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Introduction
Skp2 is the limiting component of the E3 ligase controlling 

the proteosomal degradation of p27kip1 (p27) in late G1/S 

phase (Carrano et al., 1999; Tsvetkov et al., 1999). Skp2 can 

also stimulate p27 degradation and S phase entry in serum-

deprived cells (Sutterluty et al., 1999). Although Skp2 has sev-

eral other substrates (Reed, 2003), the importance of p27 as 

a Skp2 substrate is emphasized by the fi nding that Skp2-p27 

double-null mice lose most of the Skp2 knock out phenotype 

(Nakayama and Nakayama, 2005). It was therefore surprising 

that knockin mouse embryo fi broblasts (MEFs) expressing 

p27T187A, a Skp2-resistant p27 mutant, did not show a pro-

nounced defect in mitogen-stimulated S phase entry (Malek 

et al., 2001).

Skp2 levels are inhibited posttranscriptionally by retino-

blastoma protein (Rb) through its effects on anaphase-promoting 

complex/cyclosome and its activator Cdh1 (APC/CCdh1)–mediated 

Skp2 degradation (Hsu et al., 2002; Bashir et al., 2004; Ji et al., 

2004; Wei et al., 2004; Binne et al., 2007). In this report, we 

describe a parallel regulation of Skp2 by Rb that results in the 

formation of a transcriptionally based Skp2 autoinduction loop. 

Interference with this loop selectively affects the transition to 

mitogen-independent cell cycle progression, also called the 

 restriction point.

Results and discussion
A conserved E2F site links Skp2 regulation 
to Rb activation/inactivation
Transcript profi ling indicates that E2F controls Skp2 gene ex-

pression (Markey et al., 2002; Vernell et al., 2003), and we found, 

in agreement with this data, that ectopic expression of human 

papilloma virus–E7 (E7), which inactivates pocket proteins and 

releases E2Fs, rescued Skp2 mRNA and protein expression in 

serum-starved MEFs (Fig. 1 A). We used zPicture (available at 

http://zpicture.dcode.org/) to identify conserved domains in the 

mouse versus the human, chimp, and dog Skp2 promoters, and 

rVista (available at http://rvista.dcode.org/) to look for putative 

E2F binding sites within the conserved domains. This analysis 

(Fig. 1 B) revealed an evolutionarily conserved E2F binding site 

in human, chimp, and dog Skp2 promoters that matches the E2F 

consensus (SCGSSAAA; Tao et al., 1997). The homologous 

mouse sequence (GCGCTAAA) differs from the consensus by 

one base (Fig. 1 B), but this same sequence acts as a functional 

E2F site in the E2F1 promoter (Neuman et al., 1994). The mouse 

sequence begins at position +114 relative to the transcription 

start site, between the transcription and translation start sites. 

It is the only E2F site we could identify in the mouse Skp2 

 promoter. Imaki et al. (2003) have reported that the Skp2 pro-

moter contains a binding site for the transcription factor GABP. 
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Figure 1. A conserved E2F site in the Skp2 promoter. (A) Vector- (V) or E7- (E7) transfected MEFs were incubated in 10% FCS or serum starved. Skp2 
mRNA levels were determined by QPCR and plotted relative to the levels observed in the vector-transfected cells incubated with 10% FCS. A dupli-
cate experiment was Western blotted for Skp2 and Cdk4 (loading control). (B) The conserved E2F site on the mouse, human, chimp, and dog Skp2 
promoters. The numbers shown are relative to the known or putative transcription start sites. (C) MEFs transfected with the wild-type Skp2 promoter– (Swt) 
or E2F-mutated Skp2 promoter– (SEm) luciferase constructs were analyzed by ChIP using anti-E2F1 (E) or preimmune IgG (I). (D) Skp2 promoter activity in 
serum-stimulated MEFs expressing Swt or SEm promoter–luciferase constructs and either empty vector or E7. After 24 h in 10% FCS, Skp2 promoter–
 luciferase activity was plotted relative to the activity of the wild-type Skp2 promoter transfected with empty vector. (E–H) Serum-starved MEFs were 
stimulated with 10% FCS. (E) The levels of Skp2 and cyclin E1 mRNAs were determined by QPCR and plotted relative to the level of cyclin E mRNA 
in the starved cells. (F) Total cell lysates were Western blotted for Skp2 and Cdk4 (loading control). (G) Total cell lysates were Western blotted 
for Rb; the hyper- and hypophosphorylated forms are shown by the top and bottom arrows, respectively. (H) ChiP was performed using anti-E2F1 
or control IgG, and the results were quantifi ed by QPCR. The level of immunoprecipitated Skp2 promoter is plotted relative to the input (×10−3). 
Error bars show mean ± SD. 
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 Interestingly, GABP can cooperate with E2F1 to regulate the 

transcription of target genes (Izumi et al., 2000). 

We generated luciferase constructs with the wild-type 

mouse Skp2 promoter, including one with a mutation in the con-

served E2F site (Fig. 1 B), and transiently transfected them into 

MEFs. Chromatin immuno precipitation (ChIP) performed with 

amplicons specifi c for the transfected genes showed that E2F1 

bound to the transfected wild-type mouse Skp2 promoter but not 

to the transfected promoter with the E2F site mutation (Fig. 

