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The sustained increase in new cases of COVID-19 across the world and potential for
subsequent outbreaks call for new tools to assist health professionals with early diagnosis
and patient monitoring. Growing evidence around the world is showing that lung
ultrasound examination can detect manifestations of COVID-19 infection. Ultrasound
imaging has several characteristics that make it ideally suited for routine use: small
hand-held systems can be contained inside a protective sheath, making it easier to
disinfect than X-ray or computed tomography equipment; lung ultrasound allows triage of
patients in long term care homes, tents or other areas outside of the hospital where other
imaging modalities are not available; and it can determine lung involvement during the early
phases of the disease and monitor affected patients at bedside on a daily basis. However,
some challenges still remain with routine use of lung ultrasound. Namely, current
examination practices and image interpretation are quite challenging, especially for
unspecialized personnel. This paper reviews how lung ultrasound (LUS) imaging can
be used for COVID-19 diagnosis and explores different image processing methods that
have the potential to detect manifestations of COVID-19 in LUS images. Then, the paper
reviews how general lung ultrasound examinations are performed before addressing how
COVID-19 manifests itself in the images. This will provide the basis to study contemporary
methods for both segmentation and classification of lung ultrasound images. The paper
concludes with a discussion regarding practical considerations of lung ultrasound image
processing use and draws parallels between different methods to allow researchers to
decide which particular method may be best considering their needs. With the deficit of
trained sonographers who are working to diagnose the thousands of people afflicted by
COVID-19, a partially or totally automated lung ultrasound detection and diagnosis tool
would be a major asset to fight the pandemic at the front lines.
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1 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 is the third pathogenic human coronavirus to be
identified with a predilection for causing severe pneumonia in 15–20% of infected individuals and
5–10% of all cases requiring critical care. First emerged inWuhan, China, it has quickly spread across
the world Buonsenso et al. (2020). Severe forms of the infection are commonly characterized by
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pneumonia, lymphopenia, exhausted lymphocytes, and a
cytokine release syndrome. As the COVID-19 epidemic
develops, there is a strong desire for fast and accurate
methods to assist in diagnosis and decision making Huang
et al. (2020), Born et al. (2020a). The outward symptoms are
similar to that of influenza and thus laboratory testing is required
for diagnosis. The most common techniques that have been
employed include ribonucleic acid analysis from sputum or
nasopharyngeal swab alongside chest radiographs. However,
these tests are not always able to detect this disease.

COVID-19 preparedness and response critically rely upon
rapid diagnosis and contact tracking to prevent further spread of
the infection. With a surge in new cases, particularly those
requiring critical care, monitoring the disease can help
healthcare professionals make important management
decisions. While CT is a proven tool for diagnosing COVID-
19, it has limitations that make routine use impractical: CT is not
widely available, turnaround times are long, and it requires
patients to be moved outside of their unit Hope et al. (2020)
and reported sensitivities vary, as per Hope et al. (2020). Safely
using CT machines during the pandemic is logistically
challenging and can overwhelm available resources. Even with
proper cleaning protocols, CT scanners could become a source of
infection to other patients who require imaging.

Amidst the rush to use CT scans and develop image processing
algorithms to detect COVID-19 in CT images, researchers seem
to have given little attention to a much more convenient and
simpler imaging method: Lung ultrasound (LUS), Buonsenso
et al. (2020). LUS has been used for decades for diagnoses and
patient monitoring in a variety of respiratory diseases including
pneumonia and acute respiratory distress syndrome, as per Staub
et al. (2018) and Lichtenstein (2009). Very recently, it has been
proven to also have the ability to detect manifestations of
COVID-19 in the images when the examination is performed
accurately as shown by Huang et al. (2020), Thomas et al. (2020),
and Buonsenso et al. (2020). LUS has many appealing features
that make its application to COVID-19 diagnosis and monitoring
quite advantageous. It uses basic technology available at a much
larger volume than CT scans and is free of ionizing radiation. It is
also non-invasive, repeatable, cost-effective, and unlike CT-scan,
LUS can be performed at a patient’s bedside. Furthermore, the
issue of viral cross-contamination with LUS machines is nearly
nonexistent. Sterilizing ultrasonography equipment is quite easy
and is currently done hundreds if not thousands of times per week
in a single hospital. More subtly, thanks to the prompt availability
of LUS, patients may benefit from a lower threshold for
performing LUS examination than what is required for CT
tests. Thus, earlier and more frequent lung examinations can
be offered, even in COVID-19 assessment centers outside of
hospitals. Furthermore, infected but discharged patients could be
evaluated with lung imaging directly in their homes. This is
particularly important with respect to long-term care homes and
in regions experiencing a deficit of available hospital beds.

With the completion of a reliable diagnostic algorithm and
handheld tool, it will be possible to diagnose patients where there
is an absence or limited number of practitioners, such as in rural
and isolated communities. This can assist in better managing

medical resources by providing a quick and reliable way to triage
patients.

