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Abstract: Our aim in the experiment was to study the effects of methyl jasmonates (MeJA) on the
active compounds of rosemary suspension cells, the metabolites’ change of contents under different
concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 µM MeJA (M100). The results
demonstrated that MeJA treatments promoted the accumulation of rosmarinic acid (RA), carnosic acid
(CA), flavonoids, jasmonate (JA), gibberellin (GA), and auxin (IAA); but reduced the accumulations
of abscisic acid (ABA), salicylic acid (SA), and aspartate (Asp). In addition, 50 and 100 µM MeJA
promoted the accumulation of alanine (Ala) and glutamate (Glu), and 50 µM MeJA promoted the
accumulation of linoleic acid and alpha-linolenic acid in rosemary suspension cells. Comparative
RNA-sequencing analysis of different concentrations of MeJA showed that a total of 30, 61, and
39 miRNAs were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100,
respectively. The analysis of the target genes of the differentially expressed miRNAs showed that
plant hormone signal transduction, linoleic acid, and alpha-linolenic acid metabolism-related genes
were significantly enriched. In addition, we found that miR160a-5p target ARF, miR171d_1 and
miR171f_3 target DELLA, miR171b-3p target ETR, and miR156a target BRI1, which played a key
role in rosemary suspension cells under MeJA treatments. qRT-PCR of 12 differentially expressed
miRNAs and their target genes showed a high correlation between the RNA-seq and the qRT-PCR
result. Amplification culture of rosemary suspension cells in a 5 L stirred bioreactor showed that
cell biomass accumulation in the bioreactor was less than that in the shake flask under the same
conditions, and the whole cultivation period was extended to 14 d. Taken together, MeJA promoted
the synthesis of the active compounds in rosemary suspension cells in a wide concentration range via
concentration-dependent differential expression patterns. This study provided an overall view of the
miRNAs responding to MeJA in rosemary.

Keywords: MeJA; Rosmarinus officinalis L.; suspension cells; active compounds; miRNAs; RNA-seq;
stirred bioreactor

1. Introduction

Rosemary (Rosmarinus officinalis L.) is a famous ornamental and medicinal homologous
plant. As an excellent natural antioxidant and preservative, rosemary had been widely used
in various industries, such as the food preservation, medicine, and cosmetics industries [1].
Studies had shown that the main functional components of rosemary include flavonoids,
terpenoids, phenols, for example flavonoids, RA, and CA [2]. The active ingredients of
rosemary were widely used in anti-tumor, anti-cancer, anti-despondency anti-virus, anti-
inflammatory activity, regulating the immune system and other activities [3–9]. Researchers
had previously attempted to regulate the synthesis of functional metabolites using various
methods. MeJA regulation was considered particularly important in changing the synthesis
of plant functional metabolites in cells [10]. In addition, plant tissue and cell culture

Int. J. Mol. Sci. 2022, 23, 3704. https://doi.org/10.3390/ijms23073704 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23073704
https://doi.org/10.3390/ijms23073704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2795-3165
https://orcid.org/0000-0002-8523-621X
https://doi.org/10.3390/ijms23073704
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23073704?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 3704 2 of 24

techniques were the most efficient methods for obtaining functional metabolites. Our group
had established a rosemary cell suspension culture system to study the influence of MeJA
treatments on functional metabolites.

Jasmonic acid (JA) and its derivatives were the key signaling molecules and played
important roles in many biological processes, such as growth inhibition, senescence, wound
response, plant defense, and the secondary mechanism [11]. The JA signaling was an important
component in plant hormone signal transduction [12,13]. As derivatives of JA, MeJA had
also been used to enhance the secondary metabolites production through eliciting defense
responses in many species [14,15], such as volatile terpenoids in Amomum villosum, triterpene
in Euphorbia pekinensis, and tropane alkaloids in Hyoscyamus niger [16–18]. Studies had shown
that MeJA treatments could promote the synthesis of numerous metabolites in plant cell
cultures, such as taxol and taxanes in Taxus sp. suspension cells, terpenoid indole alkaloids
in Catharanthus roseus cells, and nicotine/phenylpropanoid conjugate in Nicotiana tabacum
cells [19–22]. In Salvia miltiorrhiza, SmJAZ8 participated in the biosynthesis of phenolic acids
under MeJA treatment [23]. In Catharanthus roseus, protein CrMYC2’s regulation of ORCA
gene expression in turn regulates a series of terpenoid indole alkaloids biosynthesis genes
under MeJA treament [24]. The transcription factors AP2/ERF and bHLH cooperatively
mediate jasmonate-elicited nicotine biosynthesis, which—via the JA induced signaling cascade—
leads to increased nicotine biosynthesis in tobacco [25,26]. In Artemisia annua suspension
cells, exogenous MeJA promoted the accumulation of artemisinin via significantly increased
CYP71AV1 expression [27].

MiRNAs were short non-coding RNAs with a length of 19–25 nucleotides, which
played a crucial role in biological processes and stress responses [28,29]. In plants, miRNAs
were post-transcriptional regulators of gene expression related to growth, development
and stress, and expression of miRNAs were differently in different stages of plant devel-
opment [30,31]. miRNA396b was downregulated and increased the expression of ARF16,
thereby binding to the promoters of key terpenoid indole alkaloids pathway genes and re-
pressed their expression in Catharanthus roseus cells under MeJA treatment [32]. MiRNA156
and miRNA168 were downregulated in Chinese yew (Taxus chinensis L.) and miRNA408
was upregulated in Lycoris aurea under MeJA treatment [33,34]. At present, miRNA has
been attracting more and more attention, and many studies have used high-throughput
sequencing technology to explain the involvement of miRNAs responding to MeJA in
plants. Through these studies, more conserved and novel miRNAs have been identified in
different plants [35], and expression level analysis of miRNAs were particularly important
in exploring their biological functions.

At present, no study has shown the miRNA-omics of rosemary responding to MeJA.
In our study, we investigated the miRNA-omics of rosemary suspension cells in responding
to different concentrations of MeJA using high-throughput sequencing technology. By
comparing and analyzing the sequencing data of the control and MeJA treatments groups,
miRNA expression profiles were investigated, and the miRNA target genes were predicted
and classified in rosemary suspension cells under different concentrations of MeJA. Our
studies provided new insights to the molecular mechanisms that allow MeJA to influence
plant functional metabolites and an overall view of miRNAs responding to MeJA stress of
a non-model plant.

