSR) dataset for reference.

Year Week Country Province District Disease
Number
of cases

Number
of deaths

2019 1 Burundi Bururi Matana Malaria 511 1

2019 2 Benin Atacora Cobly Rabies 0 0

2019 14 Côte d’Ivoire Worodougou Seguela Measles 1 0

2019 43 Democratic Republic of the Congo Nord-Kivu Oicha Typhoid fever 59 0

2019 43 Democratic Republic of the Congo Nord-Kivu Kibirizi Severe acute respiratory
infections (SARIs)

896 0

Pezanowski et al. 5



ESDA for spatial patterns and relationships

One of the aims of our research was to find patterns in
disease spread to better understand affected areas and the
factors that influence disease spread over large geographic
areas. Accordingly, our first step was to perform ESDA.
The primary purpose of exploratory data analysis is to sum-
marize and analyze the data without assumptions. To this
end, we primarily used unsupervised machine learning
techniques where computer models look for similarities
and differences in the data without human intervention.

Our ESDA closely followed tutorials from the valuable
online class “A Course on Geographic Data Science” by
Arribas-Bel.36

To group data records and find spatial patterns, we used
spatial autocorrelation. Spatial autocorrelation is a tech-
nique that relies on the existence of a “functional relation-
ship between what happens at one point in space and
what happens elsewhere.”37 Events occurring in one loca-
tion are considered in addition to spatial weights,
meaning that nearby values are more vital than farther

Figure 2. Moran’s local analysis shows hot spots in dark red, cold spots in dark blue, low cases around hot spots in light blue, and high
cases around low areas in light red.
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values. If the actual pattern of values follows this trend, we
can conclude that the values are spatially autocorrelated.
Spatial autocorrelation has broad applications, including
some infectious disease-related analyses.38

To prepare the data for the spatial autocorrelation algo-
rithm, we grouped all IDSR records by district and
disease and summed the cases. The disease cases are the
only column considered for spatial autocorrelation. For
example, a table for cholera has 4019 rows, representing
the number of districts in the study area. Each row only con-
tains the total number of cholera cases for that district over
the 5 years of the IDSR dataset and the spatial geometry of
the boundary of that district. We read this data table from
the database into the GeoPandas Python library.39

First, we calculated the global spatial autocorrelation for
each disease using Moran’s I.40 Moran’s I produces a value
that measures the overall degree of spatial autocorrelation.
Scientists typically interpret Moran’s I analysis from an I
value showing the global spatial autocorrelation and a stat-
istical p-value indicating the significance of the spatial auto-
correlation compared to random chance.41 The I value
ranges between−1 and 1. “A value of−1 is perfect cluster-
ing of dissimilar values, 0 is no correlation, and +1 indi-
cates perfect clustering of similar values.”42

Furthermore, we wanted to analyze local differences in
spatial autocorrelation’s because the vast study area and a
global spatial autocorrelation do not show the entire
picture. Therefore, we used Moran’s local functionality of
the ESDA library to compute LISA.43 This calculation pro-
duces a value for every administrative district. The value
indicates whether the district falls into one of four categor-
ies compared with its bordering neighbors. The four cat-
egories are:

• HH—high values surrounded by high values
• LL—low values surrounded by low values

• HL—high values among low values
• LH—and low values among high values

HH can be considered spatial hot spots and LL low spots,
whereas the latter two categories are spatial outliers.

Machine learning methods to predict
disease cases

After our ESDA, we investigated the potential for a
machine learning model that can predict weekly cases of
diseases by district. To do this, we grouped the IDSR
dataset differently from the spatial autocorrelation analysis.
Here, we filtered the records by the same four individual
diseases but left the weekly district records as they were.
After filtering the records for a disease, we joined the sup-
porting datasets with the district geographic dataset. Table 3
shows a sample of five rows of the data used for machine
learning (the first eight columns at the top and the remaining
10 columns below). The ID column is a unique identifier for
each row, whereas the ADM_ID column corresponds to an
internal identifier for the administrative district geographic
dataset. There are 17 features in each row and one column
showing disease cases.

