
rspb.royalsocietypublishing.org
Research
Cite this article: Cramp LJE et al. 2014

Neolithic dairy farming at the extreme

of agriculture in northern Europe. Proc. R. Soc.

B 281: 20140819.

http://dx.doi.org/10.1098/rspb.2014.0819
Received: 4 April 2014

Accepted: 8 July 2014
Subject Areas:
ecology, environmental science, evolution

Keywords:
60th parallel north, dairy farming,

biomarker lipids, isotopes, lactase persistence,

incoming prehistoric population
Authors for correspondence:
Lucy J. E. Cramp

e-mail: lucy.cramp@bristol.ac.uk

Volker Heyd

e-mail: volker.heyd@bristol.ac.uk
†Present address: Department of Archaeology

and Anthropology, University of Bristol,

43 Woodland Road, Bristol BS8 1UU, UK.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2014.0819 or

via http://rspb.royalsocietypublishing.org.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Neolithic dairy farming at the extreme
of agriculture in northern Europe

Lucy J. E. Cramp1,†, Richard P. Evershed1, Mika Lavento2, Petri Halinen2,
Kristiina Mannermaa2, Markku Oinonen3, Johannes Kettunen4,5,
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The conventional ‘Neolithic package’ comprised animals and plants orig-

inally domesticated in the Near East. As farming spread on a generally

northwest trajectory across Europe, early pastoralists would have been

faced with the challenge of making farming viable in regions in which the

organisms were poorly adapted to providing optimal yields or even surviv-

ing. Hence, it has long been debated whether Neolithic economies were ever

established at the modern limits of agriculture. Here, we examine food resi-

dues in pottery, testing a hypothesis that Neolithic farming was practiced

beyond the 60th parallel north. Our findings, based on diagnostic biomarker

lipids and d13C values of preserved fatty acids, reveal a transition at ca 2500

BC from the exploitation of aquatic organisms to processing of ruminant

products, specifically milk, confirming farming was practiced at high lati-

tudes. Combining this with genetic, environmental and archaeological

information, we demonstrate the origins of dairying probably accompanied

an incoming, genetically distinct, population successfully establishing this

new subsistence ‘package’.
1. Introduction
Since the end of the last Ice Age, some 12 000 years ago, the high northern lati-

tudes of the globe became permanently settled by humans of Late Palaeolithic

and/or Mesolithic cultures. Their sole subsistence mode for millennia, and for

most of them to the present day, was hunting, fishing and gathering, thereby

making use of the plentiful wild resources. While there is no evidence for farm-

ing on the North American Continent and in Siberia above the 60th parallel

north prior to the European colonization, earlier examples of agro-pastoral

farming appear in Iceland in the ninth century AD Viking Age, and an episode

(10–15th century AD) in southwest Greenland [1]. In order to make farming

viable, these inhabitants of the high northern latitudes had to overcome extreme

climatic and environmental conditions. The forced abandonment of the south

Greenland settlements at the onset of the Little Ice Age [2] demonstrates the

vulnerability of any productive subsistence economy to climate change at

these high latitudes. Hence, it has long been doubted whether more ancient pre-

historic subsistence economies based on agriculture would have been viable,

especially given the limited adaptations in stock animals and domesticated

plants, most of which originated in the warm and semi-arid climes of the

‘Fertile Crescent’ of the Levant approximately 11 000 years ago [3]. However,

at least in northwestern Europe, thanks to the warming effects of the Gulf
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Figure 1. Integrated maps of: (a) the northern hemisphere relative to the North Pole. Highlighted are the modern borders of Finland (in red) and the 60th parallel
north (in light blue), (b) the location of all Finnish prehistoric sites from which sherds were sampled (numbers correspond to table 1), and (c) the distribution of the
Corded Ware culture within Finland. Mapped (black dots) are finds of typical stone battle axes, used as a proxy (data from [8]). The red isolines indicate average
permanent snow cover period from 1981 to 2010 (data from [9]). A recent study estimates the snow cover period ca 4500 years ago would have been 40 – 50 days
less than today [10]. Overlying coloration refers to the lactose persistance (LP) allele gradient in modern northeastern Europe (see the electronic supplementary
material, appendix B: Material and methods and table 1, for details); lozenge dots specify the dataset mean points for the triangulation.
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Stream, Early Neolithic fourth millennium settlers were

reaching as far north as to between the 55th and 58.5th par-

allel, and probably intermittently beyond, establishing the

sustainable farming economies in all of Britain, southern

Norway and even east-central Sweden [4–7].