Early diagnosis allows for timely infection prevention and
control measures. Patients with mild disease do not require
hospitalization, unless there is concern for rapid deterioration.
Thus, in the short term, a more systematic way to help healthcare
professionals identify cases and assess the risk of progression to
severe or critical conditions, or from acute to subacute conditions,
can help better manage scarce resources in hospitals. Thus,
routine use of LUS can help the fight against COVID-19 in
several ways:

• LUS offers a supplementary screening tool available in any
healthcare center. It can allow for a first screening to
discriminate between low and high-risk patients. Routine
LUS is much easier to implement as a screening tool than
other imaging methods and thus earlier and more frequent
lung examinations can be offered, even directly in COVID-
19 assessment centers outside of hospitals.

• In the absence of sufficient COVID-19 testing kit
availability, LUS can assist in diagnosing patients;

• LUS images can be obtained directly at bedside reducing the
number of health workers potentially exposed to the patient.
Currently, the use of chest X-Ray or CT scan requires the
patient to be moved to the radiology unit, potentially
exposing several people to the virus. With LUS, the same
clinician can visit the patient and perform all required tests.
This is a primary point since recent data shows that in
severely affected countries about 3–10% of infected patients
are health workers, worsening the serious problem of health
professionals’ shortage Buonsenso et al. (2020);

• Discharged patients can be actively monitored with LUS
imaging directly in their homes. This is crucial in long-term
care homes and in regions with saturation of admission in
hospital beds;

• Portable ultrasound machines are easier to sterilize due to
smaller surface areas than CT scans;

• LUS is radiation free and can be performed every 12–24 h,
allowing close monitoring of clinical conditions and also
detecting very early change in lung involvement;

• LUS can be easily performed in the outpatient setting by
general practitioners. This would also allow a better pre-
triage to determine which patients should be sent to a
hospital;

• Lastly, LUS is an inexpensive instrument and can be easily
deployed in resource-deprived settings. In case of a massive
spread, traditional imaging such as CT scan is much more
difficult to be performed compared to LUS.

A database of LUS ultrasound images is being collected by
researchers worldwide Born et al. (2020a), Roy et al. (2020).
Reports issued from this data have identified common structures
seen in LUS on patients with confirmed cases of COVID-19. The
data has revealed trends in LUS images that provide markers for
the disease. However, these indicators have also been seen in
other respiratory infections, but COVID-19 has some unique
distinguishing features. Some of these investigations have drawn
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from limited datasets: 1 case in Thomas et al. (2020) and 20 in
Huang et al. (2020), to over 60,000 images in Soldati et al. (2020).
Although there is strong evidence that LUS can diagnose and
monitor COVID-19, it is important to acknowledge that there is a
spectrum of clinical manifestations of the virus in LUS images
during the clinical course of the infection. Even though image-
based patterns are intuitively recognisable, they may be mistaken
with manifestations of other respiratory diseases. Furthermore,
according to the standardized protocol for point-of-care LUS and
grading score system proposed in Italy by Soldati et al. (2020), a
lung examination requires multiple LUS scans obtained at
different locations on the chest. It becomes hard to reconstruct
a mental map of a required set of up to 14 scans, and image
quality and interpretation are largely operator-dependent. These
issues suggest that LUS diagnosis would benefit from a
standardized approach, common language, and uniform
training, which may not be feasible in the time of pandemic.
Thus, there is an urgent need to develop computer-aided methods
to assist with sonographic diagnosis of COVID-19.

This paper provides a review of contemporary methods for
both the segmentation and classification of LUS and is
organized as follows: The next section provides a review of
existing manual diagnostic techniques currently being
employed around the world. Section 3 delivers a narrative
on proven techniques on LUS image segmentation found in
literature. Section 4 does the same but with classification.
Lastly, the paper discusses parallels between different methods
and allow readers to decide which particular method may be
best for their needs. With the deficit of trained sonographers
who are working to diagnose the thousands of people afflicted
by COVID-19, a partially or totally automated LUS detection
and diagnosis tool can have a tremendous impact in the battle
against COVID-19. Let us start with narrative on how
conventionally COVID-19 and other lung diseases are
examined and diagnosed using LUS. It is important to note,
however, that not all of the methods presented in this paper
have been specifically used as a diagnostic tool for COVID-19,
but they have the potential to be used as such. As COVID-19 is
a new virus, little work has been done to develop detection
tools. This paper is meant to act as a guide for methods that
have been proven to diagnose pneumonia and other
respiratory pathologys indicative of COVID-19.

2 THE BASES OF LUNG ULTRASOUND
DIAGNOSIS OF COVID-19

Since the end goal is to at least partially automate the process of
LUS diagnosis, an understanding of how LUS images are acquired
is necessary.

2.1 LUS Examination Protocol
Before moving any further, it is important to outline the basic
principles of LUS and how it is being applied to COVID-19. LUS
images offer real-time insight into the state of eration of the lung,
i.e., the air to fluid ratio in the lung, which distinguishes normal
eration from respiratory illnesses.

Normally erated lung: Since ultrasonic energy is rapidly
dissipated in the air, in a normally erated lung the only
detectable structure is the pleura, observed as a
hyperechoic horizontal line (see Figure 1, green lines).
The pleural line moves synchronously with
respiration—this is called lung sliding. In addition,
successive hyperechoic horizontal lines appear below the
pleural: the A-lines (blue). These artifacts along with lung
sliding represent a sign of normal content of air in the lung by
Gargani and Volpicelli (2014). See Figure 1A.