We previously mentioned that we calculated the popula-
tion near water bodies at three distances. We tested the three
distances using our machine learning feature importance
measures (described in the “Uncovering disease contribut-
ing factors with feature importance” subsection) to decide
which to use. The feature importance plot showed that the
three population-near-water columns were primarily redun-
dant, with the 3 km buffer being slightly more important
consistently. Therefore, only populations within 3 km of
an inland water body were used to train the model.

Before training the model on this data, we combined the
two columns for each land cover into one (as described in

Table 2. Supporting datasets used in machine learning to make disease case count predictions.

Data attribute Name Provider Frequency

Elevation Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)26

NASA Jet Propulsion
Laboratory (JPL)

One time (2000–2013)

Population density Unconstrained individual countries 2000–2020
(1 km resolution)27,28,24

WorldPop Two times (2020 & 2022)

Relative wealth Relative wealth index29 Meta One time (2022)

Land cover 10-m Annual Land Use Land Cover (9-class)30 Microsoft yearly

Precipitation GPM IMERG Early Precipitation L3 one day
0.1◦× 0.1◦ V0631

NASA Two times per day

Temperature GLDAS Noah Land Surface Model L4 monthly 0.25 ×
0.25◦ V2.132

NASA Two times per day

Pezanowski et al. 7



the “Sources and processing of datasets that affect out-
breaks” subsection). As a result, the ten columns for land
cover became five, and after processing, a model trained
on the 12 independent variables attempted to predict the
target disease cases. We scaled our data using the
scikit-learn Python library Robust Scaler because the data
has outliers.

Since treating this machine learning problem as regres-
sion and attempting to predict the exact case counts
would be challenging, we converted the case counts to a
binary classification of cases versus no cases in this initial
research. This binary classification is still a substantial
first effort, and future regression machine learning work
can be done with more comprehensive supporting datasets
and improved IDSR data.

In summary, the time range covers 209 weeks for 4506
districts. Each disease was queried separately, producing
four tabular datasets with 12 independent features and
one dependent binary variable for every week and district.
Moreover, each machine learning model was trained on
209 weeks × 4506 districts = 941,754 records.

Throughout the vast study area and time range, it was
much more common for a district to have no disease than
to have cases. As a result, each training dataset is imbal-
anced. Table 4 summarizes the imbalanced data for
the four diseases, spotlighting the malaria dataset as the
most balanced, with 32.3% positive records, and the

dataset for cholera as the most imbalanced, with 1.6%
positive records.

We trained the machine learning model on a random 80/
20 data split, where we held 20% of the records for testing.
We used the AutoGluon Automated Machine Learning
(AutoML) library44 and its TabularPredictor. AutoML
libraries use automated techniques to process data, pick
the best-performing machine learning model, and optimize
the machine learning model’s hyperparameters.

We trained the model to account for class imbalance and
used the F1 score as the evaluation metric. We tried random
undersampling and oversampling with SMOTE37 to handle
the class imbalance. However, training the model with all
data and the F1 score as the evaluation metric produced
the best results.

Machine learning methods for feature importance

In addition to machine learning predictions, we used
machine learning feature importance measures to identify
features that are relatively valuable and not valuable in pre-
dicting disease cases. Feature importance has been used to
determine real-world influencers in the spread of disease, as
they were by Xiong et al.45 and Mihoub et al.46 to under-
stand the influencers of COVID-19. AutoGluon uses a per-
mutation importance method to calculate feature
importance.47 In brief, a permutation importance score is

Table 3. A five-row sample of data used for machine learning, with the first eight columns at the top and the next 10 columns below. The
land cover area values are the number of raster cells in the district within that land cover class.