1 C). Moreover, mutation of the single E2F site completely 

blocked the activity of a Skp2 promoter–luciferase construct 

in serum-stimulated or E7- expressing MEFs (Fig. 1 D).

Skp2 mRNA levels fl uctuate during cell cycle progression 

(Zhang et al., 1995). We found that Skp2 mRNA and protein 

expression are low in G0, gradually increase in early G1 phase, 

and further increase �15 h after mitogenic stimulation (Fig. 1, 

E and F, respectively). This second, late G1/S phase induction of 

Skp2 coincided with the hyperphosphorylation of Rb (Fig. 1 G). 

Moreover, this late G1/S phase induction of Skp2 mRNA closely 

matched the time-dependent increase in cyclin E1 mRNA (12–18 h; 

Fig. 1 E), a prototypic E2F1-regulated gene (DeGregori et al., 

1995). ChIP was then used to examine the time-dependent 

binding of endogenous E2F1 to the mouse Skp2 promoter 

(Fig. 1 H). Indeed, the binding of endogenous E2F1 to the con-

served site on the endogenous Skp2 promoter increased in late 

G1/S phase. Thus, the mid-to-late G1 phase induction of Skp2 

(12–18 h after mitogen stimulation) is regulated by E2F activity.

Others (Zhang and Wang, 2006) have reported that the 

 human Skp2 promoter contains three E2F-like sequences, one of 

which is the human homologue of the mouse E2F site reported 

in this paper (Fig. 1 B). However, these investigators concluded 

that a distinct, nonconserved E2F site (TTGCGCGCG) accounted 

for E2F-stimulated luciferase activity of the human Skp2 pro-

moter. Although we cannot exclude the possibility that the human 

promoter relies on this nonconserved E2F site, it is curious that 

a consensus E2F site (CGCGCAAA) did not contribute to E2F-

stimulated luciferase activity or interact with E2F in electropho-

retic mobility shift assays in Zhang and Wang (2006). We also 

note that the amplicon used to show binding of E2F1 to this 

nonconserved site in the human promoter includes the con-

served E2F site described in this report.

A Skp2 autoinduction loop 
in the G1/S transition
Our identifi cation of a conserved E2F site in the mouse Skp2 

gene allowed us to assemble Rb-E2F, Skp2, p27, and cyclin E–

Cdk2 into a self-amplifying loop (Fig. 2 A). In this loop, the 

stimulatory effect of E2F on Skp2 gene expression would feed 

back to sustain Rb inactivation, E2F release, and further induc-

tion of the Skp2 gene in late G1 phase. Thus, this model predicts 

that Skp2 should induce itself and that this autoinduction should 

be detected as increased mRNA. Moreover, the autoinduction of 

Skp2 should occur in serum-deprived cells, because the loop is 

self-amplifying and does not require the presence of mitogens.

To test this model, we infected serum-free cultures of 

MEFs with an adenovirus encoding human Skp2 (Ad-hSkp2) 

and used a species-specifi c Skp2 primer probe set with quantitative 

real-time RT-PCR (QPCR) to detect the induction of mouse Skp2 

mRNA. Ectopic expression of human Skp2 induced endog -

enous mouse Skp2 mRNA, as well as other known E2F target 

genes (cyclins E1 and A; Fig. 2 B and Fig. S1, A and B, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200703034/DC1). 

Induction of mouse Skp2 mRNA and down-regulation of p27 

by Ad-hSkp2 were seen when the serum-starved MEF were 

expressing ectopic Skp2 at near normal levels (compare FCS to 

60 MOI Ad-hSkp2; Fig. S2) and when the infection was per-

formed during or after the serum-starvation period (Fig. S3). 

Conversely, inhibition of the loop by RNAi-mediated knock down 

of Skp2 reduced serum-stimulated Skp2 promoter activation 

(Fig. 2 C). As expected, this Skp2 requirement was lost after 

pocket protein inactivation with E7 (Fig. 2 C).

The loop shown in Fig. 2 A predicts that the autoinduction 

of Skp2 requires Cdk activity, and we indeed found that the in-

duction of endogenous Skp2 mRNA seen in response to ectopic 

Ad-hSkp2 in serum-starved MEFs was blocked by the Cdk in-

hibitor roscovitine (Fig. 3 A). Conversely, expression of cyclin E 

induced Skp2 mRNA and protein in serum-deprived MEFs 

(Fig. 3 B and Fig. S1 C). The autoinduction of Skp2 mRNA 

was effi ciently inhibited in serum-deprived MEFs when transit 

through the loop was precluded by knockin of a Skp2-resistant 

p27 mutant, p27T187A (Fig. 3 C).