Interstitial lung disease: When the state of eration decreases
due to the accumulation of fluid or cells, the ultrasound beam
travels deeper in the lung. This phenomenon creates vertical
reverberation lines known as B-lines (comet-tail artifacts outlined
by yellow lines in Figure 1A). Hyperechoic B-lines start at the
pleural line, extend to the bottom of the image without fading,
and move with lung sliding. The lower the air content in the lung,
the more B-lines are visible in the image. Multiple B-lines in
certain regions indicate lung interstitial syndrome.

Lung consolidation: When the air content further decreases to
the point of absence of air, with some abuse of terminology, the
lung becomes a continuous medium where ultrasound waves
cannot reverberate. The LUS image appears as a solid
parenchyma, like the liver or the spleen. Consolidation is the
result of an infectious process, a pulmonary embolism,
obstructive atelectasis, or a contusion in thoracic trauma.
Additional sonographic signs are needed to determine the
cause of the consolidation in order to attribute it to COVID-
19 such as the quality of the deep margins or the presence of air or
fluid bronchogram Huang et al. (2020). In Figure 1A,
consolidation is indicated by the presence of the C-lines
highlighted in red.

The recommended acquisition protocol for COVID-19, as
proposed by Soldati et al. (2020), screening includes 14 intercostal
scans in 3 posterior, 2 lateral, and 2 anterior areas, currently
considered “hot areas” for COVID-19 (Figure 1B). Each scan is
10 s long so that lung sliding can be visualized. For patients who
are not able to maintain the sitting position the echographic
assessment may start from landmark number 7, as per Soldati
et al. (2020). Once the images are acquired, each scan is analyzed
and classified following the 3-point score summarized below
Huang et al. (2020). Practically, the device to do this would
need to be robust, cheap, and easily cleanable. The software would
need to be able to be used by non-professional sonographers
(i.e., nurses, etc.).

Specific manifestations of COVID-19 include:

• COVID-19 foci are mainly observed in the posterior fields in
both lungs, especially in the posterior lower fields;

• Fused B lines and waterfall signs are visible under the pleura.
The B lines are in fixed position;

• The pleural line is unsmooth, discontinuous and
interrupted;

• The subpleural lesions show patchy, strip, and nodule
consolidation;

• Air bronchogram sign or air bronchiologram sign can be
seen in the consolidation; and
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• The involved interstitial tissues have localized thickening
and edema, and there is localized pleural effusion around
the lesions;

2.2 Diagnosis
After the images are taken from the 14 intercostal positions, they
can be analyzed to determine the presence of COVID-19
pneumonia. Depending on the results from the sonographer, a
score is assigned to the LUS images to indicate the severity of the
disease present, if any. The score is from 0 to 3, 0 indicating a
healthy lung and 3 indicating a heavily diseased lung.

• Score 0: The pleural line is continuous and A-lines are
present indicating a normally erated lung;

• Score 1: The pleural line is indented and below the indent
B-lines are visible. These are due to the replacement of
volumes previously occupied by air in favor of intercostal
tissue;

• Score 2: The pleural line is severely broken and consolidated
areas appear below the breaking point (C-lines and darker
areas). The C-lines signal the loss of eration and the
transition;

• Score 3: The scanned area shows dense and largely extended
white lung with or without C-lines. At the end of the
procedure, the clinician classifies each area according to
the highest score obtained. Huang et al. (2020) further
suggests that COVID-19 has other specific manifestations

in LUS, mainly observed in the posterior area: Fused B-lines;
the pleural line is unsmooth, discontinuous or interrupted;
and the subpleural lesions show patchy, strip, and nodule
consolidation in which air bronchogram can be seen. The
interstitial tissues show obvious thickening and edema, the
pleura shows localized thickening, and there is localized
pleural effusion around the lesions.

There are numerous methods, presented in the following
sections, which give medical researchers the tools required to
pre-process, segment, and classify LUS images (Figure 2).

3 SEGMENTATION OF COVID-19
MANIFESTATIONS IN LUS

Segmentation divides an LUS image into smaller classifiable
sections. This means identifying the pleuralline and the
presence of A-lines, B-lines, or consolidated regions of the
image. Thus, segmentation plays the role of interpreting what
manifestations are held within the LUS image. Pre-processing is
necessary as raw LUS images can be noisy and difficult to
interpret.

3.1 Image Pre-Processing
Ultrasound images are noisy, often lack contrast, and contain
artifacts such as attenuation speckles, shadows, and signal

FIGURE 1 | (A): Shows the four types of lines found in LUS images. A-lines are shown in blue, B-lines are yellow, C-lines red, and the pleural line is green. (B): 14
anatomical scanning locations for LUS diagnosis. From left to right are scanning locations on the back [with the vertical paravertebral line, spine of shoulder blade (upper
horizontal line) and interior angle of shoulder blade (lower horizontal line)], sides (showing themid-axillary lines on the left and right sides and internipple line), and front of a
torso (showing the internipple line).
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dropouts [Noble and Boukerroui (2006)], making image
segmentation a difficult task. Furthermore, images collected
using an ultrasound machine will differ between different
models and types of probes. Pre-processing is almost always
done on LUS images to enhance their quality and prepare them
for further processing. One of the most common pre-processing
operations is binarization. It converts pixels in a gray scale image
into a black and white image (with pixels either on or off) based
on the intensity of the pixel and a threshold value Correa et al.
(2018). The choice of the threshold value changes the features
that will be visible in the processed image.