2. Results
2.1. Physiological and Biochemical Indices of Rosemary Suspension Cells under Different
Concentrations of MeJA

In our study, the effects of MeJA on rosemary suspension cells were further explained
by the change of physiological and biochemical indexes, we selected 0 (CK), 10 (M10), 50
(M50), and 100 µM MeJA (M100) treatments. After suspending different concentrations
of MeJA treatments for 48 h in rosemary suspension cells, the contents of RA, CA, and
flavonoids were highest in the 100 µM MeJA treatment, followed by the 50 and 10 µM
MeJA treatments, and the contents of the MeJA treatment groups were more than the CK
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group (Figure 1A–C and Tables S2–S4). The contents of JA, GA, and IAA of the MeJA
treatment groups were more than the CK group, but the contents of ABA and SA of the
CK group were more than the MeJA treatment groups (Figure 1D–H and Tables S5–S9).
The contents of Ala and Glu of the 50 and 100 µM MeJA treatment groups were higher
than the CK group, but the contents of the 10 µM MeJA treatment group were lower than
the CK group; the content of Asp of the MeJA treatment groups was lower than the CK
group (Figure 1I–K and Tables S10–S12). The contents of linoleic acid and alpha-linolenic
acid of the 50 µM MeJA treatment group were higher than the CK group, but the contents
of the 10 µM MeJA treatment group were lower than the CK group (Figure 1L,M and
Tables S13 and S14). MeJA had the same promoting effect on RA, CA, flavonoids, JA, GA,
and IAA, but had the opposite effect on ABA and SA. In addition, MeJA had the same effect
on Ala and Glu, but had the opposite effect on Asp. Measures of 10 and 50 µM MeJA had
the same effect on linoleic acid and alpha-linolenic acid. These results indicate that MeJA
could promote the biosynthesis of the active compounds. Four sRNA libraries—0 (CK), 10
(M10), 50 (M50), and 100 µM MeJA (M100)—were therefore constructed and sequenced to
explore miRNAs related to metabolite biosynthesis in rosemary suspension cells.
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Figure 1. Content of physiological and biochemical indicators in rosemary suspension cells under
different concentrations of MeJA for 48 h. (A) rosmarinic acid (mg RA/g DW); (B) carnosic acid (mg
CA/g DW); (C), flavonoids (mg flavonoids/g DW); (D) gibberellin (pmol GA/g FW); (E), abscisic
acid (ng ABA/g FW); (F) auxin (µmol IAA/g FW); (G) jasmonate (pmol JA /g FW); (H) salicylic acid
(µg SA/g FW); (I) alanine (µg Ala/g FW); (J) glutamate (µg Glu/g FW); (K) aspartate (µg Asp/g
FW); (L) linoleic acid (mg/g DW); (M) alpha-linolenic acid (mg/g DW). Different letters above the
bars respectively indicate a significant difference (p < 0.05) from CK (0) among the CK and MeJA
treatment groups. Error bars represent SDs (n = 3).
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2.2. Small RNA Analysis of Rosemary Suspension Cells

After trimming adaptor sequences and filtering out corrupted adapter sequences, the
remaining reads ranging from 18 to 30 nt were selected. The clean reads of four sRNA
libraries were 87.52%, 89.73%, 86.74%, and 90.81%, and the Mapped reads were 54.11%,
54.66%, 58.86%, and 56.40%, respectively, which matched the SRNA database (Table S15).
The sRNA lengths of the four treatments were similar, ranging from 21–24 nt with the
largest being 21 nt (Figure 2), indicating that the distribution of plant sRNA lengths did not
alter in rosemary suspension cells under different concentrations of MeJA.
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Figure 2. Length distribution of small RNA sequences in the small RNA libraries. Four sRNA
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2.3. Identification of Known and Novel miRNAs of Rosemary Suspension Cells under Different
Concentrations of MeJA

Sequencing data compared with the miRBase 22.0 database, the results were shown
for 69 known miRNAs and 181 novel miRNAs in rosemary suspension cells under different
concentrations of MeJA (Table S16). There were 56 mature miRNAs and 45 precursors in
the CK treatment, 53 mature miRNAs and 53 precursors in the 10 µM MeJA treatment,
57 mature miRNAs and 46 precursors in the 50 µM MeJA treatment, and 53 mature miRNAs
and 51 precursors in the 100 µM MeJA treatment. There were 178 mature miRNAs for
the novel miRNAs in the CK treatment, 178 mature miRNAs for the novel miRNAs in the
10 µM MeJA treatment, 178 mature miRNAs for the novel miRNAs in the 50 µM MeJA
treatment, and 172 mature miRNAs for the novel miRNAs in the 100 µM MeJA treatment
(Tables S16 and S17). Further analysis showed that 69 known miRNAs belong to 22 miRNA
families (Figure 3). The 13 miRNA families contained one or more miRNA members; for
example, miR156 and miR171 had eight members. The nine miRNA families contained
only one miRNA member, including miR172, miR530, miR845, miR858, miR1171, miR5141,
miR5658, miR6173, and miR6300 (Table S18).
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2.4. Differential Expression Analysis of Differentially Expressed miRNAs in Rosemary Suspension
Cells under Different Concentrations of MeJA

Whole miRNAs were analyzed to detect differentially expressed miRNAs (DEMs),
revealing that 40 known miRNAs and 75 novel miRNAs expression were regulated under
different concentrations of MeJA. There were 30 DEMs authenticated in CKvsM10, includ-
ing seven upregulated and four downregulated known miRNAs, and 11 upregulated and
eight downregulated novel miRNAs. There were 61 DEMs authenticated in CKvsM50,
including 10 upregulated and 12 downregulated known miRNAs, and 11 upregulated
and 28 downregulated novel miRNAs. There were 39 DEMs authenticated in CKvsM100,
including 12 upregulated and seven downregulated known miRNAs, and 10 upregulated
and 10 downregulated novel miRNAs (Figure 4A). Represented by Venn, there were eight
miRNAs regulated by 10, 50, and 100 µM MeJA, including three known miRNAs and five
novel miRNAs. There were 15 miRNAs regulated by 10 and 50 µM MeJA, including five
known miRNAs; 13 miRNAs regulated by 10 and 100 µM MeJA, including five known
miRNAs; and 24 miRNAs regulated by 50 and 100 µM MeJA, including 13 known miRNAs
(Figure 4B). A total of 10 miRNAs were only differentially expressed in CKvsM10, of which
seven were upregulated and three were downregulated; 30 miRNAs were only differen-
tially expressed in CKvsM50, of which six were upregulated and 24 were downregulated;
10 miRNAs were only differentially expressed in CKvsM100, of which six were upregulated
and four were downregulated (Figure 4B).
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Figure 4. Differently expressed miRNAs in CKvsM10, CKvsM50, and CKvsM100. (A) the numbers of
miRNAs up or downregulated in the CKvsM10, CKvsM50, and CKvsM100 (>1.5-fold and p < 0.05);
(B) A Venn diagram representing the unique and common regulated miRNAs in the CKvsM10,
CKvsM50, and CKvsM100; (C) Differentially expressed known miRNAs in response to MeJA. From
the red to the blue corresponds to the numerical value of log2(TPM) from the high to the low; (D)
Differentially expressed novel miRNAs in response to MeJA. From the red to the blue corresponds to
the numerical value of log2(TPM) from the high to the low.