ID ADM_ID Week Precipitation Temperature Trees (area) Trees (%) Crops (area) Crops (%) Built-up (area)

2157 6513 1/1/2019 0.02 31.68 0 0 13 0.15663 67

2160 5763 1/1/2019 8.56 29.09 11,215 0.79 5 0.00035 25

2161 5788 1/1/2019 0 35.17 10,263 0.88 1 0.00009 28

2162 1079 1/1/2019 16.28 28.13 17 0.05 6 0.01929 246

2163 6322 1/1/2019 0.52 30.01 144 0.65 1 0.00448 69

ID
Built-up
(%)

Bare ground
(area)

Bare ground
(%)

Rangeland
(area)

Rangeland
(%)

Relative
population
density

Relative
population
near water

Relative
wealth Elevation

Total
cases

2157 0.807 1 0.012 1 0.01 6653 0 0 18 1

2160 0.002 0 0 2691 0.19 54 156,404 0.9 617 1

2161 0.002 0 0 1150 0.10 18 115,419 0.8 522 1

2162 0.791 4 0.013 17 0.06 1317 6973 2.5 23 2

2163 0.309 1 0.004 8 0.04 379 66,592 1.7 693 1
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produced when the model is trained and makes predictions
using perturbed or randomly shuffled dataset rows.

Results
This section describes our results in the subsections on
ESDA spatial autocorrelation, machine learning modeling
to predict disease case counts, and machine learning
feature importance measures.

Spatial proximity’s impact on disease outbreaks

Once the data was transformed into a clean table for analysis,
we used the ESDA Python library to run a Moran’s I analysis
for global spatial autocorrelation on the four diseases. Table 5
summarizes the results of these analyses. ESDA’s Moran’s I
analysis was valuable in determining that all four diseases
showed a statistically significant positive global spatial auto-
correlation. Malaria had the strongest spatial autocorrelation
with an I value of 0.2442. A straightforward interpretation
of the results from applying Moran’s I on our data is that dis-
trictswith high case counts are likelier to benear other districts
with high case counts, and vice versa.

Since Moran’s I only produces a global spatial autocor-
relation value, we ran LISA, which resulted in a spatial
autocorrelation value for every district across our large
study area. We visually analyzed the results on the local dis-
trict maps in Figure 2. These maps show the spatial patterns
of the four diseases across the study area, with striking hot
and low spots and outliers that vary between the four dis-
eases. Hot spots are in dark red, cold spots are in dark
blue, low cases around hot spots are in light blue, and
high cases around low areas are in light red. The latter
two categories are spatial outliers.

What we found most striking about these maps are the
different patterns between the four diseases. Cholera has
two relatively small hot spots in the Democratic Republic
of the Congo and Nigeria, with many large cold spots.
Malaria has more hot spots that are distinctively separate
from the cold spots. Meningitis has many geographically
small hot spots, a pronounced hot spot in Côte d’Ivoire,

and some outliers scattered throughout the maps. Yellow
fever has many small hot spots, primarily in the savanna
areas of Africa, and a large cold area covering a mostly con-
tinuous area in the south.

Our local spatial autocorrelation results produced distinct-
ive maps showing that climate is vital to outbreak predic-
tions. Two examples of climate importance from Figure 2
include malaria hot spots in tropical climates and yellow
fever hot spots in savanna climates. Therefore, our initial
spatial epidemiological analysis led us to include precipitation,
temperature, and elevation in our machine learning analysis.

The LISA map for cholera also showed a fascinating
area in the Democratic Republic of the Congo, namely in
the Congo River basin extending east into Burundi,
Rwanda, Uganda, and Tanzania. Furthermore, this area
has a pronounced hot spot to the west of Lake
Tanganyika, which is considered the headwaters of the
Congo River. Nevertheless, there are also distinctive cold
outliers within this hot spot. Moreover, to the east of the
Great Lakes are definitive cold spots. Thus, in our
Proposed large geographic scale analysis section below,
we recommend detailed analyses in the future for this area.

Predicting weekly disease cases by district

Our predictive model for the binary class of district-level
weekly disease cases for malaria was the most successful,

Table 4. Summary of positive and negative records for each disease illustrating the class imbalance challenge.