Image normalization is required to offset any scaling
differences between different images caused by gain
adjustments on the ultrasound device. In case the gain settings
are not known, Brattain et al. (2013) propose the use of the image
peak approach for enhancing the image which minimizes the
potential for differences in gain during the recording process
from affecting the algorithm. Image reformatting may be
necessary depending on the method used. In Cristiana et al.
(2020), all images were reformatted to be in a consistent
rectilinear format so no matter what transducer was used in
order to take the images, they could be processed in the same way.
Brattain et al. (2013) performs a similar operation where each
frame in a video was reformatted and normalized so that
difference in gain setting during the original recording was
reduced. This further minimizes discrepancies between data sets.

3.2 Pleural Line Detection
The first set of segmentation methods focuses on the detection of
the pleural. This first step is typically to exclude the area above the
pleural (e.g.,: noise from the rib bones) from segmentation as it
has no diagnostic importance aside from acting as a
reference point.

The method presented in Moshavegh et al. (2016) and
Moshavegh et al. (2018) employs the random walk technique
to automatically detect the pleural line. A classical random walk
algorithm, introduced by Grady (2006), is a method for image

segmentation that can be either interactive or automatic. In this
method a set of pixels called seeds is selected and given a label.
Random walkers are then used to identify regions containing the
labeled seeds. The method was adapted to ultrasound imaging in
Karamalis et al. (2012). Since the ultrasound images contains
artifacts and noise, the walkers are constrained using a confidence
map constructed based on the image quality. This simple method
is easy to implement as it uses a well-known image segmentation
technique. One notable consideration is that a starting point must
be chosen carefully Moshavegh et al. (2016), Moshavegh et al.
(2018). Additionally, it remains unknown if this method is
suitable for identifying the pleuralline in patients with score
greater than 2, as in severe cases where the pleuralline can be
discontinuous.

In Moshavegh et al. (2016) random walk is combined with
alternate sequential filtering to detect the presence of pleurallines.
A similar approach was proposed by Carrer et al. (2020) but
instead of random walk, the method uses Hidden Markov Model
(HMM) and Viterbi Algorithm (VA). It can detect discontinuous
pleural lines, which is a direct advantage over the random walk
method. Based on experimental evaluation, the algorithm can
detect the pleuralline in a heterogeneous data set collected from
various sources. Another method proposed in Correa et al. (2018)
finds the pleuralline using in two steps. First, the image is
binarized and divided into narrow vertical slices. Each slice is
then divided in half by a line, which is moved such that the
number of on pixels is equal above and below it. A curve is then
fitted along to the points on each of the lines such giving the
approximate location of the pleuralline.

One of the most common methods for line detection is the
Radon transform, which projects the density of an object in an
angular coordinate system Anantrasirichai et al. (2016),
Anantrasirichai et al. (2017). The Radon transform can be
used to identify the pleuralline by searching for the brightest
horizontal line which they define as one with the 90+ ± 20+. An
improved version of this method presented in Karakus et al.
(2020) was tested in LUS images of COVID-19 patients. One of

FIGURE 2 | A flow chart representing a normal work flow for LUS images processing. The flowchart has two parallel components, illustrating that typically the
stages of image collection, processing, segmentation, and classifications are performed in a linear fashion. However, the parallel component is to illustrate that some
neural network methods can be trained in order to handle the entire process (from collection to classification) as one black-box solution.
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the main advantages of this method is its simplicity. The
pleuralline can be easily identified as it is always the brightest
object in the image. As a major shortcoming, detectable lines are
straight, meaning that this method can only approximate the
actual position of the pleuralline and is more suitable for
detecting A and B lines.

3.3 A and B Line Detection
Finding pleurallines is an important aspect of LUS imaging,
however often times medical professionals are more interested
in locating and segmenting the A and B lines that are
characteristic of healthy and unhealthy lung conditions. This
section describes some of these methods.

In a Radon transform A-lines can be identified as horizontal
lines, ones with an angle 90+ ± 20+, with a lower brightness than
that of the pleuralline. Similarly, B-lines can be identified by
searching for horizontal lines with angle 0+ ± 20+.
Anantrasirichai et al. (2016) and Anantrasirichai et al. (2017)
proved that using such a method can indeed differentiate between
these different lines.

