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Abstract
Introduction This study proposes contouring recommendations for radiation treatment planning target volumes and organs-
at-risk (OARs) for both low grade and high grade gliomas.
Methods Ten cases consisting of 5 glioblastomas and 5 grade II or III gliomas, including their respective gross tumor volume 
(GTV), clinical target volume (CTV), and OARs were each contoured by 6 experienced neuro-radiation oncologists from 5 
international institutions. Each case was first contoured using only MRI sequences (MRI-only), and then re-contoured with 
the addition of a fused planning CT (CT-MRI). The level of agreement among all contours was assessed using simultaneous 
truth and performance level estimation (STAPLE) with the kappa statistic and Dice similarity coefficient.
Results A high level of agreement was observed between the GTV and CTV contours in the MRI-only workflow with a 
mean kappa of 0.88 and 0.89, respectively, with no statistically significant differences compared to the CT-MRI workflow 
(p = 0.88 and p = 0.82 for GTV and CTV, respectively). Agreement in cochlea contours improved from a mean kappa of 
0.39 to 0.41, to 0.69 to 0.71 with the addition of CT information (p < 0.0001 for both cochleae). Substantial to near perfect 
level of agreement was observed in all other contoured OARs with a mean kappa range of 0.60 to 0.90 in both MRI-only 
and CT-MRI workflows.
Conclusions Consensus contouring recommendations for low grade and high grade gliomas were established using the 
results from the consensus STAPLE contours, which will serve as a basis for further study and clinical trials by the MR-
Linac Consortium.

Keywords Consensus contouring recommendations · Glioma · Radiotherapy · Organs-at-risk · MR-linac

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1106 0-020-03605 -6) contains 
supplementary material, which is available to authorized users.

 * Chia-Lin Tseng 
 chia-lin.tseng@sunnybrook.ca

1 Department of Radiation Oncology, Sunnybrook Health 
Sciences Centre, University of Toronto, 2075 Bayview 
Avenue, Toronto, ON M4N 3M5, Canada

2 Manchester Academic Health Science Centre, University 
of Manchester, The Christie NHS Foundation Trust, 
Manchester, UK

3 Department of Radiation Oncology, University Medical 
Center Utrecht, Utrecht, The Netherlands

4 Department of Radiation Oncology, Froedtert Memorial 
Lutheran Hospital, Milwaukee, WI, USA

5 Department of Radiation Oncology, The University of Texas 
MD Anderson Cancer Center, Houston, TX, USA

6 Departments of Biostatistics, University Health Network, 
University of Toronto, Toronto, ON, Canada

7 Department of Medical Imaging, Sunnybrook Health 
Sciences Centre, University of Toronto, Toronto, ON, 
Canada

8 Division of Neurosurgery, St. Michael’s Hospital, University 
of Toronto, Toronto, ON, Canada

9 Department of Medicine, Division of Neurology, Sunnybrook 
Health Sciences Centre, University of Toronto, Toronto, ON, 
Canada

http://orcid.org/0000-0002-3700-0886
http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-020-03605-6&domain=pdf
https://doi.org/10.1007/s11060-020-03605-6


306 Journal of Neuro-Oncology (2020) 149:305–314

1 3

Introduction

Magnetic Resonance Imaging (MRI) has long been used 
for radiotherapy definition of brain tumors and organs-
at-risk (OARs). In adult low and high grade gliomas, the 
current standard of care consists of maximal safe resection 
followed by radiotherapy with or without concurrent and/
or adjuvant chemotherapy [1–6]. The standard practice has 
been to use post-gadolinium T1-weighted and T2-weighted 
or T2 fluid attenuation inversion recovery (FLAIR) 
sequences, which are fused to computed tomography (CT) 
for the delineation of target volumes and OARs. Although 
there are limitations of conventional MRI for target defini-
tion of gliomas, the precise roles of metabolic and physi-
ological imaging (eg. proton MR spectroscopic imaging, 
chemical exchange saturation transfer imaging, perfusion 
imaging, water diffusion imaging) have yet to be estab-
lished and are active areas of investigation [7].

Radiotherapy target volumes have differed among vari-
ous trials group, particularly with respect to the clinical 
target volume (CTV) as an anatomic margin beyond that of 
the gross target volume (GTV). Inter-observer variability 
in target volume delineation of glioblastoma multiforme 
(GBM) has been evaluated and limited recommendations 
proposed with respect to target volumes and OARs in pre-
vious reports, in some cases in the absence of quantita-
tive analyses [8–10]. With the emergence of MR-guided 
radiotherapy systems, there is increasing interest in an 
MRI-only workflow for radiotherapy simulation and plan-
ning [7]. The improvements in immobilization and image 
guidance techniques underscore the critical importance of 
accurate and consistent target volume and OAR deline-
ation. Within the context of the MR-Linear Accelerator 
(MR-Linac) International Consortium Research Group 
[11], the aim of the present study is to develop contour-
ing recommendations in low and high grade gliomas for 
targets and OARs based on consensus contours for both 
CT-MRI and MRI-only workflows, and to identify any dif-
ferences in agreement between the two workflows. This 
represents an international effort and will serve as the 
basis of future collaborative clinical trials to ensure uni-
formity in glioma contouring.