Here, we explore the possibility for prehistoric farming in

Finland at sites located beyond the 60th parallel north. These

sites were located at the same high latitude as southern

Greenland, Canada’s Northwestern Territories, Anchorage
in Alaska, Kamchatka Peninsula and near Yakutsk in Siberia,

and lying further to the east, were thus exposed to a harsher

continental climate. Farming in Finland would have been

extremely challenging on account of the low average temp-

eratures and several months of snow cover (figure 1 [8–10])

limiting vegetation periods [11]. The year was often interrup-

ted by cold spells with snow and ice even in summertime,

such that cereal agriculture is nowadays only just possible,

and stock require considerable periods of shelter and
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foddering during the long winters. The date of the earliest

practices of domestication at this latitude in Europe has

been questionable owing to the paucity of surviving cultural

and biological evidence from the prehistoric period. There is,

at present, neither evidence to suggest that animal

domestication was established during the climatic and

demographic optimum of the first half of the fourth millen-

nium BC [12], nor even that it was associated with the

subsequent appearance of people using pottery belonging

to the Pan-European Corded Ware phenomenon in the

third millennium BC. Indeed, it appears to have a much

later date [13], despite the people associated with the latter

culture being strongly associated with pastoral farming econ-

omies elsewhere in Europe [14], and who were thought to

have carried with them the ability to digest milk into adult-

hood (lactase persistence, LP) into southern Finland in the

third millennium BC [15]. Nowadays, both the prevalence

of LP and consumption of dairy products in this part of

northern Europe are among the highest in the world [16,17].

The exceptionally poor survival of archaeological remains

in the acidic soils of southern Finland normally only leave

small pieces of burnt (cremated) animal bones for further

analysis [18], and with macrofossil plant remains never sys-

tematically investigated, it has thus far been impossible to

reconstruct whether these pioneer Corded Ware ‘pastoral

farmers’ were ever able to establish farming above the 60th

parallel north or whether there was a return to the plentiful

wild resources, driven by the harsh climatic conditions

[19,20]. To date, the earliest domesticate bone recovered

from southern Finland is a sheep/goat dated to the Final

‘Neolithic’ Kiukainen culture, ca 2200–1950 BC [18], with

the earliest cattle and horse not dated earlier than the

Bronze Age [18]. Infrequently recovered domesticate bones

from potential Corded Ware contexts have recently been

directly dated to the historic or modern period [18].

Fortunately, the acidic soils that preclude survival of

bones have the advantage of offering favourable conditions

for the survival of certain classes of ancient biomolecules,

such as lipids in the walls of ancient ceramic cooking vessels,

represented by sherds recovered in considerable numbers.

The carbon isotopic compositions of such biomolecules can

be used to assign organic residues to their origins, in particu-

lar, to distinguish aquatic fats from those of terrestrial species,

and dairy fats from carcass fats [21,22]. Additionally, specific

diagnostic biomarkers that survive include isoprenoid fatty

acids originating from marine organisms and long-chain

v-(o-alkylphenyl)alkanoic acids (APAAs) and vicinal diols

(DHYAs) that arise from heating or oxidation of the highly reac-

tive mono- and polyunsaturated fatty acids, characteristically

found in abundance in aquatic fats [23–25]. Based on the

above biomarkers and carbon isotope proxies, we now have

tools to allow us to robustly investigate the economy and pot-

tery function of prehistoric hunter–fisher–foragers (people

using so-called Comb Ware) and the potentially earliest farmers

(so-called Corded Ware, Final ‘Neolithic’ Kiukainen Ware and

Early Metal Age prehistoric pottery people) and explore their

inter-relationship with the environment.

Settlement sites from which we obtained pottery sherds for

biomarker lipids and isotopes analyses are located in southern

and southwestern Finland, all being north of the 60th parallel

(see the electronic supplementary material, appendix A, for

details and figure 1b for their exact geographical location).