A characteristic of positive feedback loops is that they 

yield “all-or-nothing” responses. Indeed, we observed stepwise 

increases in cyclin E1 gene induction (Fig. 3 D, top) and S phase 

entry (Fig. 3 D, middle) upon infection of serum- starved MEFs 

with increasing MOIs of Ad-hSkp2. The maximal responses 

Figure 2. A feedback loop for Skp2 autoinduction. (A) A positive feed-
back loop that perpetuates Skp2 induction and Rb inactivation in the ab-
sence of exogenous mitogens. (B) RNA from serum-starved MEFs infected 
with Ad-LacZ or Ad-hSkp2 was analyzed by QPCR; the levels of Skp2, 
cyclin E1, and cyclin A mRNAs are plotted relative to their levels in the 
Ad-LacZ–infected cells. (C) Skp2 promoter activity in cells transfected with 
an irrelevant control siRNA or Skp2 siRNA, infected with Ad-LacZ or Ad-E7, 
and stimulated with 10% FCS for 24 h. The Western blot shows representa-
tive Skp2 and actin levels in MEFs transfected with control (Co) siRNA or 
Skp2 (S2) siRNA, serum starved, and stimulated with 10% FCS for 24 h. 
Error bars show mean ± SD. 
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occurred with near-normal levels of Skp2 protein and were clearly 

distinguishable from the gradual increase in Skp2 expression 

(Fig. 3 D, bottom). The induction of endogenous Skp2 mRNA and 

degradation of p27 also occurred in a stepwise fashion (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200703034/DC1). 

Marti et al. (1999) have reported that Skp2 degrades E2F1 in 

G2/M phase cells. However, Ad-hSkp2 did not decrease E2F1 

levels in serum-deprived MEFs (Fig. 3 D, bottom), which is con-

sistent with the fact that Skp2 stimulates S phase entry under these 

conditions. Collectively with Marti et al. (1999), this result sug-

gests that Skp2 may switch from a positive to a negative regulator 

of E2F activity as cells progress from G1/S to G2/M. Ad-hCyclin E 

also had no effect on E2F1 levels (unpublished data).

Skp2 autoinduction and restriction 
point control
The Skp2 autoinduction loop has the potential to regulate S phase 

entry because it can perpetuate the down-regulation of p27 

and, thereby, the activation of cyclin E–Cdk2, phosphorylation 

of Rb and release of E2Fs. However, Malek et al. (2001), using 

knockin of p27T187A, reported that Skp2-mediated p27 degrada-

tion is not required for S phase entry in serum-stimulated MEFs. 

Because the Skp2 autoinduction loop can function in mitogen-

deprived cells (Fig. 2), we reasoned that these results could be 

reconciled if Skp2-mediated p27 degradation was essential only 

for the transition to mitogen independence, also called the re-

striction point (Blagosklonny and Pardee, 2002). We therefore 

used p27T187A MEFs to interrupt the Skp2 autoinduction loop 

and look for consequences on the restriction point.

To measure passage through the restriction point, serum-

starved p27T187A or wild-type MEFs were stimulated with 10% 

FCS for selected times. The serum was removed, and the cells 

were incubated with serum-free medium and BrdU. S phase 

entry in the wild-type MEFs required mitogens for the fi rst 10 h 

after serum stimulation and then quickly became mitogen inde-

pendent (Fig. 4 A, WT). This rapid transition to mitogen inde-

pendence was defective in primary p27T187A MEFs; these cells 

did not become mitogen independent until 16 h (Fig. 4 A, T187A). 

Importantly, this defect in restriction-point control was not 

caused by a general decrease in the rate of cycling because, as 

previously reported (Malek et al., 2001), the kinetics of S phase 

entry were nearly identical when wild-type and p27T187A MEFs 

were continuously exposed to mitogens (Fig. 4 B). Thus, Skp2-

dependent degradation of p27, and probably the Skp2 auto-

induction loop, regulates progression through the restriction point. 

A positive feedback loop should accelerate the transition to 

 mitogen independence, and we indeed fi nd that the rate of pro-

gression through the restriction point is decreased when transit 

through the loop is blocked in p27T187A MEFs (Fig. 4 A).

Previous papers have proposed that passage through the re-

striction point is regulated by a positive feedback loop comprised 

of cyclin E and Rb-E2F (Dou et al., 1993; Blagosklonny and 

Pardee, 2002). In this model, cyclin E activation of Cdk2 would 

stimulate Rb phosphorylation and E2F-dependent transcription 

of the cyclin E1 gene, thereby furthering Rb inactivation and 

cyclin E1 induction. However, we reasoned that the repeated 

autoinduction of cyclin E might also require Skp2-mediated 

p27 degradation to allow for the activation of cyclin E–Cdk2. 

Figure 3. Characteristics of the Skp2 autoinduction loop. 
(A) Serum-starved MEFs infected with Ad-LacZ or Ad-
hSkp2 were pretreated for 3 h with DMSO or 20 μM 
roscovitine and then incubated for 24 h with BrdU. Skp2 
mRNA was quantifi ed by QPCR and plotted relative to its 
level in the Ad-LacZ–infected cells. BrdU incorporation 
analysis showed that roscovitine inhibited the effect of 
Ad-hSkp2 on S phase entry by >90%. (B) Serum-starved 
MEFs were infected with Ad-LacZ or Ad–hCyclin E. Skp2 
mRNA was quantifi ed by QPCR and plotted relative to 
its level in the Ad-LacZ–infected cells. (C) Skp2 mRNA in 
serum-starved wild-type (WT) and p27T187A (T187A) MEFs 
infected with Ad-LacZ or Ad-hSkp2 was determined by 
QPCR and plotted relative to its level in Ad-LacZ–infected 
wild-type cells. (D) Serum-starved MEFs were infected with 
increasing (3.7–100) MOI Ad-hSkp2 or 100 MOI Ad-LacZ. 
Lysates were examined for cyclin E1 mRNA (top), BrdU 
 incorporation (middle), or protein expression (bottom) of 
Skp2, E2F1, and actin (loading control). Cyclin E1 mRNA 
levels were determined by QPCR and plotted relative to its 
level in the Ad-LacZ–infected cells. The Western blot in-
cludes a lysate from serum-starved MEFs treated for 24 h 
with 10% FCS to show the level of endogenous Skp2. The 
Western blots were derived from the same experiment. 
Error bars show mean � SD. 
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Based on this reasoning, the cyclin E autoinduction loop would 