Methods and Materials

Ten cases of glioma consisting of 5 GBM and 5 WHO 
grade II or III gliomas were selected from a prospective 
institutional database of patients for this study. The study 
was approved by the institutional ethics review board. No 
informed consent was required as per retrospective and 

anonymized nature of the image datasets. The cases were 
selected with the intent to represent varying tumor size, 
locations within the brain, and proximity to OARs as 
well as white matter pathways. Six international radiation 
oncology experts from 5 institutions, who treat gliomas 
in clinical practice and/or have reported clinical series, 
participated in the present study. For each case, a post-
operative volumetric post-gadolinium T1-weighted MRI 
and fused T2/FLAIR MRI were provided to each partici-
pant. For the MRI-only workflow, each participant was 
given access only to the MRIs to complete contours of 
the GTV, CTV, and OARs including lenses, globes, optic 
nerves, optic chiasm, brainstem, and cochlea. For the CT-
MRI workflow, the participants were then asked to re-
contour all structures on each of the ten cases with the 
additional information provided by a fused non-contrast 
enhanced 1-mm slice thickness planning CT. CTV expan-
sion was 1.5 cm from enhancing disease on post-gadolin-
ium T1-weighted MRI for GBM cases and 1.0 cm from 
T2/FLAIR MRI hyperintense disease for WHO grade II 
and III glioma cases. A single phase/volume approach was 
used in defining the GTV and CTV in all cases [9]. The 
OAR contour definitions provided to each participant were 
consistent with prior published guidelines [9, 12].

All cases were contoured in the Monaco treatment plan-
ning system (TPS) version v5.19.03 (Elekta AB, Stockholm, 
Sweden). The first 4 cases were completed at each of the 
participant’s respective institutions via a cloud-based TPS 
installation, and the latter 6 cases were completed on-site 
at the coordinating institution after a consensus meeting/
workshop. All completed contours were transferred from 
the TPS to ADMIRE segmentation software version v2.0.0.1 
(Elekta AB, Stockholm, Sweden) and to analysis software 
MATLAB, version 2016b (MathWorks, Natick, MA). Con-
tour agreement was measured by combinatorial pair-wise 
comparisons of the Dice similarity coefficient (DSC) [13].

Consensus contours were generated for each case using an 
expectation–maximization algorithm for simultaneous truth 
and performance level estimation (STAPLE). [14, 15] Kappa 
(к) statistic was calculated to quantify agreement between 
participant contours, where к < 0 signifies less agreement 
than would be expected by chance, 0 to 0.20, none to slight 
agreement; 0.21 to 0.40, fair agreement; 0.41 to 0.60, moder-
ate agreement; 0.61 to 0.80, substantial agreement; and 0.81 
to 1.00, almost perfect agreement [16]. Contour agreement 
before (cases 1 to 4) and after (cases 5 to 10) the on-site con-
sensus meeting/workshop were compared. A mixed model 
analysis was used for DSC and kappa statistic to account 
for collinearity, as the contouring data was obtained from 
the same images. All P values were 2-sided, and P < 0.05 
was considered to indicate a significantly different result. 
Statistical analyses were performed using version 9.4 of the 
SAS system for Windows (2002–2012; SAS Institute, Cary, 
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NC). All participants then reviewed the STAPLE contours to 
identify any discrepancies and following two review meet-
ings, consensus contours were finalized and recommenda-
tions formed for GTV, CTV, and OAR delineation.

Results

Twenty sets (10 for MRI-only workflow, 10 for CT-MRI 
workflow) of GTV, CTV, and OAR contours corresponding 
to the 10 glioma cases were completed by each of the 6 par-
ticipating physicians. In total 236 target contours and 1154 
OAR contours were analyzed. No contours were excluded 
for analysis; however, missing contours were taken into 
account during analysis. The case descriptions are sum-
marized in Table 1. Figures 1 and 2 illustrate the expert 
contours and STAPLE consensus contours of the GTV and 
CTV on a representative axial slice of contrast-enhanced 
T1-weighted and T2/FLAIR MRI for all 10 cases. Of the 
study cases, two involved the thalamus, one involved the 
brainstem, five crossed midline via a white matter tract path-
way, and two involved the ventricles and/or ependyma.