We have chosen these sites owing to their importance in
Finnish prehistoric research, their excavated archaeological fea-

tures, relative abundance and good preservation of pottery

remains, and chronological range spanning from the fourth

to the first millennium BC. These are the Typical/Late Comb

Ware (fourth millennium BC) site of Vantaa Stenkulla/Maarin-

kunnas; the Corded Ware (third millennium BC) sites of Tengå

Nyåker, Koivistosveden and Backisåker 1 (Kvarnåker), all near

the southern Finnish town of Kirkkonummi; the Kiukainen

Ware (around 2000 BC) site of Nakkila Uotinmäki, near the

town of Pori in southwest Finland; the Late Bronze Age

(around 1000 BC) sites of Raasepori Kroggård Hagnäs llb

and Kaarina Toivola Hulkkio in southwestern Finland; and

the Morby Ware (first millennium BC) site of Espoo

Bolarskog I. As is typical for this region, few if any, identifia-

ble fragments of animal bone were reported (electronic

supplementary material, appendix A).
2. Results
Seventy prehistoric sherds were investigated according to

well-established analytical procedures described in the

Material and methods. Well-preserved lipids were recovered

from 19 sherds. These include Comb Ware sherds deriving

from the multiphase site of Vantaa Stenkulla/Maarinkunnas

(table 1), dating to ca 3900–3300 cal. BC, at which time the

settlement was located at a narrow Litorina Sea bay opening

to a second outer bay. Subsistence was probably based upon

a hunting–fishing–foraging subsistence economy, with the

recovered faunal remains and fishing equipment suggesting

a significant role of marine resources. The lipid residues

from the Comb Ware pointed- and round-base pots all orig-

inate from a predominantly or exclusively marine origin,

displaying high concentrations of palmitic acid (figure 2

[26–29]), enriched carbon isotope signatures, long-chain

APAAs and DHYAs and isoprenoid acids. The lipid residues

thus suggest highly specialized subsistence strategies and/or

specialized or selective vessel use for processing marine com-

modities, possibly for storage or exchange [30]. Although it

has been debated whether Typical Comb Ware pottery

would have been able to withstand cooking, the formation of

APAAs requires temperatures of approximately 2708C
[21,23,25] and therefore processing of marine products using

heat seems highly likely. Comb Ware settlements, faunal

assemblages and the size and fragility of Comb Ware vessels

suggest that these populations were probably sedentary.

A specialized economy based upon coastal resources in close

proximity would have permitted such reduced mobility,

while the use of pots would have facilitated heat-processing

and storage from episodes of over-killing. It is therefore likely

that there was a very close inter-reliance between subsistence

patterns, frequent pottery use and sedentism.

Three sites of the Corded Ware culture yielded preserved

organic residues. No faunal remains were reported from any

of these sites, with the exception of a single fragment of burnt

wild mammal bone from Tengå Nyåker [27]. However, in con-

trast with the Comb Ware sherds, the organic residues

preserved in diagnostic Corded Ware sherds from sites at

Kirkkonummi (Tengå Nyåker and Backisåker), dated to ca
2500 cal. BC, display stable carbon isotope signatures typical

of the fats of terrestrial ruminants, despite their locations

being less than 2 km from the contemporary coastline [31].

While theoretically, the stable carbon isotope values could
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originate from domesticated (e.g. cattle) or wild (e.g. elk,

forest reindeer) ruminants, half of these residues are milk

fats, which must have originated from domesticated stock

(figure 2). Intriguingly, the three dairy fat residues were all

associated with beaker-type ‘drinking’ vessels, often occur-

ring in grave deposits, and not with the amphorae and

S-shaped pots more typical of settlements.

Only one residue from a Corded Ware vessel, deriving

from a third site at Kirkkonummi (Koivistosveden), contained

fatty acids exhibiting enriched stable carbon isotope values

and long-chain DHYAs, indicating a marine origin. Although

lying less than 2 km from the aforementioned Corded Ware

sites, Koivistosveden would have had the closest proximity to

the contemporary coastline and demonstrates that pottery

vessels were not used exclusively for terrestrial resources by

Corded Ware users.
The Final ‘Neolithic’ Kiukainen culture, whose ceramic

inventory shows similarities with Late Corded Ware and

local hunter–fisher–forager ware (Pyheensilta Late Comb

Ware), is believed to be a cultural amalgamation emerging

locally during a period of climatic deterioration [20,32].