Disease
No. of records with
cases (positive)

No. of records with no
cases (negative) Total records Percent positive class

Cholera 14,676 927,078 941,754 1.6%

Malaria 304,467 637,287 941,754 32.3%

Meningitis 30,957 910,797 941,754 3.3%

Yellow fever 27,595 914,159 941,754 2.9%

Table 5. Summary of Moran’s I analysis for global spatial
autocorrelation of four diseases. Cholera and malaria show strong
positive spatial autocorrelation, whereas yellow fever is lower but
still positive and significant.

Disease I p

Cholera 0.2434 0.001

Malaria 0.2442 0.001

Meningitis 0.1140 0.001

Yellow fever 0.0895 0.001
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with an F1 score of 0.96. Based on our experience, in add-
ition to the chosen features being good predictors of
malaria, the high F1 score is also explained by the fact
that malaria had the most significant number of positive
records (least imbalanced), allowing the model to learn
more. Cholera had an F1 score of 0.65. The model predicted
a binary class for meningitis with an F1 score of 0.41,
whereas the metric for yellow fever was lower at 0.17.
Unlike malaria, which showed many positive cases, we
conjecture that the performance of the other disease
models suffered from the lack of positive records. With
less training data than malaria, the models were less effect-
ive in learning the data patterns and inferring cases.

Table 6 summarizes the evaluation metrics used to clas-
sify the best-performing machine learning models for the
four diseases. All top models had a very high level of accur-
acy. However, accuracy is not a solid metric in our case
because the data is imbalanced, and although the model pre-
dicts the no-case class well, it often falls short in predicting
the case class. Since predicting districts with cases is essen-
tial, we must focus on the F1 score to ensure both classes
are accurately inferred.

Table 7 shows the top six performing machine learning
models, as reported by AutoGluon’s leaderboard function.
First, the metrics reported in Table 6 were derived from
the top-performing models. Second, these lists provide
information on which model types are best suited for the
data. Interestingly, AutoGluon preferred non-deep learning
models over deep learning models. We hypothesize that this
is because of the way we set up the machine learning pro-
blems, and with the class imbalance, there was insufficient
training data for deep learning. Cholera had fewer positive
records, and AutoGluon preferred simpler models like
random forest. Meanwhile, the best models for malaria
are more complex.

Uncovering disease contributing factors
with feature importance

As already mentioned, we used AutoGluon’s feature
importance function. The function hints at how to
improve the model predictions and provides real-world

clues as to what factors are the most critical influencers of
disease spread. These feature importance measures can
provide evidence to support better decisions about future
outbreak response and prevention efforts. Figure 3 shows
the model’s feature importance measures for each disease.

A comparison of the model’s feature importance mea-
sures of the four diseases shows time as a significant
factor in disease prediction. For cholera, malaria, and men-
ingitis, tree coverage is essential. We can see that elevation
is crucial for each disease; however, this result requires
more analysis to confirm it because it is the only dataset
with a single value that we repeated across time. A consist-
ent value like this could cause issues with the machine
learning model. Nonetheless, the result does suggest the
importance of elevation since it will not change much in a
few years. It is important to note that the numerical
values along the horizontal axis of the charts are relative.
Therefore, these values have no significance when compar-
ing the four disease charts.

Discussion
Our research towards initial massive geospatial analytics
and machine learning applications to disease spread in
Africa showed four critical points for discussion. First,
Tobler’s First Law of Geography applies to disease
spread since there is a significant spatial autocorrelation
between districts in the four diseases. Tobler’s First Law
states, “Everything is related to everything else, but near
things are more related than distant things.”48 Therefore,
we can apply this law to our results, showing that districts
near other districts where the disease is present are likelier
to have that disease and vice versa. However, Tobler’s First
Law is clear that spatial proximity is not the only contribut-
ing factor. Our study area’s diverse local hot and cold spots,
which we uncovered with local spatial autocorrelation,
clearly illustrate this point.

After spatial analysis, our second discussion topic is that
a machine learning model can accurately predict the pres-
ence or absence of district-level weekly disease cases for
multiple diseases. However, some diseases were not as suc-
cessful, and this can be because the chosen features are not

Table 6. Model evaluation metrics for machine learning to predict the weekly presence of all four diseases by district.