Analysis of target volumes (GTV and CTV)

The results of the STAPLE and DSC analysis for the GTVs 
and CTVs for the 10 cases, each with two workflows (MRI-
only, CT-MRI), are summarized in Table 2. Overall, a very 
high level of agreement was observed among the participat-
ing physicians for both GTV and CTV. For the MRI-only 
workflow, the mean kappa was 0.88 and 0.89 for the GTV 
and CTV, respectively. For the CT-MRI workflow, the mean 
kappa was 0.88 and 0.89 for the GTV and CTV, respec-
tively. This corresponds to very good agreement, with no 
statistically significant difference in agreement between the 
two workflows (p = 0.88 and p = 0.82, for GTV and CTV, 
respectively). Similarly, the DSC analysis demonstrated high 

concordance of the contoured volumes among the partici-
pants with a mean DSC range of 0.86 to 0.88 for GTV and 
CTV. No kappa below 0.83 was observed in any of the 10 
cases.

Analysis of OARs

The results of the STAPLE and DSC analysis for the OARs 
for the 10 cases, each with two workflows (MRI-only, CT-
MRI), are summarized in Table S1. A moderate to high level 
of agreement was observed among the participants for all 
OARs with the exception of the cochlea in the MRI-only 
workflow. The mean kappa for all OARs except the optic 
chiasm and cochlea ranged from 0.74 to 0.90 and 0.73 to 
0.90, for the MRI-only and CT-MRI workflow, respectively. 
This corresponds to at least substantial agreement, with no 
statistically significant difference in agreement between the 
two workflows. The largest variability was seen in the con-
touring of cochlea in the MRI-only workflow with a mean 
kappa range of 0.39 to 0.41. This improved significantly 
with the addition of a fused planning CT to 0.69 to 0.71 
(p < 0.0001). The DSC analysis demonstrated similar results 
to the STAPLE analysis as shown in Table S1.

Consensus meeting and contouring 
recommendations

Contour agreement of all structures before (cases 1 to 4) 
and after (cases 5 to 10) the on-site consensus meeting/
workshop was compared to assess the effect of diagnostic 
on-site radiology-led didactic sessions of anatomy relevant 
to glioma contouring and consensus discussions. The results 
of the comparisons are summarized in Table S2. Of note, a 
statistically significant improvement in mean kappa statistic 
was observed in the contouring of cochlea in the CT-MRI 
workflow (p = 0.02 to 0.045), and of globes in both the MRI-
only and CT-MRI workflows (p = 0.005 to 0.04).

Table 1  Case description

Case number Description

1 GBM, left parietal
2 Grade 2 oligodendroglioma, IDH mutated, 1p19q co-deleted, right frontal
3 GBM, right parieto-temporal
4 GBM, thalamic/pineal
5 Grade 2 astrocytoma, IDH mutated, no 1p19q co-deletion, ATRX loss, left temporo-parietal
6 GBM, left occipital with ependymal extension to the left lateral ventricle
7 GBM, right fronto-temporal
8 Grade 3 oligodendroglioma, 1p/19q co-deleted, no conventional IDH mutation, left fronto-

temporal/brainstem
9 Grade 3 astrocytoma, (progression from prior grade 2 astrocytoma, IDH mutated), right frontal
10 Grade 2 oligodendroglioma, IDH mutated, 1p/19q co-deleted, left frontal/thalamic



308 Journal of Neuro-Oncology (2020) 149:305–314

1 3



309Journal of Neuro-Oncology (2020) 149:305–314 

1 3

The STAPLE contours were then reviewed during two 
follow-up consensus meetings of participating physicians. 
Discussions were held to address areas of discrepancy in 
contouring within the clinical context of each case. Once 
agreement had been reached, consensus contours were gen-
erated and 6 recommendations were developed to guide 
CTV delineation as summarized in Table 3.

Discussion

The present study has generated detailed recommendations 
for CTV contouring in low and high grade gliomas including 
GBM to guide clinical practice, based on consensus contours 
among international experts within the MR-Linac Interna-
tional Consortium Research Group (Table 3). Moreover, we 
investigated the inter-observer variability and the effect of 
an MRI-only workflow vs. the traditional CT-MRI work-
flow. Overall, the results demonstrated excellent nonrandom 
agreement among the contouring physicians for GTV and 
CTV, with a mean kappa range of 0.88 to 0.89 for both the 
MRI-only and CT-MRI workflows (Table 2).

The results from our study compare favorably to other 
glioma delineation studies. For example, the Korean Radia-
tion Oncology Group observed considerable variability 
amongst 15 radiation oncologists’ contours of GTVs and 
CTVs (mean kappa 0.58 and 0.65, respectively) in 9 cases 
of newly diagnosed GBM patients [10], and the recently 
reported NRG consensus contouring study by 10 radiation 
oncologists of 4 GBM cases using a two-dose-level approach 
reported a kappa statistics range from 0.59 to 0.81 for high 
and low dose GTVs, and 0.72 to 0.85 for high and low dose 
CTVs [8]. In our study, the largest variability was observed 
in case 4, which illustrated a pineal/thalamic GBM with 
inferior extension to the superior midbrain and posterior 
abutment of the tentorium cerebelli. The differences in con-
touring arose from the lack of inclusion of ventricular spaces 
by one participant, and failure to trim the CTV from the 
posterior fossa in another. These omissions were recognized 
and discussed in the consensus meetings, and included in the 
recommendations presented in Table 3.