The hierarchical clustering of 40 differentially expressed known miRNAs under dif-
ferent concentrations of MeJA resulted in five major clusters (Figure 4C). The expression
level of miR167d under MeJA treatment was higher than CK treatments. The six known
miRNAs—including miR156a-5p, miR168a-5p, miR168a-3p, miR171f_3, miR398a-3p, and
miR398b—forming cluster I displayed high expression levels in all known miRNAs, fol-
lowed by cluster IV. In addition, the expression levels of 5 miRNAs belonging to cluster
V, basically displayed low expression levels under 100 µM MeJA treatment. According to
hierarchical cluster analysis, 75 differentially expressed novel miRNAs in different con-
centrations of MeJA were classified into five major clusters (Figure 4D). The eight novel
miRNAs, forming cluster I displayed high expression levels in all novel miRNAs, followed
by cluster II. Only two novel miRNAs (novel_mir97 and novel_mir111) belonged to cluster
V, and the expression level under 100 µM MeJA treatment was lower than other treatments.
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These differentially expressed miRNAs analysis results revealed that rosemary suspension
cells transcriptome undergoes significantly dynamic changes under different concentrations
of MeJA, the datasets might serve as a valuable molecular resource for future studies.

2.5. Functional Classification of Differentially Expressed miRNAs in Rosemary Suspension Cells
under Different Concentrations of MeJA

We performed KEGG enrichment analyses for DEMs target genes (Figure S1). The
highest enrichment in CKvsM10 was plant hormone signal transduction, followed by
glucosinolate biosynthesis and cyanoamino acid metabolism. The top three enrichments in
CKvsM50 were linoleic acid metabolism, anthocyanin biosynthesis, and alpha-linolenic
acid metabolism. The top five enrichments in CKvsM100 were plant hormone signal
transduction; glucosinolate biosynthesis; alanine, aspartate, and glutamate metabolism;
linoleic acid metabolism; and alpha-linolenic acid metabolism. The highest enrichment
in M10vsM50, M10vsM100, and M50vsM100 was linoleic acid metabolism, followed by
alpha-linolenic acid metabolism.

The first 20 enrichment pathways of the six combinations (CKvsM10, CKvsM50, CK-
vsM100, M10vsM50, M10vsM100, M50vsM100) were compared and analyzed. Some path-
ways, such as linoleic acid metabolism and alanine, aspartate, and glutamate metabolism
were enriched in the top 20 for all six combinations (Figure 5). Some pathways, such as
plant hormone signal transduction, other types of O-glycan biosynthesis, carbon fixation
in photosynthetic organisms and biosynthesis of secondary metabolites were enriched in
the top 20 for all three combinations (CKvsM10, CKvsM50, CKvsM100) (Figure 5). This
indicated that these pathways differed significantly under different concentrations of MeJA.
Some pathways were only enriched in the top 20 for one combination (Figure 5). For
example, brassinosteroid biosynthesis and terpenoid backbone biosynthesis were only
enriched in the top 20 in CKvsM10, including miR156a targeted CYP90C1 in brassinos-
teroid biosynthesis, novel_mir129 and novel_mir151 targeted STE24 in terpenoid backbone
biosynthesis, anthocyanin biosynthesis, flavone and flavonol biosynthesis, isoflavonoid
biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and phenylpropanoid biosyn-
thesis were only enriched in the top 20 in CKvsM50, the key gene peroxidase was tar-
geted by miR167d_1 in phenylpropanoid biosynthesis, 3AT and IF7MAT were targeted by
novel_mir176, novel_mir11 and novel_mir179 in anthocyanin and flavone and flavonol
biosynthesis, panB was targeted by novel_mir179, NES1 in sesquiterpenoid and triterpenoid
biosynthesis, indicating that 10 and 50 µM MeJA were more effective than 100 µM MeJA
for metabolites such as terpenoids and flavonoids. Then, biosynthesis of unsaturated fatty
acids, fatty acid biosynthesis, and fatty acid metabolism were only enriched in the top 20
in CKvsM100, suggesting that 100 µM MeJA was more effective for fatty acid metabolites
(Figure 5).

MapMan analysis of the target genes of the differentially expressed miRNAs was
distributed in the lipids, cell wall and lipids pathways in the comparisons of CKvsM10, CK-
vsM50, CKvsM100, respectively (Figure S2A–C). The miRNAs involved in these pathways
included miR168b_1, miR167d_1, miR6300, miR396a-5p, and miR396b. The results showed
that the numbers of target genes upregulated involved in cell wall, amino acids, and TCA
under 10 µM MeJA treatment were higher than under other treatments, but the numbers
of target genes upregulated involved in lipids under 100 µM MeJA treatment were higher
than under other treatments (Figure S2D). Compared the results of CKvsM10, CKvsM50,
and CKvsM100, the numbers of target genes involved in CKvsM50 and CKvsM100 were
significantly more than CKvsM10 (Figure S3A–C). The miRNAs involved in the signaling
included miR171d_1, miR396a-3p_1, and miR6300. The above results indicated that 50 and
100 µM MeJA affected the lipids, cell wall, and signaling more significantly than 10 µM
MeJA in rosemary suspension cells.

KEGG and MapMan analyses of the target genes of the differentially expressed miR-
NAs showed that MeJA affected the synthesis of rosemary suspension cells’ metabolites via
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multiple pathways, including plant hormone signal transduction, lipids, and many other
metabolism pathways.
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2.6. Network of Differentially Expressed miRNAs and Their Targets in Rosemary Suspension Cells
under Different Concentrations of MeJA

To further understand functional metabolites and other processes associated with
miRNAs responding to MeJA, we constructed the differentially expressed miRNA–mRNA
interaction network using Cytoscape (Figure 6, Table S19). In CKvsM10, miR156a-5p
had 38 target genes, miR167d_1 had 34 target genes, novel_mir151 had 71 target genes,
and novel_mir72 had 34 target genes (Figure 6A, Table S19). The expression of miR396a-
3p_4 was upregulated most substantially in all differently expressed miRNAs, and mainly
involved glutathione metabolism, whereas the expression of miR171d_1 was downreg-
ulated most substantially. In CKvsM50, miR396b had 36 target genes, miR167d_1 had
34 target genes, novel_mir179 had 131 target genes, and novel_mir76 had 101 target genes
(Figure 6B, Table S19). The expression of miR160 was upregulated most substantially,
whereas the expression of miR160a-5p was downregulated most substantially; both of
them mainly involved plant hormone signal transduction. In CKvsM100, miR6300 had
69 target genes, both miR396a-3p_5 and miR167d_1 had 34 target genes, novel_mir151 had
71 target genes, and novel_mir72 had 38 target genes (Figure 6C, Table S19). The expression
of miR396a-3p_4 was upregulated most substantially in all differently expressed miRNAs,
and mainly involved glutathione metabolism, whereas the expression of miR160a-5p was
downregulated most substantially, and mainly involved plant hormone signal transduction.
The results showed that miR156a, miR160, miR160a-5p, novel_mir151, and novel_mir72
were mainly associated with plant hormone signal transduction. Plant hormone signal
transduction played an important role in rosemary suspension cells responding to MeJA.