Brattain et al. (2013) presented one of the first methods used to
identify B-lines in LUS. The method converts the conic
ultrasound image into a rectangle and divides it into columns.
The B-lines are identified by finding columns through analyzing
the brightness profile of each column, and searching for columns
with a high, uniform intensity, spanning the length of the column.
This method, though simple, requires the detection parameters to
be tuned depending on the model of the ultrasound machine and
the probe used to detect images. This method was later improved
upon by applying a series of morphological operations and filters
to the image tomore accurately segment B-lines. Moshavegh et al.
(2016), Moshavegh et al. (2018), and Brusasco et al. (2019) all
used alternate sequential filtering1 (ASF) with an axial-line
structuring element to consolidate regions containing
disjointed elements of the B-lines into continuous vertical
shapes. Moshavegh et al. (2016) applied the Top-Hat filter to
distinguish between connected B-lines, while Brusasco et al.
(2019) scans the image laterally in search of long columns that
contain mostly bright pixels. The location of the B-Lines can be
adjusted using Gaussian model fitting method, as shown in
Moshavegh et al. (2018).

A similar approach in Correa et al. (2018) has been shown to
aid in the identification of A-lines. Like in the previous methods,
only the region below the pleuralline is considered. A procedure
named close method is applied to the image to emphasize the
shape of regions possibly containing A-lines. A-lines are
identified by adding the brightness values of each row.

3.4 C-Lines (Consolidations)
There presently are no methods provided in literature specifically
tailored for segmenting lung consolidations for LUS. However,
there is potential for doing so. In Nazerian et al. (2015), a method
for manually imaging pneumonia consolidations in LUS was

presented. In this paper, recommendations for what to look for
are included. The consolidations due to pneumonia usually
contain dynamic echogenic structures that move with
breathing. They may also contain multiple hyperechogenic
spots, due to air trapped in the small airways, with associated
focal B-lines. This is typically characterized by a large dark spot in
the LUS, caused by pleura breakdown, as shown by Volpicelli
et al. (2010). Lung consolidations are superficial and relatively
easy to spot by lung ultrasound, as per Lichtenstein (2015). The
methods presented by Correa et al. (2018) or Brattain et al. (2013)
could potentially be applied to properly segment LUS images with
lung consolidations present. A tool for identifying lung
consolidations is important as C-lines are required for LUS
diagnoses.

3.5 Neural Networks Based Segmentation
A more modern approach to segmenting LUS images involves
using neural networks and deep learning. Convolutional Neural
networks (CNNs) are a type of neural network (NN) specifically
designed for processing, identifying, and detecting features in
images or sounds tracks. These networks use deep learning
methods and require hundreds or thousands of images with
features labeled. To this end, large datasets are required for
training and testing of CNNs. To this date, there are mainly
two datasets of LUS images of COVID-19 patients. First, Roy et al.
(2020) presented the Italian COVID-19 LUS DataBase (ICLUS-
DB) composed of 277 LUS videos from 35 patients, 17 of whom
were diagnosed with COVID-19, four were suspected, and 14
were healthy, with a total of 58,924 frames. Each image was
labeled using the scoring system proposed by Soldati et al. (2020),
seen earlier in Section 2.2. Second, the lung point-of-care
ultrasound (POCUS), Born et al. (2020b) dataset Born et al.
(2020a) contains 39 videos of COVID-19 patients, 14 videos of
patients with bacterial pneumonia, and 11 healthy individuals for
a total of 64 videos and 1,103 images. Both data sets were collected
using a variety of ultrasound scanners and probes by
sonographers in multiple different hospitals. The dataset
includes ultrasound images of patients with bacterial
pneumonia which is an important distinction when attempting
to diagnose a patient with COVID-19. On the other hand,
ICLUS-DB does only consider COVID-19 patients, but the
data is labeled with the severity of the infection.

CNNs have been used previously to detect B-lines in patients
with pneumonia. One weakly-supervized network built to detect
B-lines in real-time was proposed by van Sloun and Demi (2019).
The CNN uses 12 convolutional layers and incorporates a
gradient-weight class-activation mapping (grad-CAM) which
identifies the regions where B-lines are located. More
importantly, the network learns how to identify B-lines based
on data labels that only indicate if B-lines are present. Since the
network does not need a labeled dataset for training, it is easy to
implement and use. Note, however, that this network is not able
to count the number of B-lines in an image, though the number of
lines is an indication of the state of eration of the lung. Due to
layer pooling, the output map highlighting the regions containing
B-lines has low resolution. Wang et al. (2019) presents a four
layer, semi-supervized CNN capable of measuring the number of

1A sequence of two morphological operations, opening and closing, that closes
small gaps, see Sternberg (1986) for details.
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B-lines in the images. The network was trained on dataset labeled
with only the number of visible B-lines without specifying their
location. The network can count the number of B-lines, but it is
not able to identify their location. A similar approach is used to
analyze brightness profiles from LUS data with artificial neural
networks (ANN) in Barrientos et al. (2016), Correa et al. (2018).

Another CNN-based method that does not share the
limitations described earlier has been proposed by Kulhare
et al. (2018), who uses a Single Shot Detector (SSD) to
identify the locations of the pleural, A, B, and C-lines. SSDs,
introduced by Liu et al. (2016), are a fast and accurate method
used to identify objects in pictures. The method uses feature maps
generated by a 16 layer CNN presented in Simonyan and
Zisserman (2014) to fit bounding boxes around the features.
The network training requires training data with ultrasound
images with target features locations fully annotated. This
supervised algorithm has a sensitivity of 85% on animal
specimens but cannot be used for COVID-19 until the two
available datasets are annotated.