be within, rather than separate from, the Skp2 autoinduction 

loop. To test this notion, we used a species-specifi c QPCR 

primer-probe set to mouse cyclin E1 mRNA to compare the 

effi ciency of cyclin E autoinduction in wild-type and p27T187A 

MEFs infected with an adenovirus encoding human cyclin E. 

Indeed, we found that the autoinduction of cyclin E1 mRNA 

was barely detected in p27T187A MEFs (Fig. 4 C). This result 

strongly suggests that the major effects of cyclin E and Rb/E2F 

in restriction point control depend on their inclusion in the Skp2 

autoinduction loop.

Others have reported that APC/CCdh1 stimulates Skp2 pro-

tein degradation (Bashir et al., 2004; Wei et al., 2004), and that 

APC/CCdh1 activity is inhibited by the E2F-dependent induction 

of Emi1 (Hsu et al., 2002). We therefore envision that the in-

activation of pocket proteins and release of E2F controls the 

 restriction point through the coordinated effects of the tran-

scriptionally based Skp2 autoinduction loop described in this 

report and the posttranscriptionally based APC/CCdh1 pathway. 

Both of these effects would converge to increase the expres-

sion of Skp2 and degradation of p27. We note that p27T187A 

MEFs are not completely restrictionless, indicating that other 

Skp2 targets may also contribute to restriction point control. 

Alternatively, an independent positive feedback loop, perhaps 

in which Rb-E2F induces cyclin D1 (Ohtani et al., 1995), may 

cooperate with the loop described in this report.

In addition to its effect on cell cycle progression, the Skp2 

autoinduction loop may contribute to cell cycle exit associated 

with pocket protein activation. Others have reported that Rb and 

p107 regulate p27 levels posttranscriptionally by acting as a 

scaffold for Skp2 and Cdh1 and thereby facilitating APC/CCdh1-

dependent Skp2 proteolysis (Ji et al., 2004; Rodier et al., 2005; 

Binne et al., 2007). Interestingly, this rapid posttranscription 

down-regulation of Skp2 should inhibit the Skp2 autoinduction 

loop, which would in turn prevent Skp2 gene transcription and 

thereby enforce the quiescent state. Thus, coordinated transcrip-

tional and posttranscriptional pocket protein effects on Skp2 lev-

els may contribute to both the transition to mitogen independence 

and the G1 phase arrest that follows mitogen withdrawal.

Skp2 knock down or p27 overexpression inhibit S phase 

entry in serum-stimulated cells (Polyak et al., 1994; Toyoshima 

and Hunter, 1994; Zhang et al., 1995), whereas S phase entry is 

nearly normal in p27T187A MEFs (Malek et al., 2001; Fig. 4 B) 

cultured under similar conditions. These results imply that 

p27T187A MEFs (which have gone through mouse development 

in the absence of wild-type p27) may have acquired a compen-

satory mechanism that bypasses the need for Skp2-mediated 

p27 degradation in mitogen-bathed cells. In contrast, the restric-

tion point defect is clearly seen in p27T187A MEFs, emphasizing 

that the role of Skp2-mediated p27 degradation in the transition 

to mitogen independence is essential.

Skp2 is dispensable in E7-expressing 
cells: implications for Skp2 in cellular 
transformation
The results in Fig. 4 show that autoinduction of Skp2 is linked 

to effi cient progression through the restriction point. However, 

this loop might become dispensable if Rb is inactivated by 

 oncogenes during cellular transformation. To explore this possibil-

ity, we inactivated pocket proteins by ectopic expression of E7, 

knocked down Skp2 with siRNA, and determined the consequence 

of reduced Skp2 expression on S phase entry in serum-deprived 

MEFs (conditions where Skp2- mediated p27 degradation is 

required for the feedback loop and S phase entry; Figs. 2–4). 

Interestingly, S phase entry was not inhibited by knock down of 

Skp2 (Fig. 5, A and B), and a distinct Skp2 siRNA gave similar 

results (not depicted). We also found that Skp2 siRNA inhibited 

S phase entry in serum-stimulated MEFs, but even this Skp2 

requirement was lost upon expression of E7 (Fig. 5, C and D).

Elevated Skp2 expression is observed in cancers and has 

been considered a causative factor due, in part, to its effects on 

p27 (Gstaiger et al., 2001; Kamata et al., 2005; Zheng et al., 2005). 