Some target genes in CKvsM10, CKvsM50, and CKvsM100 were also regulated by
different miRNAs. For example, the gene Unigene16296_All was regulated jointly by
miR167d_1 and miR167d-5p; CL9049.Contig3_All was regulated jointly by miR156a and
miR156a-5p; CL7970.Contig1_All was regulated jointly by miR396a-3p_1, miR396a-3p_4,
and miR396a-3p_5.
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2.7. miRNAs and Target Genes Related to the Plant Hormone Signal Transduction in Rosemary
Suspension Cells under Different Concentrations of MeJA

The above results showed that physiological and biochemical indexes and functional clas-
sification of differentially expressed miRNAs in rosemary suspension cells (Figures 1 and 5),
and many differentially expressed miRNAs were mainly associated with plant hormone
signal transduction (Tables S20–S22). This study therefore sought to find a regulatory mech-
anism for miRNAs involved in the plant hormone signal transduction, which in turn af-
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fects the synthesis of the active compounds in rosemary suspension cells. We explored
rosemary suspension cells miRNA-omics data in our study and found that some differen-
tially expressed miRNAs were related to the ARF, DELLA, ETR, and BRI1 in the plant hor-
mone signal transduction. The target genes ARF (CL11742.Contig5_All) of miR160; ARF
(CL7275.Contig1_All, CL8053.Contig1_All, CL11742.Contig1_All) of miR160a-5p; DELLA
(CL4553.Contig1_All, CL3157.Contig1_All, CL3157.Contig4_All) of miR156a-5p, miR171b-
3p, miR171b-3p_3, miR171d_1, and miR171f_3; ETR (CL1203.Contig7_All) of miR171b-3p; and
BRI1(CL9049.Contig3_All) of miR156a and miR156a-5p were all able to participate in the plant
hormone signal transduction networks (Table 1). miR156a and miR156a-5p were upregulated
under 10 µM MeJA treatment; miR160 and miR171b-3p were upregulated, but miR160a-5p,
miR171b-3p_3, miR171d_1, and miR171f_3 were downregulated under 50 µM MeJA treatment;
miR160, miR171b-3p, and miR171f_3 were upregulated, and miR160a-5p and miR171b-3p_3
were downregulated under 100 µM MeJA treatment (Tables S20–S22).

Table 1. miRNAs and target genes related to plant hormone signal transduction in rosemary suspen-
sion cells.

Combination Target Genes miRNAs Target
Finder Score

Corresponding
Hormone

CKvsM50
CKvsM100

CL11742.Contig5_All miR160 1

Auxin (ARF)

CL7275.Contig1_All miR160a-5p 1

CL7275.Contig2_All miR160a-5p 1

CL8053.Contig1_All miR160a-5p 0.5

CL8053.Contig2_All miR160a-5p 0.5

CL8053.Contig3_All miR160a-5p 0.5

CL11742.Contig1_All miR160a-5p 1

CL11742.Contig3_All miR160a-5p 1

CL11742.Contig4_All miR160a-5p 1

CKvsM10 CL4553.Contig1_All miR156a-5p 1

Gibberellin
(DELLA)CKvsM50

CKvsM100

CL3157.Contig1_All
CL3157.Contig4_All miR171b-3p 2

CL3157.Contig1_All
CL3157.Contig4_All miR171b-3p_3 3

CL3157.Contig1_All
CL3157.Contig4_All miR171d_1 1

CL3157.Contig1_All
CL3157.Contig4_All miR171f_3 1

CKvsM50
CKvsM100 CL1203.Contig7_All miR171b-3p 3.5 Ethylene (ETR)

CKvsM10
CL9049.Contig3_All miR156a 2 Brassinosteroid

(BRI1)CL9049.Contig3_All miR156a-5p 1

2.8. Identification of Differentially Expressed miRNAs and Their Targets in Rosemary Suspension
Cells under Different Concentrations of MeJA by Quantitative qRT-PCR

Twelve miRNAs and their target genes were verified by qRT-PCR (Figure 7). Among
these, only the expression patterns of miR156a, miR160a-5p, miR167d-1, miR171b-3p, and
miR396a-3p-5, and their target genes were negatively correlated, indicating that these five
target genes were negatively regulated by their corresponding miRNAs (Figure 7A,C,E,F,J), the
others miRNAs and their target genes were not negatively correlated (Figure 7B,D,G–I,K,L).
For example, in the case of the common target gene CL3157.Contig1_All of miR171b-3p,
miR171b-3p_3, miR171d_1, and miR171f_3, the expressions of miR171b-3p_3, miR171d_1, and



Int. J. Mol. Sci. 2022, 23, 3704 12 of 24

miR171f_3 were not negatively correlated with their target genes, miR171b-3p will complement
the function of them (Figure 7F,G–I), and these miRNAs have their own roles under different
concentrations of MeJA. Although some miRNAs were not regulated the expression of mRNAs,
other miRNAs or members of the same family complement their functions and ultimately
regulate target genes. In addition, the differential expression changes of miRNAs are basically
consistent with the sequencing results, indicating that the data results of this sequencing are
accurate.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 25 
 

 

the differential expression changes of miRNAs are basically consistent with the sequenc-
ing results, indicating that the data results of this sequencing are accurate. 

Some miRNAs were involved in plant hormone signal transduction under different 
concentrations of MeJA. For example, miR156a targeted CL9049.Contig3_All (BRI1) to 
regulate BR signaling transduction (Figure 7A); miR160a-5p targeted CL11742.Con-
tig1_All (ARF) to regulate auxin signaling transduction (Figure 7C); miR171b-3p, 
miR171b-3p_3, miR171d_1, and miR171f_3 targeted CL3157.Contig1_All (DELLA) to reg-
ulate GA signaling transduction (Figure 7F,G–I). The expression of BRI1 and DELLA was 
downregulated under different concentrations of MeJA, which might influence the accu-
mulation of metabolites through negative regulation in rosemary suspension cells; the ex-
pression of ARF was upregulated under different concentrations of MeJA, which might 
influence the accumulation of metabolites through positive regulation in rosemary sus-
pension cells. 

 
Figure 7. qRT-PCR verification of miRNAs and target genes in rosemary suspension cells under 
different concentrations of MeJA. 
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Some miRNAs were involved in plant hormone signal transduction under different
concentrations of MeJA. For example, miR156a targeted CL9049.Contig3_All (BRI1) to
regulate BR signaling transduction (Figure 7A); miR160a-5p targeted CL11742.Contig1_All
(ARF) to regulate auxin signaling transduction (Figure 7C); miR171b-3p, miR171b-3p_3,
miR171d_1, and miR171f_3 targeted CL3157.Contig1_All (DELLA) to regulate GA signaling
transduction (Figure 7F,G–I). The expression of BRI1 and DELLA was downregulated under
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different concentrations of MeJA, which might influence the accumulation of metabolites
through negative regulation in rosemary suspension cells; the expression of ARF was up-
regulated under different concentrations of MeJA, which might influence the accumulation
of metabolites through positive regulation in rosemary suspension cells.