Disease Accuracy Balanced accuracy MCC ROC AUC F1 Precision Recall

Cholera 0.991 0.772 0.652 0.971 0.646 0.788 0.546

Malaria 0.973 0.975 0.939 0.995 0.959 0.938 0.981

Meningitis 0.971 0.651 0.431 0.931 0.416 0.636 0.309

Yellow fever 0.971 0.548 0.224 0.897 0.167 0.553 0.098

MCC: Matthews correlation coefficient; ROC AUC: receiver-operating characteristic curve area under the curve.
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comprehensive enough to predict the disease or because
there are not enough positive records. Furthermore, these
initial results are promising in terms of future analyses
since they occurred, even though we only used a few sup-
porting datasets in our study.

Third, a critical discussion point is that a machine learn-
ing model can produce feature importance measures to
determine the most essential factors in predicting the
spread of disease.

The fourth key point is that although traditional methods
could be used in some of our analyses, modern methods
have clear advantages. Modern techniques can scale ana-
lysis over vast geographic areas while maintaining local-
level knowledge. Furthermore, modern techniques can
produce results in milliseconds, while previous methods
might take months or much longer.

In addition to these four discussion points, we empha-
size an overarching research finding that space and time
are vital in analyzing, predicting, and monitoring disease
spread. Our extensive contributions from our initial
study can significantly impact future analysis, and in the
subsections below, we identify essential steps to make
this possible. Nonetheless, we must discuss our study’s
limitations next.

The primary limitation of this initial study is that we
focused on characterizing and predicting outbreaks of the
four chosen diseases as measured in the IDSR dataset.
Although IDSR is comprehensive and extensive, it presents
summarized case counts and does not include detailed
information that might help determine why outbreaks, pat-
terns, or outliers occur. Even though our study is limited to
this data, based on our experience, we surmise that our tech-
niques would be effective for similar data with similar
spatial and temporal resolutions.

A secondary limitation of our study is that because we
focused on developing extensible large-scale analysis and
monitoring techniques, we limited our acquisition of sup-
porting data to factors specific to the chosen diseases.

Therefore, an additional limitation is that our analysis
only applies to the four diseases. However, based on our
results, we are confident that our techniques will be effect-
ive in analyzing and predicting other diseases once more
relevant data is incorporated for those diseases.

Insights to improve predictions of disease outbreaks

To provide a more detailed discussion, first, we draw atten-
tion to the machine learning model for predicting malaria,
which performed significantly better than the other three
models. We must note this because it means that our
chosen data features are good predictors of malaria. Also,
we surmise that the very high F1 score is because malaria
had the highest number of positive cases, allowing the
model to learn the data patterns. These results strengthen
the importance of improved comprehensiveness and accur-
acy of the IDSR dataset over time. In addition, the model’s
weak performance for diseases with fewer case counts in
the IDSR dataset again highlights that improvements in
IDSR data collection and added data over time will
improve any analytics performed with it.

Along with highlighting variations in model perfor-
mances, it is critical to emphasize that time is consistently
crucial in predicting cases. The importance of time to our
model suggests that future machine learning to predict
disease would benefit from a greater focus on time. One
way would be to treat the IDSR dataset as time series
data and then use machine learning techniques and
models ideal for time series data.

Despite our promising machine learning results, some
mixed results mean more data processing, gathering rele-
vant supporting datasets, and incorporating modern deep
learning models will likely improve outcomes signifi-
cantly. It is critical in future work to add more features
(relevant datasets) and ensure the analysis is repeatable.
With more future data and greater data accuracy, future

Table 7. The top six performing machine learning models for each disease as reported by AutoGluon’s leaderboard. We used the top model
for each disease to make our predictions and report evaluation metrics.