In contrast, the approach presented by Roy et al. (2020) uses a
CNN with a Spatial Transform Network proposed by Jaderberg
et al. (2015). It applies linear transformations to the feature maps
of the image allowing features to be identified in any orientation.
This enables the network to identify the regions of interest by
itself. As a result, the network can provide feature localization
without great level of supervision. Based on experimental
validation, Roy et al. (2020) claim that this approach
outperforms the one proposed in van Sloun and Demi (2019).

4 IMAGE CLASSIFICATION

After LUS images have been segmented, they must be classified to
provide diagnosis. Using the presence of B-lines, consolidation,
etc., a classifier can assign a label to the previously segmented
images which can then be used as a basis for diagnosis and
prognosis Correa et al. (2018). There are two main methods of
classifying LUS images: 1) Feature-based classification where
segmented features are analyzed stochastically, and 2)
learning-based methods such as NN’s which act more as a
black box solution. They are trained to classify images based
on geometric patterns that are present in certain diseases in the
LUS images. This section discusses some available methods for
segmented LUS image classification.

4.1 Neural Network Classification
There are mainly two NN methods used to classify images, firstly
using pre-segmented images, where regions of interest are
segmented by an expert and then fed into a NN, or secondly,
a NN may be trained to do both segmentation and classification.
Some of the networks discussed in Section 3.5 are CNN’s focused
on finding and segmenting features in LUS images.

An interesting manipulation of data is the brightness profile of
vectors method presented by Correa et al. (2018). In this method,
LUS images of healthy lungs and with pneumonia are
distinguished from one another by the brightness profile of
the raw LUS data. The brightness profile being the profile that

represents a single vector of ultrasound data as strong reflected
ultrasound waves are interpreted as “bright”. The brightness
profile of healthy lung tissue is characterized by smooth,
exponentially decaying brightness, whereas unhealthy lung
tissue has erratic brightness and non-exponential decay. Rib
bones have an abrupt drop on brightness right below the
pleuralline.

Cristiana et al. (2020) proposed a direct improvement to
Correa et al. (2018) where a secondary NN was trained using
softmax activation as a multiclass classifier. The method classifies
whether B-lines are present and the multiclass classification
network scores the images based on the scoring system
presented by Soldati et al. (2020). The two models, binary and
multiclass, were trained separate from one another. The binary
classifier had a sensitivity of 93% and a specificity of 96%2 as
compared to a medical expert classifying the same images.
Agreement between the multiclass severity scoring system and
a medical expert was 93% ± 1.

Similarly, Born et al. (2020a) presents POCOVID-Net, the first
CNN for identifying COVID-19 through LUS, which uses VGG-
16, as established CNN, pre-trained on ImageNet (Krizhevsky et
al., 2012) for image feature extraction. It uses a pre-trained 16
layer CNN from Simonyan and Zisserman (2014) to extract lower
level features such as textures and shapes. The last three layers of
the network were further trained using POCUS dataset to
differentiate between patients who were diagnosed with
COVID-19, bacterial pneumonia, and healthy individuals. The
network uses softmax activation to classify images and had an
overall accuracy of 89%. It’s sensitivity and specificity for
detecting COVID-19 in particular was 96 and 79%. van Sloun
and Demi (2019) outline a method for CNN’s to segment and
classify LUS images for B-lines. This method is one of the few
which is capable of real time classification by exploiting GPU
acceleration. It had an in-vitro accuracy of 91.7%, and an in-vivo
accuracy of 83.9 when using the ULA-Op transducer, a research
platform, and 89.2% using a Toshiba transducer. The network,
with six layers, used softmax activation, just as Correa et al. (2018)
and Cristiana et al. (2020). The greater accuracy in in-vitro data
was due to analyzing in-vitro images, while the in-vivo data were
videos as the videos are more complex and variable than the
images to analyze as even the breathing of a patient is enough to
make B-lines more difficult to detect. Further the presence of
intercostal tissue, not present in the in-vitro data further
complicates its processing. Therefore, a loss of resolution and
classification accuracy is expected. van Sloun and Demi (2019)
used imagenet a popular CNN architecture, as a basis for their
pre-trained neural network, therein easier to train to perform
particular tasks.

In Kulhare et al. (2018) a binary classifier, indicating presence
or lack thereof, based off the Inception V3 SSD Convolutional
Neural Network architecture. The system was trained to classify
LUS images with A, B, and pleural lines as well as lung tissue

2Specificity is defined as true negatives/(true negatives + false positives), sensitivity
is defined as true positive/(true positive + false negative), accuracy is defined as
(true positive + true negative)/(all positives + all negatives).
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consolidation. Overall, its pleuralline classification was 89%
accurate.

Despite the suitability of NN’s for LUS image classification,
they are often computationally heavier and require greater
training sets than other methods. Stochastic methods provide
a lighter option which are just as accurate which may be better
suited for a portable LUS device.