2.9. Analysis of Rosemary Cells Suspension Culture in 5 L Stirred Bioreactor

In our study, based on the establishment of a stable rosemary suspension cells am-
plification culture system in stirred bioreactor, the cell growth of cell suspension culture
in stirred bioreactor were researched and compared with the shake flask culture. The
results of the effects of MeJA on the rosemary suspension cells in 5 L stirred bioreactor
showed that cell biomass accumulation in the bioreactor and shake flask were 6.63 and
6.80 g/L·DW under the same conditions, and the whole cultivation period was extended
to 14 d (Figure 8A). After 100 µM MeJA treatment for 144 h in the bioreactor, the contents
of RA, CA, and flavonoids were higher than the control group (CK), and cell biomass
accumulation was less than the control group (Figure 8B). The 100 µM MeJA treatment had
the same effect on rosemary suspended cells for the accumulations of active compounds
both in 5 L stirred bioreactor and shake flask.
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in the cell growth between the stirred bioreactor and shake flask; (B) The effects of MeJA on the
rosemary suspension cells in 5 L stirred bioreactor. Different letters above the bars respectively
indicate a significant difference (p < 0.05) among the CK and MeJA treatment.

3. Discussion
3.1. miRNAs of Rosemary Suspension Cells Responding to MeJA

In our study, the size distributions of sRNAs—ranging from 18 to 30 nt—were ana-
lyzed in four sRNA libraries (CK, M10, M50, and M100), sRNAs of rosemary suspension
cells ranged from 21 to 24 nt in length, with most shown to be 21 nt long, followed by
22 nt, 23 nt, and 24 nt (Figure 2). Previous studies had shown that Vitis vinifera and
Triticum aestivum had the most 21 nt sRNAs; Saccharum officinarum had the most 22 nt
sRNAs; Cucumis had the most 23 nt sRNAs; and Dimocarpus longan, Arabidopsis thaliana,
Solanum tuberosum, and Lycopersicon esculentum had the most 24 nt sRNAs [36–43]. The
expression patterns of miRNAs were differentially responding to MeJA in plants. For
example, miRNA156 and miRNA168 were downregulated in Taxus chinensis under MeJA
treatment [33]; in our study, they were also upregulated in the rosemary suspension cells
under MeJA treatment. miR156-SPLs coordinated development and respond to abiotic
stress by affecting the synthesis of anthocyanin in Arabidopsis Pro35S:MIR156 mutant [44].
MiRNA396b was downregulated in Catharanthus roseus cells and miRNA408 was upreg-
ulated in Lycoris aurea under MeJA treatment [32,34], but miRNA396b and miRNA408
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were not differentially expressed under MeJA treatment in the rosemary suspension cells.
hpo-miR396b-GRF6 could be involved in slat and phytohormone ABA stresses in pitaya
under both NaCl and ABA treatment [45]. There were 11, 22, and 19 miRNAs and 19, 39,
and 20 novel miRNAs were differentially expressed in the three combinations of CKvsM10
CKvsM50, and CKvsM100, respectively (Figure 4A). The result of the hierarchical clustering
of 40 differentially expressed known miRNAs showed that miRNAs in the same family
also had different expression patterns (Figure 4C). In summary, these miRNAs played a key
role and had functional specificity and diversity in the rosemary suspension cells under
different concentrations of MeJA.

3.2. miRNAs Target Metabolic Pathway Genes to Regulat the Synthesis of Active Compounds in
Rosemary Suspension Cells under Different Concentrations of MeJA

miRNAs targeted the structural genes of metabolic pathways to play the most direct
regulatory role [46]. MiR1446-x targeted PRPOL of ubiquinone and other terpenoid-quinone
biosynthesis, miR845-y targeted DHCR24 of steroid biosynthesis in Euphorbia kansui [47].
In Camellia sinensis, Csn-miR167a targeted flavonoid structural genes CHI and ANR to
regulate the biosynthesis of flavonoid [48]. 13α-hydroxylase and 2α-O-benzoyltransferase of
the paclitaxel biosynthesis pathway were targeted by miR164 and miR171, these miRNAs
could regulate the biosynthesis of paclitaxel by targeting the key genes 13α-hydroxylase and
2α-O-benzoyltransferase in Taxus chinensis [49]. Phenylpropanoid, terpenoid, and flavonoid
biosynthesis were closely related to the biosynthesis of RA, CA, and flavonoids. In our study,
miR156a novel_mir129, novel_mir13, novel_mir151, and novel_mir179 were differentially
expressed under MeJA treatments, their target genes were involved in terpenoid back-
bone, brassinosteroid, sesquiterpenoid, and triterpenoid biosynthesis (Figures 1, 5 and 6
and Tables S19–S21), which could promote the biosynthesis of terpenoids in the meval-
onate/methylerythritol phosphate (MVA/MEP) pathway [50]. Moreover, miR167d_1,
novel_mir11, and novel_mir179 were differentially expressed under different concentra-
tions of MeJA, their target genes were involved in phenylpropanoid biosynthesis, antho-
cyanin, and flavone and flavonol biosynthesis, these miRNAs might regulate the biosynthe-
sis of flavonoids in rosemary suspension cells (Figures 1, 5 and 6). Biotic and abiotic stress
would inhibit or promote the biosynthesis of JA in plants, JA signal directly participates
in the plant defense response and interacts with other signal molecules in the process to
regulate plant growth and development and the synthesis of secondary metabolites [51,52].
Stress could increase the content of unsaturated fatty acids in plant cells and increase
the ratio of unsaturated fatty acids so as to enhance the fluidity of membrane [53–55].
novel_mir90 and novel_mir22 targeted LOX1-5; LOX2S was targeted by novel_mir138
in linoleic acid metabolism and alpha-linolenic acid metabolism, they would regulate
the biosynthesis of JA (Figures 1, 5 and 6 and Tables S20–S22). The result showed that
50 µM MeJA treatment could significantly induce the biosynthesis of linoleic acid and
alpha-linolenic acid compared to 10 and 100 µM MeJA, the top three enrichments in CK-
vsM50 were linoleic acid metabolism, anthocyanin biosynthesis, and alpha-linolenic acid
metabolism (Figure S1), and 50 µM MeJA treatment could significantly suppress the ex-
pression of novel_mir138 compared to10 and 100 µM MeJA, indicating that 50 µM MeJA
could significantly affect linoleic acid and alpha-Linolenic acid metabolism in rosemary sus-
pension cells. novel_mir72 targeted AGXT2, novel_mir62 targeted argG, miR399b targeted
gdhA, miR6300 targeted ALDH5A1, novel_mir22 targeted gadB, and novel_mir101 targeted
CAD in alanine, aspartate, and glutamate metabolism; SCD and FAB2 were targeted by
miR6300, and PPT was targeted bynovel_mir47 in biosynthesis of unsaturated fatty acids
and fatty acid biosynthesis; ALDH5A1 was targeted by miR399b in butanoate metabolism,
these miRNAs would closely relate to the biosynthesis of amino acid terpenoids, phenol,
and flavonoids in rosemary suspension cells (Figures 1, 5 and 6 and Tables S20–S22). In
all, these differentially expressed miRNAs might target the structural genes of metabolic
pathways to regulate the biosynthesis of terpenoids and flavonoids in rosemary suspension
cells under different concentrations of MeJA.
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3.3. Differentially Expressed miRNAs Involved in Plant Hormone Signal Transduction Played a
Key Role in Rosemary Suspension Cells Responding to MeJA