Cholera Malaria Meningitis Yellow fever

1. RandomForestEntr 1. LightGBM 1. RandomForestEntr 1. RandomForestGini

2. RandomForestGini 2. LightGBMLarge 2. RandomForestGini 2. WeightedEnsemble_L2

3. CatBoost 3. WeightedEnsemble_L2 3. WeightedEnsemble_L2 3. CatBoost

4. WeightedEnsemble_L2 4. XGBoost 4. NeuralNetTorch 4. NeuralNetTorch

5. NeuralNetTorch 5. RandomForestEntr 5. CatBoost 5. XGBoost

6. LightGBMXT 6. RandomForestGini 6. ExtraTreesEntr 6. ExtraTreesEntr
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Figure 3. Results of machine learning feature importance measures of each disease. The values on the X-axis for feature importance are
relative to each model; therefore, these values cannot be compared across disease charts.
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machine learning will be vital in predicting and tackling
disease spread.

Intelligently selecting disease-affecting datasets

For discussion specific to the supporting datasets, the hot
and cold spot analysis highlighted specific geographic
areas more or less likely to influence disease case counts.
Scientists can combine these results with feature import-
ance measures to choose more supporting datasets to help
machine learning model predictions.

Furthermore, a critical point to future data collection is
that supporting datasets would best aid the machine
learning model if they correspond by space and time to
the IDSR dataset. Ideally, the supporting datasets
should be at a spatial resolution fine enough to have a
value for each district and a precise enough temporal
resolution to have a value for each week. As noted in
Table 3, our analysis over multiple years used only one
data layer for elevation, two for population density, one
for relative wealth, and four for land cover because the
selected datasets are only available for these years. On
a local level, these datasets likely stayed consistent
during our study period. However, ideally, we plan to
perform further analysis on more frequent data when
that data becomes available. For example, a high-
resolution population density dataset generated more fre-
quently can be valuable for disease analysis considering
seasonal and crisis event migrations.

Proposed large geographic scale analysis

A final discussion topic is that we encountered two primary
challenges because our analysis covered a vast geographic
area. First, potentially infinite combinations of factors
affect disease spread in all local areas in the study area,
making data and analysis choices difficult. Second, datasets
that cover the study area are naturally big, making many
analyses computer resource-intensive and time-consuming.

To overcome these challenges, we propose future
precise research using a large map scale (covering a rela-
tively small ground area) analysis. The geographic area
we mentioned in the Spatial proximity’s impact on
disease outbreaks subsection around the Great Lakes of
Africa is a top candidate for such research. Focusing on a
smaller area would mean shorter computer analysis wait
times and a more in-depth understanding of data patterns.
This analysis can also be done to ensure that it scales to
larger areas given more time and resources. For example,
our proposed research could incorporate datasets like
roads and other transportation networks; length of
commute and other movement data like modes of transpor-
tation; water bodies; rivers; detailed data about water bodies
like water retention, drainage, and depth; population distri-
bution; demographic data like age, education, sex, and
income; and human lifestyle data like occupation, religion,

mobility, and gatherings. Since model research, analysis,
and development are time-consuming, focusing on a rela-
tively small geographic area while ensuring computational
methods scale would produce valuable and efficient models
that still have the advantage of rapidly producing insights
over vast areas.

We anticipate that such research can answer questions
like: When clustering districts to find similar districts by
data, do they have similar case counts? How do proximity
and usage of transportation networks affect cases? What
are the effects of human mobility levels and types of
cases? Do water body characteristics like water retention
length, depth, and salinity affect cases? How does popula-
tion proximity to other spatial data like road networks and
schools affect cases? How do residents’ demographic data
factors like age affect cases? How do human lifestyle
factors affect cases?

Conclusion
In conclusion, we showed the value of modern geospatial
data analytics and machine learning techniques to under-
stand the spatial distribution of disease outbreaks,
uncover spatial patterns, predict future outbreaks and their
intensities, and derive the most critical contributing
factors to disease outbreaks.

Our work is an initial pilot study; future analyses can
extend our results. We also laid the groundwork for sug-
gested future analyses to improve disease outbreak preven-
tion, preparedness, detection, monitoring, and response.
Computational techniques to analyze and predict disease
are critical for improved public health outcomes.
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