Figure 4. The Skp2 autoinduction loop controls the restriction point. 
(A) Restriction point analysis in wild-type (WT) and p27T187A (T187A) 
MEFs. Results are plotted relative to the BrdU incorporation observed at the 
last time point (34 and 39% for wild type and p27T187A MEFs, respectively). 
(B) S phase entry in wild-type and p27T187A MEFs continuously incubated 
with 10% FCS and BrdU. Results are plotted relative to the BrdU incorpo-
ration observed at the last time point (44 and 48% for wild-type and 
p27T187A MEFs, respectively). (C) Serum-starved wild-type (WT) and 
p27T187A (T187A) MEFs were infected with increasing (3.7–100) MOI of 
Ad–hCyclin E or 100 MOI Ad-LacZ (shown as 0 MOI Ad–hCyclin E). The 
level of mouse cyclin E1 mRNA was determined by QPCR (using a primer-
probe set that recognizes mouse, but not human, cyclin E1 mRNA) and 
plotted relative to its level in the Ad-LacZ–infected cells. Error bars show 
mean ± SD.
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However, our data indicate that high Skp2 expression may sim-

ply be a consequence of aberrant Rb inactivation and E2F re-

lease. Because many cancers constitutively activate upstream 

mitogenic signaling pathways that sustain Rb inactivation, the 

ability of Skp2 to sustain Rb inactivation through the feedback 

loop shown in Fig. 2 A may not be needed in cancer cells. 

Indeed, our results indicate that S phase entry induced by E7 is 

independent of Skp2. In fact, the notion that Skp2-mediated 

degradation of p27 may not be required for tumor development 

is supported by the fi nding that the p27T187A mutation does not 

delay tumorigenesis in mouse models of Ras-dependent lung 

and colon cancer (Timmerbeul et al., 2006).

Materials and methods
Cell culture
Spontaneously immortalized MEFs were maintained in DME (Invitrogen) 
with 5% FBS. For experimentation, near confl uent cells were serum starved 
in DME with 1 mg/ml heat-inactivated, fatty acid–free BSA (DME-BSA; 
Sigma-Aldrich) for 48 h, trypsinized, reseeded at subconfl uence, and stim-
ulated largely as described previously (Welsh et al., 2001). Stimulated 
cells were washed once with cold PBS, scraped, collected by centrifugation, 
quick frozen, and stored at −80°C before analysis. S phase entry was de-
termined by incorporation of BrdU (Kothapalli et al., 2003). Primary MEFs 
from wild-type and p27T187A knockin mice were maintained in 10% FCS 
and used at passages 2–5. To study progression through the restriction 
point, serum-starved wild-type and p27T187A MEFs were replated at subcon-
fl uence in 35-mm dishes and stimulated with 10% FCS for selected times. 
The FCS-containing medium was removed, and the cells were washed 
once with a 50-mM glycine, 150-mM NaCl, pH 2.8, acid wash buffer and 
twice with cold DME and were then incubated in DME-BSA for a total incu-
bation of 17 h. BrdU was added to all of the plates, and the incubation 
continued for an additional 12 h before determining BrdU incorporation 
(relative to total DAPI-stained nuclei) by immunofl uorescence microscopy. 
BrdU results show mean ± SD from multiple fi elds of view.

Skp2 promoter–luciferase constructs and assays
A 1.9-kb fragment of the mouse Skp2 promoter (bases −1,253 to 263) was 
cloned by PCR from ICR Swiss mouse DNA (Promega), ligated into the KpnI 

and BglII sites of pGL3 basic (Promega), and confi rmed by DNA sequencing. 
Analysis of a 5′−Skp2 promoter–luciferase deletion series revealed that the 
minimal active promoter is from −362 to 263 (unpublished data); this con-
struct was used for the luciferase assays shown. Mutagenesis of the E2F site 
at +114–121 was performed using the QuikChange multi site-directed mu-
tagenesis kit (Stratagene) with the forward oligo (5′-G G G G A T C A C T C T A A G-
C C G A A C T T T C A G A C A G G A G T C T G G A A G G C A G -3′) and the reverse oligo 
(5′-C T G C C T T C C A G A C T C C T G T C T G A A A G T T C G G C T T A G A G T G A T C C C C -3′).

MEFs (�60% confl uent) in a six-well plate were transiently cotrans-
fected as described previously (Bottazzi et al., 1999), but using 1 μg 
Skp2-pGL3, 0.1 ng cytomegalovirus–Renilla luciferase, 4 μl Lipofectamine 
(Invitrogen), and 6 μl Plus reagent (Invitrogen) per well. For experiments 
using E7, the cells were cotransfected with 0.5 μg of the fi refl y luciferase 
vector driven by wild-type (Swt) or E2F-mutated (SEm) Skp2 promoter, 0.1 ng 
CMV–Renilla luciferase, and either 0.5 μg of E7 plasmid or empty vector. 
After a 24-h incubation in 10% FCS, the cells were collected in passive 
 lysis buffer, and luciferase activity was determined using the dual-luciferase 
reporter assay system (Promega). Measurements were performed in dupli-
cate and recorded as mean � SD. Skp2 luciferase activity was normalized 
to Renilla luciferase activity.