MeJA would promote the accumulation of RA, CA, and flavonoids in rosemary sus-
pension cells (Figure 1). The primary or secondary metabolites were precursors for the
biosynthesis of endogenous hormones in plant [56,57]. External factors could change hor-
mone concentrations to enable plants adapting to the external environment [58]. Plant
hormones could regulate the biosynthesis of metabolites via complex networks, and that
there were interactions between them [59]. In our study, the target genes of the differ-
entially expressed miRNAs involved in plant hormone signal transduction—including
auxin, gibberellins, ethylene, and brassinolide signal transduction (Table 1). In the three
combinations of CKvsM10, CKvsM50, and CKvsM100, plant hormone signal transduction
was all enriched to the top 10 ( Figures 1 and S1). Auxin could promote the binding of
SCFTIR1 to Aux-IAA protein, thus releasing transcription factor ARFs to activate down-
stream genes [60]. In Arabidopsis arf6 and arf8 single mutants and sesquimutants, ARF6 and
ARF8 gene dosage affected the accumulation of JA and the expression of MYB; JAZ1 as an
inhibitor of JA signal could not be induced by auxin and depended on ARF6 and ARF8 [61].
In Arabidopsis, four miRNAs (miR156, miR165/166, miR828, and miR858) were involved in
the biosynthesis of anthocyanin [62]. Overexpression of miR156 affected the biosynthesis
of anthocyanin through transcription factors and anthocyanin-specific structural genes
in poplar [63]. Ib-miR156 could positively mediate the biosynthesis of anthocyanin and
flaxonols by modulating related structural genes, including CHS, CHI, DFR, and ANS in the
wild type plants (WT) [64]. In our study, miR160a-5p and miR160 targeted ARF to regulate
the growth, development, and the biosynthesis of metabolic in rosemary suspension cells
under 50 and 100 µM MeJA treatments (Table 1).

DELLA as an inhibitor could enhance MYC2 to induce expression of down-stream de-
fense genes by binding to JAZ1 [65]. DELLA would inhibit the transcriptional activation of
down-stream target genes by binding to PIF3 and PIF4 [66]. PIFS played an important reg-
ulatory role in the synthesis of flavonoids and chlorophyll [67,68]. DELLA-MYB12/MYB111
module could regulate the genes of biosynthesis of flavonol in Arabidopsis [69]. SmGRAS3
might bind to the promoters of AACT2, HMGS, HMGR2, DXS2, DXR, CMK, HDS, CPS1,
KSL1, CYP76AH1, 4CL2, and TAT1 to regulate the biosynthesis of tanshinones and SA in
Salvia miltiorrhiza [70]. ETR as an inhibitor could activate the biosynthesis of ethylene in
Arabidopsis ethylene receptor mutant [71]. The synergistic effect of JA and ET signaling was
mediated by the interaction between JAZ and EIN3/EIL1, and the antagonistic effect might
be mainly realized by the interaction between MYC2 and EIN3/EIL1 [72]. Ethylene could
promote the biosynthesis of pyridine alkaloids and nicotine in Nicotiana tabacum [22] and
affect the biosynthesis of plant functional metabolites in Catharanthus roseus and Hevea
brasiliensis [73,74]. Overexpression of miR171b would inhibit seed germination and early
plant growth, and affect plant photosynthesis in tomato leaves [75]. In our study, DELLA
was targeted by miR156a-5p, miR171b-3p, miR171b-3p_3, miR171d_1, and miR171f_3; PIF4
was targeted by novel_mir72; and ETR was targeted by miR171b-3p (Table 1)—these miR-
NAs might regulate the biosynthesis of terpenoids and flavonoids metabolites in rosemary
suspension cells via the target gene DELLA, PIF4, and ETR in rosemary suspension cells
under 50 and 100 µM MeJA treatments.

BR signal transduction was involved in regulating plant development and physio-
logical metabolism [76]. BR treatment could promote the accumulation of carotenoids
in tomato fruit [77]. BL enhanced the anthocyanin accumulation induced by MeJA, in-
dicating a positive correlation between the interaction of BR and JA signal transduction
in Arabidopsis [78]. MeJA could eliminate the increase effect on leaf angle by BL, while
it inhibited the expression of genes related to BR biosynthesis and signal transduction,
indicating the negative correlation between the interaction of JA and BR in rice [79]. MAPK
signaling was an important factor that transmits signals from the cell surface to the interior
of the nucleus [80]. FLS2 triggers a downstream response when the external environment
changes, which as an immune receptor the plasma membrane [81,82]. FLS2 and BRI1
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both are LRR-RLK, and could form a ligand-dependent heterologous complex with BAK1;
increasing the expression of BRI1 would inhibit FLS2 expression, and conversely promote
FLS2 expression, which might be involved in the balance between plant development and
defense [83]. MAPK pathways were involved in hormone signal transduction in plants,
including ethylene [84]. In our study, miR156a, miR156a-5p, and novel_mir4 targeted
BRI1 (Table 1); and miR396a-3p_5 and novel_mir72 targeted FLS2 (Tables S20–S22), these
miRNAs and target genes might activate signal transduction to regulate the biosynthesis of
terpenoids and flavonoids metabolites in rosemary suspension cells under MeJA treatment.

3.4. Amplification Culture of Rosemary Suspension Cells in 5 L Stirred Bioreactor

For large-scale plant cell culture, a variety of bioreactor types providing growth and
expression of bioactive substances were available today, several bioreactor designs had been
suggested [85,86]. Bentebibel used stirred, airlift, and wave bioreactors for the production of
paclitaxel and baccatin III in cell suspension cultures of Taxus baccata [87]. Stirred bioreactor
was one of the highest reported so far by an academic laboratory for plant cell bioreactor
culture. Currently, bioreactors of up to 75,000 L were being employed for the commercial
production of paclitaxel from cell cultures by Phyton Biotech, ESCA genetic, Samyang
Genex, Nattermann (Germany) [88]. In our study, the results showed that the accumulation
of cell biomass in the bioreactor was less than the shake flask under the same conditions,
and the whole cultivation period was extended to 14 d (Figure 8). which were the same as
those form amplification culture of Glycyrrhiza uralensis cells in stirred bioreactor [89]. The
100 µM MeJA treatment could promote the biosynthesis of paclitaxel and baccatin III in 5 L
stirred bioreactor, the biosynthesis of paclitaxel in 4 L airlift bioreactor, and the biosynthesis
of paclitaxel and baccatin III in 2 L wave bioreactor [87]. In our study, 100 µM MeJA could
promote the biosynthesis of RA, CA, and flavonoids in the culture of rosemary cells in 5 L
stirred bioreactor (Figure 8). The results would be an important experimental basis for the
production of active compounds in large-scale culture of rosemary.