While the low number of residues recovered makes interpret-

ation preliminary, this intriguingly appears mirrored in the

pottery residues, because the fatty acid stable carbon isotope

values fall along a mixing line between ruminant and non-

ruminant/marine products. Although the isotope signatures

reflect at least some contribution of terrestrial fat, both

residues contain biomarkers for aquatic fats, including long-

chain APAAs and isoprenoid fatty acids. As neither the

Comb Ware, nor the Corded Ware pottery residues exhibited

evidence for mixing of terrestrial and aquatic products,

these findings indicate either that this culture practiced a
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åk
er

I(
Kv

ar
nå
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äk

i

KM
-5

3

59
42

:9

48
4

lar
ge

fu
nn

el-
ty

pe
2

25
.4

2
25

.6
2

0.
1

FF
As

(C
14

–
C 1

8);
C 1

8
–

C 2
0

AP
AA

s;
TM

TD
,?

Pr
is,

Ph
y;

C 1
8

–
C 2

0

DH
YA

s

m
ar

in
e

an
d

ru
m

in
an

tf
at

KM
-5

4

59
42

:1
1

32
3

un
kn

ow
n

2
26

.9
2

29
.7

2
2.

8
FF

As
(C

12
–

C 2
0);

C 1
8

–
?C

20
AP

AA
s;?

TM
TD

,P
hy

;?
C 1

8
DH

YA
s

ru
m

in
an

tf
at

,

?m
ar

in
e

fat

La
te

Br
on

ze
Ag

e

7
Ra

as
ep

or
i(

Ka
rja

a)
Kr

og
gå
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less-specialized economy, perhaps re-introducing aquatic

resources as a buffer against deteriorating or fluctuating cli-

matic conditions, or that use of vessels for varied purposes

was now practiced.

Finally, residues from Early Metal Age pottery (ca 1200–500

BC) all derived from dairy fats. Increasing population size

despite the continuing climatic deterioration of the Late Holo-

cene is believed to have arisen from the intensification of

agriculture by the later Metal Ages [33] which overcame

environmental constraints upon population size. Certainly,

such a scenario of established stock-rearing would be supported

by the prevalence of dairy fats in the pots.
 oc.R.Soc.B
281:20140819
3. Discussion
It has been observed that the global prevalence of the LP phe-

notype is associated with cultures with a history of milk

exploitation, with patchy distributions of LP in Africa and

the Middle East associated with nomadic pastoralists, in con-

trast to their non-pastoralist neighbours [34]. These findings

presented here demonstrate the antiquity of dairy product pro-

cessing in southern and southwestern Finland, a tradition

reflected by both the high frequency [35] and distribution of

the LP allele in present-day Finland. The SW–NE gradient in

the frequency of the LP allele in Finland (figure 1) is the product

of recurrent, substantial immigrations from the west and east

over the past 6000 years [15,36] and its highest frequency exhi-

bits close correlation with the distribution of Corded Ware

settlements in southern and southwestern Finland. Genetic evi-

dence suggests that low frequencies of LP in some parts of the

eastern Baltic may reflect long-lasting ‘genetic refugia’ for

hunter–fisher–forager populations [37]. However, the age esti-

mate for the only LP haplotype in Finland, H98 containing the

T-13910 allele shows divergence ca 5000 years ago [38]. This is

consistent with a correlation between immigrating Corded

Ware people, their milk use in the far north and the probable

first appearance of the LP, still reflected in the LP gradient of

modern-day Finland more than 4500 years later.