Transfections, infections, and RNAi
Unless noted otherwise in the fi gure legends, confl uent MEFs were infected 
with adenoviruses after a 12-h incubation in serum-free DME-BSA. The cells 
were infected overnight at 100 MOI using adenoviruses encoding GFP, 
Ad-LacZ, Ad-E7 (provided by J. Meinkoth, University of Pennsylvania, 
Philadelphia, PA), human cyclin E1 (Ad–hCyclin E; provided by J. Albrecht, 
University of Minnesota, Minneapolis, MN, and S. Reed, University of 
California, San Diego, San Diego, CA), or Ad-hSkp2 (provided by 
K.  Nakayama, Kyusu University, Fukuoka City, Fukuoka, Japan), and then 
 incubated in fresh serum-free medium to obtain a total serum-free medium 
incubation time of 48 h. For plasmid transfections, MEFs were transiently 
transfected as described previously (Welsh et al., 2001) using 5 μg pCDNA3.1 
(vector control), pCDNA3.1-based E7, or pcDNA3.1-based human E2F1. 
Transfected cells were incubated overnight in DME containing 10% FCS 
 before use or serum starvation for 24–36 h. Transfections of siRNAs were 
performed as described previously (Walker et al., 2006), except that 100 nM 
irrelevant (human E cadherin; G A G U G A A U U U U G A A G A U U G tt) or mouse 
Skp2 (U U U G U C A C U C C C U U U G C C C tt) siRNAs were used.

When adenoviral infection was combined with siRNA, near confl u-
ent MEFs were serum starved for 12 h, infected with either Ad-E7 or Ad-
LacZ, and incubated for 24 h in DME-BSA. The medium was removed, and 
the infected cells were transfected with the irrelevant control siRNA or Skp2 
siRNA. After an additional 24 h, the siRNA-containing medium was re-
placed with DME-BSA or 10% FCS DME with BrdU, and the incubation 
was continued for another 24 h. After a total of 84 h in serum-free medium, 
coverslips were collected for analysis of BrdU incorporation. In some ex-
periments, the siRNA transfection also contained 0.05 μg of the wild-type 
Skp2 promoter–luciferase and 0.05 ng of Renilla luciferase vectors.

QPCR
Collected cell pellets were lysed in 0.5–1 ml of TRIzol (Invitrogen) to extract 
total RNA. Real-time PCR for mouse Skp2 and Cdk4 were performed as 
previously described (Stewart et al., 2004). Controls (unpublished data) 
demonstrated that the mouse Skp2 primer probe set did not detect human 
Skp2 mRNA. Mouse cyclin E1 mRNA, mouse cyclin A mRNA, and 18S 
rRNA levels were determined using assay-on-demand primer probe sets 
Mm00432367_ml, Mm00438064_ml, and Hs99999901_s1 (Applied 
Biosystems), respectively. Skp2 and cyclin E1 mRNAs were normalized to 
Cdk4 mRNA or 18S rRNA, neither of which varied reproducibly in re-
sponse to any of the treatments used. Duplicate PCR reactions were run for 
each sample, and results are plotted as mean � SD. Results shown in the 
fi gures are typically representative of three independent experiments.

ChIP
ChIPs were performed as described previously (Klein et al., 2007) using 106 
MEFs per sample and 5 μg of either anti-E2F1 (C-20X; Santa Cruz Biotech-
nology, Inc.) or preimmune antibody control. One tenth of the fi nal immuno-
pre cipitated DNA (5 μl) was analyzed by QPCR with SYBR green to quantify 
the amount of immunoprecipitated Skp2 promoter. Primer sequences for mouse 
Skp2 were 5′-T G G T G A T G G A A C G T T G C T A G T -3′ (forward) and 5′-G G T G-
T C C A C T G A T T C A G G A -3′ ( reverse). ChIPs on MEFs transiently transfected 
with Skp2 promoter–luciferase constructs were performed as previously 
described (Klein et al., 2007) and analyzed by PCR using 5′-T G G T G A T G-
G A A C G T T G C T A G T -3′ (forward) and 5′-C T T T A T G T T T T T G G C G T C T T C C A -3′ 

Figure 5. Effect of Skp2 siRNA in E7-expressing cells. (A) Serum-starved 
MEFs infected with either Ad-E7 (E7) or Ad-LacZ (LZ) were transfected with 
an irrelevant control (Co) siRNA or Skp2 (S2) siRNA and incubated with 
BrdU for 24 h in serum-free medium to assess S phase entry. (B) The experi-
ment in A was repeated except that the collected cells were analyzed by 
Western blotting for Skp2 and actin (loading control). (C and D) The experi-
ments in A and B were repeated except that the 24-h incubation with BrdU 
was performed in the presence of 10% FCS. Error bars show mean � SD. 
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(reverse; encoding plasmid backbone sequence within the promoter–
 luciferase construct). The amplifi ed PCR product (300 bp) was detected on 
a 1.5% agarose gel.

Western blotting
Western blotting was performed as described previously (Welsh et al., 
2001) using 30–40 μg of total cellular protein and the following anti-
bodies: Skp2 (SKP2-2B12; Invitrogen), Cdk4 (C-22 [Santa Cruz Biotech-
nology, Inc.] or DCS-31 [Invitrogen]), p27 (clone 57; BD Biosciences), Rb 
(Mab1; Invitrogen), E2F1 (C-20; Santa Cruz Biotechnology, Inc.) cyclin E 
(M-20; Santa Cruz Biotechnology, Inc.), and actin (1616R and C-2; Santa 
Cruz Biotechnology, Inc.). The resolved proteins were detected using ECL 
(GE Healthcare). Autoradiographs were digitized by scanning, and fi gures 
were assembled using Photoshop (Adobe).