In conclusion, MeJA promoted the accumulation of RA, CA, and flavonoids of rose-
mary cell suspension culture in 5 L stirred bioreactor and shake flask. A comparative
analysis of differentially expressed miRNAs and their target genes in rosemary suspen-
sion cells was conducted under different concentrations of MeJA. Our study revealed the
miRNAs and their target genes involved in plant hormone signaling pathways; alanine,
aspartate, and glutamate metabolism; and terpenoids and phenylpropanoid biosynthesis
pathways, indicating their regulatory role in the synthesis of the active compounds via the
complex network in rosemary suspension cells under different concentrations of MeJA. We
suggested a feasible working model based on the results (Figure 9). These RNA-seq data
and amplification culture might provide new insights into future functional studies as a
means of studying the molecular mechanisms on the biosynthesis of active compounds
in rosemary suspension cells and an important experimental basis for the production of
active compounds in large-scale culture of rosemary.
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4. Materials and Methods
4.1. Plant Material and MeJA Treatments

Rosmarinus officinalis L. was identified by Zhong xiong Lai in our laboratory. Rosemary
callus was obtained by the following methods: treating rosemary leaves with 0.1% mercury
bichloride solution, then cutting the leaves into small pieces about 0.5 × 0.5 cm, using
the inoculation method that the abaxial surface of leaves contacts with the medium, on
solid Murashige and Skoog (MS) medium (30 g/L sucrose, pH 5.8) with 0.5 mg/L 1-
naphthaleneacetic acid (NAA) and 4.0 mg/L N-(Phenylmethyl)-9H-purin-6-amine (6-BA)
at 25 ± 0.5 ◦C in the dark for 21 days. Callus culture maintenance: 0.5 g of fresh callus
were inoculated on solid MS medium with 30 g/L sucrose, pH 5.8, and supplemented
with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and cultured at 25 ◦C in the dark
every 21 days. Cell suspension induction and cell line maintenance: 4 g of fresh callus were
inoculated into a 250 mL flask containing 100 mL liquid MS medium supplemented with
1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), which lasted for 8 days at 25 ± 0.5 ◦C
with shaker speed 120 rpm in the dark. It could derive rosemary suspension cell lines with
high cell viability and stable growth after the suspension culture for several generations.
The culture was performed by transferring 4 g·FW/20 mL of 6-day-old culture (cells plus
medium) to 80 mL of the fresh growth medium, which lasted for 8 days. MeJA were
sterilized by filtration through a 0.22 µm sterile syringe filter and added to the medium
on day 6 of the culture process. The final concentrations of MeJA solution were 0, 10, 50,
and 100 µM in the medium. Each test was repeated three times. After 48 h treatment,
all materials were stored at −80 ◦C for later use. Samples treated with 0 versus 10 µM
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MeJA, 0 versus 50 µM MeJA, and 0 versus 100 µM MeJA, were named CKvsM10, CKvsM50,
and CKvsM100, respectively. The culture was performed by transferring 4 g·FW/1 L of
6-day-old culture (cells plus medium) to 5 L of the fresh growth medium, which lasted for
14 days in 5 L stirred bioreactor at 25 ± 0.5 ◦C with a rotational speed of 100 rpm and a
ventilation of 100 ccm in the dark. MeJA were sterilized and added to the medium on day 8
of the culture process. The final concentration of MeJA solution was 100 µM in the medium.
After 144 h treatment, all materials were stored at −80 ◦C for later use.

4.2. Small RNA and RNA-Seq Library Construction

Total RNAs were isolated from rosemary suspension cells. The qualities and concen-
trations of RNA were detected using 1.0% agarose gel electrophoresis and a NanoDrop
2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The integrity and
concentration of RNA samples were further checked using an Agilent 2100 Bioanalyzer.
Small RNAs of different sizes were isolated from total RNAs by a polyacrylamide gel
electrophoresis (PAGE) gel and ligated to a 3′ Illumina adapter. These adapter-ligated small
RNAs were reverse-transcribed to cDNA with a reverse transcription (RT) primer using a
Super-script II Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA, USA) to generate small
RNA (sRNA) libraries. Finally, small RNA libraries were sequenced using an Illumina
HiSeq 4000 platform (Shenzhen, China).

4.3. General Analysis of Small RNA and Prediction of miRNA Targets

Clean reads were mapped onto the reference miRBase 20.0 using Anchor Alignment-
Based Small RNA Annotation (AASRA) software [90]. We use miRNA (for plants) to predict
novel miRNA by exploring the characteristic hairpin structure of miRNA precursor [91]. In
order to find more accurate targets, multiple types of software are used. Generally, we use
psRobot [92], TAPIR [93], or TargetFinder [94] to predict targets.

4.4. Identification of Differentially Expressed miRNAs

Using the findings of the Genome Res paper entitled the significance of digital gene
expression profiles [95]. The p-value of the differential gene expression test is corrected
using the Bonferroni method [96], the false discovery rate (FDR) was adjusted using qvalue.
To judge the significance of gene expression difference, FDR ≤ 0.001 and the absolute value
of Log2Ratio ≥ 1’ are set as the default threshold. The smaller the FDR value, the greater
the difference multiple, which indicates there are significant differences in expression.
In BGI’s experience, differentially expressed genes (DEGs) were defaulted as genes with
FDR ≤ 0.001 and multiples of more than 2-fold.

Based on KEGG (the major public pathway-related database) annotation results and
official classification, whole target genes of differentially expressed miRNAs (DEMs) were
mapped to the KEGG database, and the number of genes in each pathway was calculated.
The p-value is corrected by using the Bonferroni method [82], and a corrected p-value ≤ 0.05
is taken as a threshold. KEGG terms fulfilling this condition are defined as significantly
enriched KEGG terms.

4.5. qRT-PCR Validation of miRNAs and Their Targets

Total RNAs from rosemary suspension cells were further used for quantitative poly-
merase chain reaction (qRT-PCR) validation of miRNAs and their target genes. Expression
was validated using a LightCycler480 Real-time PCR system (Roche, Basel, Switzerland).
Relative gene expression and miRNA expression levels were evaluated using the method
described by Song using TransScript® miRNA first strand cDNA synthesis supermix (Tran,
Fuzhou, China) and RevertAid First Strand cDNA Synthesis Kit (Takara, Shanghai, China).
Relative expression levels were determined using the comparative 2−∆∆Ct method. Primer
sequences were designed using DNAMAN V6.0 and are listed in Table S1. All treatments
were analyzed using biological triplicates.
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4.6. Determination of Flavonoid, Rosmarinic Acid, and Carnosic Acid

Flavonoid contents were determined using Li’s method with some modifications [49].
Rosemary suspension cells were freeze-dried for 3 days in a refrigerant dryer (LGJ-25C,
Sihuan, Beijing, China), ground into fine powders in 0.5 g measures, and extracted with
10 mL 60% ethanol and then ultrasonicated for 1 h at 60 ◦C. The extracts were centrifuged
at 8000 rpm for 5 min at 20 ◦C in duplictae. The supernatant was collected into new tubes
and constant volume to 20 mL. The flavonoid contents were detected at a wavelength of
510 nm in the DU640 spectrophotometer using a chromogenic reaction method.