Our investigations into organic residues preserved in

hunter–fisher–forager and ‘early farmer’ pottery vessels

from Finland provide, to our knowledge, the first direct evi-

dence that animal domestication, specifically including

dairy production, was practiced by early prehistoric farmers

beyond the 60th parallel north. With the earliest directly

dated domesticate bone currently dating to the Kiukainen

culture, at least 500 years later [18], the identification of

dairy fats associated with Corded Ware pottery now pushes

the date for domestication back to ca 2500 BC and for the

first time, directly associates the appearance of a new cultural

horizon with the arrival of animal domestication. The strong

contrast between the marine products processed in hunter–

fisher–forager Comb Wares and terrestrial and domesticated

secondary products processed in Corded Wares supports the

hypothesis that Corded Ware pottery represents the successful

introduction of novel subsistence practices into Finland and,

moreover, places the prehistoric origins of farming and milk

consumption, at the most northerly latitudes so far, some

4500 years ago. However, the biomarker and stable isotope

compositions of residues from the Final ‘Neolithic’ Kiukainen

period tentatively indicate reversion to aquatic foods probably

associated with episodic climate deterioration [10,39] showing

vividly the vulnerability of any early farming system.
When viewed alongside evidence for dairying from other

parts of northern and northwestern Europe [5,7,22,40], the

importance of milk, cattle and stock-keeping, alongside cereal

agriculture, in the demic farming colonization of Europe’s

northern latitudes [41] is unequivocally established. But

whereas in northern Britain, a terrestrial subsistence economy

remains the sole food source for more than 1500 years after

the initial colonization [5], southern Scandinavia shows the

continuation of the exploitation of aquatic resources as an

additional food resource alongside agricultural products

[7,40]. A third more opportunistic way may have been chosen

by the Late Corded Ware inhabitants of Finland, and their

Kiukainen successors, by adopting again hunting–fishing–

gathering practices after some generations as the later third

millennium BC annual temperatures continued to fall [42].

This rather episodic character of prehistoric farming is

probably symptomatic of cultivation in marginal landscapes

above the 60th parallel north also evident later in Bronze

and Iron Age records [13,33,43] and in historical times [44].

Even today, Finland is one of the most northerly agricultural

zones of Europe and the inhabitants of northerly latitudes

have to overcome unfavourable extreme climatic conditions

to make ‘conventional’ farming viable [11]. Although pre-

dicted global warming raises the possibility of modern-day

populations extending agriculture to higher latitudes in the

future on a global scale, our results show how climatic

instabilities at such frontier zones will make continuous

farming extremely challenging [45,46].
4. Material and methods
The protocol briefly comprised cleaning of a small portion of the

external surfaces of the potsherd using a modelling drill and

the removal of this cleaned piece using a chisel. Cleaned sherd

fragments were crushed in a solvent-washed mortar and pestle

and an internal standard added (20 mg n-tetratriacontane) prior

to solvent-extraction using 2 � 10 ml CHCl3/MeOH 2 : 1 v/v via

sonication (20 min). After centrifugation, the solvent was decanted

and blown down to dryness under a gentle stream of N2. Aliquots

of the total lipid extract were filtered through a silica column

and treated with 40 ml N,O-bis(trimethylsilyl)trifluoroacetamide

(BSTFA, 708, 1 h) prior to screening using high-temperature

gas chromatography (GC).

Aliquots from selected sherds were then hydrolysed (0.5 M

NaOH/MeOH; 708, 1 h) and methylated (100 ml BF3/MeOH;

758, 1 h) for the structural identification of components using

GC/mass spectrometry (GC/MS) and highly sensitive detection of

specific biomarkers using selected ion monitoring (GC/MS-SIM;

scanning for ions m/z 105, 262, 290, 318 and 346). The isotopic

composition of individual fatty acids was determined using

GC-combustion-isotope ratio MS (GC/C/IRMS). The d13C values

were derived according to the following expression and are relative

to the international standard vPDB: d13C ‰ ¼ ((R sample – R stan-

dard)/R standard) � 1000, where R ¼ 13C/12C. The d13C values

were corrected for the carbon atoms added during methylation

using a mass balance equation [47].

The ‘bound’ fraction from selected sherds was released

through the alkaline extraction of solvent-extracted pottery,

using 5 ml 0.5 M NaOH/MeOH in DCM-extracted double-

distilled water (9 : 1 v/v; 708, 1 h). After acidification to pH3,

these ‘bound’ lipids were extracted using 3 � 3 ml DCM. The

bound fraction was treated with 40 ml BSTFA (708, 1 h) prior to

analysis using a GC/MS fitted with a non-polar column, oper-

ated in full scan and SIM mode (m/z 215, 317, 517, 345, 545,

243 and 573).
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