Online supplemental material
Fig. S1 complements the mRNA analysis in Figs. 2 B and 3 B to show that 
infection with Ad-hSkp2 or Ad–hCyclin E leads to protein expression of the 
E2F targets, cyclin A, cyclin E, and Skp2. Fig. S2 shows that near endog-
enous levels of Skp2 can initiate the Skp2 autoinduction loop. Fig. S3 
shows that Skp2 expression can initiate the Skp2 autoinduction loop even 
when cells are fully quiescent. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200703034/DC1.

We thank Jeffrey Albrecht, Keiichi Nakayama, Steve Reed, and Judy Meinkoth 
for reagents.

This work was supported by National Institutes of Health (NIH) grant 
HL083367 to R.K. Assoian. J. Walker was supported by NIH training grants 
F32-GM065031 and R25-CA101871. Y. Yung was supported by American 
Heart Association grant 0425489U.

Submitted: 6 March 2007
Accepted: 11 July 2007

References
Bashir, T., N.V. Dorrello, V. Amador, D. Guardavaccaro, and M. Pagano. 2004. 

Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) 
ubiquitin ligase. Nature. 428:190–193.

Binne, U.K., M.K. Classon, F.A. Dick, W. Wei, M. Rape, W.G. Kaelin Jr., 
A.M. Naar, and N.J. Dyson. 2007. Retinoblastoma protein and anaphase-
promoting complex physically interact and functionally cooperate during 
cell-cycle exit. Nat. Cell Biol. 9:225–232.

Blagosklonny, M.V., and A.B. Pardee. 2002. The restriction point of the cell 
cycle. Cell Cycle. 1:103–110.

Bottazzi, M.E., X. Zhu, R.M. Bohmer, and R.K. Assoian. 1999. Regulation 
of p21(cip1) expression by growth factors and the extracellular ma-
trix reveals a role for transient ERK activity in G1 phase. J. Cell Biol. 
146:1255–1264.

Carrano, A.C., E. Eytan, A. Hershko, and M. Pagano. 1999. SKP2 is required 
for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell 
Biol. 1:193–199.

DeGregori, J., T. Kowalik, and J.R. Nevins. 1995. Cellular targets for activation 
by the E2F1 transcription factor include DNA synthesis- and G1/S-
regulatory genes. Mol. Cell. Biol. 15:4215–4224.

Dou, Q.P., A.H. Levin, S. Zhao, and A.B. Pardee. 1993. Cyclin E and cyclin A as 
candidates for the restriction point protein. Cancer Res. 53:1493–1497.

Gstaiger, M., R. Jordan, M. Lim, C. Catzavelos, J. Mestan, J. Slingerland, and 
W. Krek. 2001. Skp2 is oncogenic and overexpressed in human cancers. 
Proc. Natl. Acad. Sci. USA. 98:5043–5048.

Hsu, J.Y., J.D. Reimann, C.S. Sorensen, J. Lukas, and P.K. Jackson. 2002. E2F-
dependent accumulation of hEmi1 regulates S phase entry by inhibiting 
APC(Cdh1). Nat. Cell Biol. 4:358–366.

Imaki, H., K. Nakayama, S. Delehouzee, H. Handa, M. Kitagawa, T. Kamura, 
and K.I. Nakayama. 2003. Cell cycle-dependent regulation of the Skp2 
promoter by GA-binding protein. Cancer Res. 63:4607–4613.

Izumi, M., M. Yokoi, N.S. Nishikawa, H. Miyazawa, A. Sugino, M. Yamagishi, 
M. Yamaguchi, A. Matsukage, F. Yatagai, and F. Hanaoka. 2000. 
Transcription of the catalytic 180-kDa subunit gene of mouse DNA 
polymerase alpha is controlled by E2F, an Ets-related transcription factor, 
and Sp1. Biochim. Biophys. Acta. 1492:341–352.

Ji, P., H. Jiang, K. Rekhtman, J. Bloom, M. Ichetovkin, M. Pagano, and L. 
Zhu. 2004. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibi-
tion by Rb and is retained in a partial-penetrance Rb mutant. Mol. Cell. 
16:47–58.

Kamata, Y., J. Watanabe, Y. Nishimura, T. Arai, M. Kawaguchi, M. Hattori, 
A. Obokata, and H. Kuramoto. 2005. High expression of skp2 correlates 

with poor prognosis in endometrial endometrioid adenocarcinoma. 
J. Cancer Res. Clin. Oncol. 131:591–596.

Klein, E.A., Y. Yung, P. Castagnino, D. Kothapalli, and R.K. Assoian. 2007. Cell 
adhesion, cellular tension and cell cycle control. Methods Enzymol. 
In press.

Kothapalli, D., S.A. Stewart, E.M. Smyth, I. Azonobi, E. Pure, and R.K. 
Assoian. 2003. Prostacylin receptor activation inhibits proliferation 
of aortic smooth muscle cells by regulating cAMP response element-
binding protein- and pocket protein-dependent cyclin a gene expression. 
Mol. Pharmacol. 64:249–258.

Malek, N.P., H. Sundberg, S. McGrew, K. Nakayama, T.R. Kyriakides, and 
J.M. Roberts. 2001. A mouse knockin model exposes sequential proteolytic 
pathways that regulate p27Kip1 in G1 and S phase. Nature. 413:323–327.