Rosemary suspension cells were freeze-dried for 3 days in a refrigerant dryer, ground
into fine powders 0.5 g, and extracted with 10 mL if 60% ethanol, then ultrasonicated
for 45 min at 40 ◦C, the extracts were centrifuged at 8000 rpm for 10 min at 20 ◦C in
duplicates. The supernatant was collected into new tubes and constant volume to 20 mL.
Finally, the supernatant of the extract was separated and filtered through a 0.22 µm aqueous
filter membrane.

The following chromatographic conditions were used for rosmarinic acid determina-
tion. Analysis was performed on a Diamonsil C18 (Beijing, China) (4.6 × 200 mm, 5 µm)
column with isocratic elution using a mobile phase of 0.1% aqueous formic acid and ace-
tonitrile (45%:55%). The column temperature and flow rate were set at 30 and 1.0 mL/min,
respectively. All standards and samples were detected by UPLC (Waters, Beverley, MA,
USA) at a wavelength of 330 nm. Rosmarinic acid standards were HPLC ≥ 98% (Solarbio,
Shanghai, China).

The following chromatographic conditions were used for carnosic acid determination.
Analysis was performed on a Diamonsil C18 (Beijing, China) (4.6 × 200 mm, 5 µm) column
with isocratic elution using a mobile phase of 0.1% aqueous formic acid and acetonitrile
(15%:85%). The column temperature and flow rate were set at 30 and 1.0 mL/min, re-
spectively. All standards and samples were detected by UPLC (Waters, Beverley, MA,
USA) at a wavelength of 230 nm. Carnosic acid standards were HPLC ≥ 98% (Solarbio,
Shanghai, China).

4.7. Determination of Physiological and Biochemical Indexes

Briefly, 0.1 g of rosemary suspension cells (fresh weight) from each of the treatment
group was rapidly frozen with liquid nitrogen. Samples were maintained at 2–8 ◦C after
melting, to which we added 1 mL PBS (PH7.4). The resultant solution was homogenized
by hand and then subjected to centrifugation for 20 min at 2000–3000 rpm. Then, the
supernatant was removed. Auxin (IAA), abscisic acid (ABA), gibberellin (GA), JA, and
salicylic acid (SA) were assayed using ELISA Kit (Weilan, Shanghai, China) and a Microplate
Reader (Rayto RT-6100) according to the manufacturer’s instructions.

Determination of amino acid: 0.2 g of rosemary suspension cells (fresh weight) from
each of the treatment groups were added to 1 mL H2O2, ground into slurry and transfered
it into EP tubes. The solution was then extracted overnight via a filter membrane.

Derivation of amino acids: 200 µL of the above clear solution to be derived and
200 µL of amino acid standard solution were combined in a 1.5 mL EP tube respectively;
to which we added 20 µL of norleucine internal standard solution to each centrifuge tube.
Then, 200 µL of triethylamine acetonitrile solution (ensure pH > 7) and 100 µL of phenyl
isothiocyanate acetonitrile solution were added respectively. After mixing, the solution
was stored at 25 ◦C for 1 h. Then, 400 µL of n-hexane was added to the centrifuge tube,
shaken, and left to rest for 10 min. The resultant lower solution was then passed through a
0.45 µM needle filter.

HPLC liquid phase conditions: UPLC (RIGOL L3000, Beijing, China), Sepax C18
(250 × 4.6 mm, 5 µm, Beijing, China) Mobile phase A: 7.6 g C2H3NaO2 was added to
925 mL H2O2, dissolved, and then the PH was adjusted to 6.5 with glacial acetic acid,
then 70 mL of acetonitrile was added, mixed well, and the solution was filtered through
a 0.45 µm filter membrane. Mobile phase B: 80% acetonitrile aqueous solution; gradient
elution (Figure S4). The injection volume was set to 10 µL. The flow rate was 1.0 mL/min,
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the column temperature was 40 ◦C, and the sampling time was 45 min. Amino Acids
Mixture Standard Solution Standards, (Sigma-Aldrich, Shanghai, China).

Determination of linoleic acid and alpha-linolenic acid: samples were dried at 80 ◦C,
0.1 g sample (dry weight), ground and placed in a 15 mL centrifuge tube. The mortar
was washed with 10 mL n-hexane three times and the samples were transferred to 15 mL
centrifuge tubes. Then samples were ultrasonicated at 50 ◦C for 30 min. Next they were
centrifuged at 8000 r/min for 10 min. The supernatant was then placed into 15 mL
centrifuge tubes. Then 5 mL n-hexane was added to the residue. The above extraction
steps where repeated in duplicate, and the resultant supernatant was combined. An
appropriate amount of Na2SO4 was added into the supernatant, shaken and centrifuged.
The supernatant was transferred to 2 mL EP tubes and blown with nitrogen until the
solvent volatilized completely. At this point, 0.8 mL reagent III was added into the EP tube,
shaken, and dissolved, and withheld from light reaction for 1 h. Then, 0.8 mL n-hexane,
was added shaken, and mixed well for 1 min, left to stand for layering, and the upper
n-hexane was transferred to 2 mL EP tubes, extracted 3 times, and combined the n-hexane
phase. After the nitrogen is blown dry, 1 mL of n-hexane was added, shaken, and dissolved.
An appropriate amount of the solution was then taken and filtered with a needle filter into
a sample bottle with an inner liner to be tested.

GC-MS conditions: The pressure valve of nitrogen cylinder was opened and the
pressure adjusted to 0.4 MPa. The computer was activated and the gas phase workstation
was initiated, setting the column box temperature at 200 ◦C, the front detector temperature
to 250 ◦C, and the rear sample inlet temperature at 220 ◦C, the method was then saved and
issued. After the ignition column temperature rose to 100 ◦C, it was monitored. Samples
were added after the baseline was stable. Linoleic acid and alpha-linolenic acid Standards,
GC ≥ 98% (Yuanye, Shanghai, China).

4.8. Statistical Analysis

Quantitative results for rosemary metabolite content, enzyme activity, and gene ex-
pression analyses are presented as the means ± standard deviations (SDs) of at least three
biological replicates. The effects of MeJA conditions on metabolite contents and gene
expression were analyzed by one-way analysis of variance (ANOVA) followed by Dun-
can’s test using SPSS version 19.0. Different upper/lower case letters indicate statistically
significant differences at 0.01 levels. Figures were prepared using GraphPad Prism 8.0 and
Excel 2016 software.
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Abbreviations

MeJA methyl jasmonate
IAA indoleacetic acid
ABA abscisic acid
GA gibberellin
SA salicylic acid
JA jasmonate
BR brassinosteroids
ET ethylene
2,4-D 2,4-dichlorophenoxyacetic acid
qRT-PCR quantitative real-time PCR
DEMS differentially expressed miRNAs
RA rosmarinic acid
CA carnosic acid
rpm revolutions per minute
ccm cubic centimeters per minute
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