4.2 Stochastic Classification
Stochastic classifiers are purpose-built classifiers which use
statistical regression and image filtering to analyze the
segmented images which are fed to them and then classify the
image contents.

Brusasco et al. (2019) proposed an off-line method to
segment and classify the quantity of B-lines, similar to the
CNN model proposed by Wang et al. (2019), in LUS images.
The end goal was to create an automated method of
determining extravascular lung water. The algorithm scored
the segmented gray-scale LUS images. B-lines are classified
when the filtered images are scanned and white pixels are
measured to make up ¿50% of the total vertical length of the
image. Using statistical regression on the segmented LUS
images, the total number of B-lines present can be
quantified. However, classifying images when many B-lines
are present is difficult as they coalesce and are imaged as
singular B-lines as opposed to multiple, close-by B-lines.

In Carrer et al. (2020) a support vector machine (SVM)
classifies and scores pleural lines. The SVM is fed segmented
partitioned United States images whose features were fed into
Gaussian radial basis function kernel, a type of SVM classifier
known to have a better convergence time than polynomial
kernels. The SVM classifier was chosen over an NN as it
requires significantly less data to train, which is pertinent as
COVID-19 training data is presently lacking. The classifier was
applied to linear United States probe and convex United States
probe data separately, and the accuracy for the linear and convex
probes were 94 and 88%.

A similar method described by Veeramani and Muthusamy
(2016) is to use two Relevance Vector Machines, a Bayesian
framework for achieving the sparse linear model as per Babaeean
et al. (2008), to classify the LUS images as healthy or unhealthy,
and if unhealthy what disease is present. RVM’s provide a

probabilistic diagnosis, as opposed to the discrete diagnose
obtained with SVM’s. The method offered better accuracy,
sensitivity, and specificity than SVM and NN methods. While
first RVM classifier was a binary, the second RVM classifier was a
multiclass classifier capable of noting which diseases are present
in the lung including: respiratory distress syndrome, transient
tachypnea of the newborn, meconium aspiration syndrome,
pneumothorax, bronchiolitis, pneumonia, and lung cancer.
Both the binary and multiclass classifiers had classifying
accuracies of 100%.

Brattain et al. (2013) use Gaussian or statistical operations to
either score or classify LUS. Gaussian operations are convenient
because of their low computational weight. However, they do not
share the same level of generality as NN’s and as such they are
trained on narrower data sets and are prescribed in narrower
conditions. In Brattain et al. (2013), a statistical B-line scoring
system was developed. Depending on the severity of the B-lines
presented, the images were given a score between 0 and 4 using
angular features and thresholding. This method analyzed
segmented features and determines the severity of the B-lines
depending on five conditions: 1) Mean of a B-line column; 2)
Column length above half-maximum; 3) Value of the last row of a
column; 4) Ratio of the value of the last row over maximum for
that column; and 5) Ratio of the value for the midsection of a
column over maximum for that column. If these five features
exceeded predefined thresholds, the image column is a B-line
severity associated with it. However, as per Anantrasirichai et al.
(2016) this method is not robust as it is prone to being greatly
affected by noise and image intensity meaning the threshold
values must be changed depending on the quality of the images
being analyzed.

Table 1 provides a comparison of the accuracies of assorted
classification methods found in literature.

5 DISCUSSION

The previous sections discussed different methods to identify
manifestations of COVID-19 in lung ultrasound images. Several
challenges exist in order to implement these methods in a useful
clinical setting that can effectively assist healthcare professionals
during the course of the pandemic, autonomously identify

TABLE 1 | Comparison of LUS image classification methods.

Method Author Objective Accuracy Sensitivity Specificity

Supervised feed forward ANN (2018) Correa et al. Pediatric Pneumonia — 90.9% 100%
ANN (2016) Barrientos et al. Pneumonia — 91.5% 100%
CNN (2020) Born et al. COVID-19 92% 96% 79%
CNN (2020) Cristiana et al. B-lines (presence) 94% — —

CNN (2020) Cristiana et al. B-line (severity) 54% — —

CNN (2019) van Sloun and Demi B-lines (in-vitro) 91.7% 91.5% 91.8%
CNN (2019) van Sloun and Demi B-lines (in-vivo) 89.2% 87.1% 93%
CNN (2018) Kulhare et al. Multiple Abnormalities — ¿85% ¿85%
SVM Classifier (2020) Carrer et al. COVID-19 88–94% — —

RVM Classifier (binary) (2016) Veeramani and Muthusamy Healthy lung 100% 100% 100%
RVM Classifier (multiclass) (2016) Veeramani and Muthusamy Multiple Abnormalities 100% 100% 100%
Stochastic Method (2013) Brattain et al. B-lines 100% — —

Frontiers in Big Data | www.frontiersin.org March 2021 | Volume 4 | Article 6125618

McDermott et al. Lung Ultrasound Image Processing for COVID-19

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


manifestations of COVID-19 in LUS images, and assess the
severity of the infection according to the grading scale
proposed in Soldati et al. (2020). The most important practical
considerations are related to the quality of the ultrasound images.
This means that the system must guide healthcare professionals
during LUS examinations and ensure appropriate image quality is
obtained regardless of the operator’s experience and hardware,
and the image processing method must be integrated into a
portable ultrasound system.