Markey, M.P., S.P. Angus, M.W. Strobeck, S.L. Williams, R.W. Gunawardena, 
B.J. Aronow, and E.S. Knudsen. 2002. Unbiased analysis of RB-mediated 
transcriptional repression identifi es novel targets and distinctions from 
E2F action. Cancer Res. 62:6587–6597.

Marti, A., C. Wirbelauer, M. Scheffner, and W. Krek. 1999. Interaction between 
ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of 
E2F-1 degradation. Nat. Cell Biol. 1:14–19.

Nakayama, K.I., and K. Nakayama. 2005. Regulation of the cell cycle by SCF-
type ubiquitin ligases. Semin. Cell Dev. Biol. 16:323–333.

Neuman, E., E.K. Flemington, W.R. Sellers, and W.G. Kaelin Jr. 1994. 
Transcription of the E2F-1 gene is rendered cell cycle dependent by E2F 
DNA-binding sites within its promoter. Mol. Cell. Biol. 14:6607–6615.

Ohtani, K., J. DeGregori, and J. Nevin. 1995. Regulation of the cyclin E gene by 
transcription factor E2F1. Proc. Natl. Acad. Sci. USA. 92:12146–12150.

Polyak, K., M.H. Lee, H. Erdjument-Bromage, A. Koff, J.M. Roberts, P. Tempst, 
and J. Massague. 1994. Cloning of p27Kip1, a cyclin-dependent kinase 
inhibitor and a potential mediator of extracellular antimitogenic signals. 
Cell. 78:59–66.

Reed, S.I. 2003. Ratchets and clocks: the cell cycle, ubiquitylation and protein 
turnover. Nat. Rev. Mol. Cell Biol. 4:855–864.

Rodier, G., C. Makris, P. Coulombe, A. Scime, K. Nakayama, K.I. Nakayama, 
and S. Meloche. 2005. p107 inhibits G1 to S phase progression by down-
regulating expression of the F-box protein Skp2. J. Cell Biol. 168:55–66.

Stewart, S.A., D. Kothapalli, Y. Yung, and R.K. Assoian. 2004. Antimitogenesis 
linked to regulation of Skp2 gene expression. J. Biol. Chem. 
279:29109–29113.

Sutterluty, H., E. Chatelain, A. Marti, C. Wirbelauer, M. Senften, U. Muller, and 
W. Krek. 1999. p45SKP2 promotes p27Kip1 degradation and induces 
S phase in quiescent cells. Nat. Cell Biol. 1:207–214.

Tao, Y., R.F. Kassatly, W.D. Cress, and J.M. Horowitz. 1997. Subunit compo-
sition determines E2F DNA-binding site specifi city. Mol. Cell. Biol. 
17:6994–7007.

Timmerbeul, I., C.M. Garrett-Engele, U. Kossatz, X. Chen, E. Firpo, V. 
Grunwald, K. Kamino, L. Wilkens, U. Lehmann, J. Buer, et al. 2006. 
Testing the importance of p27 degradation by the SCFskp2 pathway in 
murine models of lung and colon cancer. Proc. Natl. Acad. Sci. USA. 
103:14009–14014.

Toyoshima, H., and T. Hunter. 1994. p27, a novel inhibitor of G1 cyclin-Cdk 
protein kinase activity, is related to p21. Cell. 78:67–74.

Tsvetkov, L.M., K.H. Yeh, S.J. Lee, H. Sun, and H. Zhang. 1999. p27(Kip1) 
ubiquitination and degradation is regulated by the SCF(Skp2) complex 
through phosphorylated Thr187 in p27. Curr. Biol. 9:661–664.

Vernell, R., K. Helin, and H. Muller. 2003. Identifi cation of target genes of the 
p16INK4A-pRB-E2F pathway. J. Biol. Chem. 278:46124–46137.

Walker, J.L., P. Castagnino, B.M. Chung, M.G. Kazanietz, and R.K. Assoian. 
2006. Post-transcriptional destabilization of p21cip1 by protein kinase C 
in fi broblasts. J. Biol. Chem. 50:38127–38132.

Wei, W., N.G. Ayad, Y. Wan, G.J. Zhang, M.W. Kirschner, and W.G. Kaelin Jr. 
2004. Degradation of the SCF component Skp2 in cell-cycle phase G1 by 
the anaphase-promoting complex. Nature. 428:194–198.

Welsh, C.F., K. Roovers, J. Villanueva, Y. Liu, M.A. Schwartz, and R.K. Assoian. 
2001. Timing of cyclin D1 expression within G1 phase is controlled by 
Rho. Nat. Cell Biol. 3:950–957.

Zhang, H., R. Kobayashi, K. Galaktionov, and D. Beach. 1995. p19Skp1 and 
p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. 
Cell. 82:915–925.

Zhang, L., and C. Wang. 2006. F-box protein Skp2: a novel transcriptional target 
of E2F. Oncogene. 25:2615–2627.

Zheng, W.Q., J.M. Zheng, R. Ma, F.F. Meng, and C.R. Ni. 2005. Relationship 
between levels of Skp2 and P27 in breast carcinomas and possible role of 
Skp2 as targeted therapy. Steroids. 70:770–774.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