5.1 Augmented LUS Images for Operator
Guidance
Providing health care practitioners with an alternative to the
time consuming and ionizing CT and X-ray scans would
reduce the loading on the current medical system. However,
the increasing need for lung imaging in hospitals, long-term
care homes, and clinics, can lead to a shortage of sonographers.
A reduction in that additional load can be sought in the form of
a device to be used by personnel other than trained
sonographers to either assist in triaging incoming patients
or be used as a bedside monitoring tool.

The biggest challenge in LUS is that image segmentation and
classification requires quality images. One possible way to assist
the operation in this regard is to overlay processed images on
top of the original LUS images. For example, one can consider
presenting diagnostic information and a real time assessment of
the image quality over the original image to intuitively guide the
operator as in Moshavegh et al. (2016) and Moshavegh et al.
(2018). Image overlay on top of the LUS image can indicate the
current state of the image and how the operator can target
specific features in the images. Further, following the
recommendations outlined in the LUS-based diagnosis of
COVID-19 standardization protocol proposed in Soldati
et al. (2020), such a software may guide the operator to
ensure that:

1. The focal point of the image is set on the pleural line. Using a
single focal point and setting it at the right location has the
benefit of optimizing the beam shape for sensing the lung
surface. At the focus, the beam has the smallest width and is
therefore set to best respond to the smallest details.

2. The mechanical index is kept below 0.7. Mechanical index is an
indication of an ultrasonic pressure ability to cause
micromechanical damage to the tissue. The mechanical
index decreases as the focal zone moves further away from
the transducer, hence it can become a concern given the
previous point, in particular for a long observation time as
it is required for LUS. The mechanical index can be changed
with the frequency of the beam.

3. The image is not saturated. Saturation occurs when the signal
strength of the echo signals is too high making the pressure/
echo relationship no longer linear. This has the effect of
distorting the signals images, giving rise to completely white
areas in the image, which can be easily identified in the
software. Control gain and mechanical index can be
adjusted to prevent saturation.

4. The ultrasound probe is properly oriented to provide oblique
scans. The image features needed in the image processing
algorithm are clear.

5.2 Integration With a Portable Hand-Held
Ultrasound
High frequency linear array probe is suggested to be used for minor
subpleural lesions, as it can provide rich information and improve
diagnostic accuracy. In the setting of COVID-19, experts suggest that
wireless ultrasound transducers and tablets are the most appropriate
ultrasound equipment for diagnosis, Soldati et al. (2020). These
devices can easily be wrapped in single-use plastic covers, reducing
the risk of viral contamination and making sterilization procedures
easy. Furthermore, such devices can range between $4,000 and
$8,000, which is a fraction of the cost of regular ultrasound
machines. In cases of unavailability of these devices, portable
machines dedicated to use for patients with COVID-19 can be
still used, although more care for sterilization is necessary.

On a software front, the QLUSS and RVM classification
methods presented in Section 4.2, respectively, seem well
suited for a handheld solution. The QLUSS system has a low
computational weight attached to it and is able to operate in real
time, which is an asset for front line workers. The RVMmethod is
capable of classifying which lung disease from a list of potentials is
present in the LUS images and for processing of images off line.
These methods also have the added benefit of requiring small
databases, which could be stored in the handheld device itself or
on a nearby computer. Using an off-line, i.e., a method which
segments and classifies images after they are taken, solution is
critical in certain parts of the world due to the possibility of data
breach. Or online solutions—i.e., a solution that attempts to
segment and classify images live as they are being taken—are
simply not feasible due to lack of infrastructure. A portable hand-
held United States device would require local storage which could
be updated when new data was made available. An alternative
option would be to access a database stored online via the
Internet, as in Born et al. (2020a), if the infrastructure is available.

5.3 Probe Tracking
Probe tracking, a well documented and researched field Bouget
et al. (2017), gives the sonographer the ability to see in real-time
the position and orientation of the ultrasound probe. It can be
done by integrating a motion sensor into the probe itself. By
putting a position stamp on each United States frame would assist
in identifying and mapping intercostal tissue and bones which
may inadvertently cause black spots in the images, which are of
no use. Further, the ability to know each United States images
relative location to one another would allow the creation of 3D
maps to assist in diagnosis.

6 CONCLUSION

Current advancements in ultrasound image processing
provides health care practioners a means of imaging lungs to
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diagnose COVID-19. The methods presented in this article may
aid in interpreting LUS images autonomously or semi-
autonomously, thus allowing doctors without sonogoraphic
training to diagnose COVID-19. Integration of image
processing for COVID-19 diagnosis into handheld
ultrasound machines can be used for beside monitoring, as a
triaging tool for quickly diagnosing the severity of COVID-19
present.

As the COVID-19 pandemic and its characteristic traits are so
new to medical research, there is a severe lacking of databases
with significant resources. But as with every disease that has come
before, those resources will come with time. Further, those
databases combined with LUS will allow for more in-depth,
greater diagnostic tools.
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