The consensus STAPLE contour for each CTV under-
scores several important observations. First, the CTV expan-
sion is limited, in the absence of contiguous white matter 
tracts, to anatomic barriers of spread including the falx, 
tentorium cerebelli and the inner table of the skull. The 
brainstem is an anatomical barrier only when the enhancing 

or T2/FLAIR hyperintense tumor is not situated along a con-
tiguous white matter pathway (e.g. thalamus, internal cap-
sule). By the same principle, the CTV should be limited by, 
without additional margin, the optic nerves and chiasm but 
the optic tracts should not be excluded from the CTV (e.g. 
cases 3, 5, 7, 8, 10). Commissural tracts connect opposing 
cerebral hemispheres and, thus, the CTV should cross into 
the contralateral hemisphere if the enhancing or T2/FLAIR 
hyperintense tumor encroaches on the corpus callosum 
(genu and splenium), anterior commissure, and posterior 
commissure (e.g. cases 1, 2, 7, 9, 10). Finally, the intertha-
lamic adhesion consist of a small bridge of tissue between 
the thalami, which is not always present in healthy human 
volunteers [17]. Animal studies indicate that the intertha-
lamic adhesion may be important in communication across 
cerebral hemispheres and gliomatosis cerebri [18, 19]; how-
ever, its functional significance in humans is unknown [20]. 
The investigators agree that as the interthalamic adhesion is 
present in most human brains (~ 80%), consideration should 
be given to extend the CTV into the contralateral thalamus if 
the enhancing or T2/FLAIR hyperintense tumor encroaches 
on the medial thalamus (e.g. case 8).

The results from the current study demonstrate at least 
substantial agreement (mean kappa range from 0.74 to 0.90 
and 0.73 to 0.90, for the MRI-only and CT-MRI workflow, 
respectively) for all OARs with the exception of the optic 
chiasm and cochlea. The observed differences in optic chi-
asm contouring may be due to the challenges in identify-
ing the anatomical borders of the structure in relation to its 
transition into optic nerves anteriorly and optic tracts pos-
teriorly. Similarly, Sanstrom et al. reported large variability 
in the contouring of the optic chiasm in a study evaluat-
ing OAR contouring practices in international radiosurgery 
institutions [21]. In cases (e.g. cases 3, 5, 7, 8, 10) where 
the GTV lies adjacent to the optic chiasm and/or tracts, this 
may translate into a wide variation in maximum doses to 
the optic apparatus as it falls within a region of high dose 
gradient falloff. For consistency, a 5 mm extension along the 
anterior and posterior limbs of the optic chiasm is recom-
mended, as defined in the ESTRO-ACROP guideline [9], 
while avoiding gaps to ensuring continuity of the entire optic 
pathway. The cochleae are best visualized with a heavily 
T2-weighted thin-slice MRI through the internal auditory 
canal (IAC) or a high-resolution CT of the temporal bone to 
identify the fluid-filled spaces of the membranous labyrinth. 
Therefore, it was unsurprising that the MRI-only workflow 
showed a poor level of agreement with a mean kappa range 
of 0.39 to 0.41, which improved significantly with the addi-
tion of a fused planning CT to 0.69 to 0.71 (p < 0.0001). This 
underscores the potential benefit of using a synthetic CT 
for contouring purposes in an MRI-only workflow [22]. For 
all other OARs no statistically significant differences were 
demonstrated in contour variability between the MRI-only 

Fig. 1  Individual physician and consensus target volume contours 
on selected axial slice for the GTV and CTV in low and high grade 
gliomas, cases 1–5. Consensus contours are shown in thick white and 
individual contours in shades of other colors. MRI magnetic reso-
nance imaging, GTV gross tumor volume, CTV clinical target volume

◂
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workflow and CT-MRI workflow, confirming the feasibility 
of an MRI-only workflow. Moreover, the educational benefit 
of an on-site consensus meeting/workshop was illustrated 
through a statistically significant improvement in mean 
kappa statistic in the contouring of cochlea in the CT-MRI 
workflow (p = 0.02 to 0.045).

For GBM radiotherapy, currently two major approaches 
exist, supported by the European Organization for 
Research and Treatment of Cancer (EORTC) and the Radi-
otherapy and Oncology Group (RTOG/NRG), respectively. 
The EORTC recommends a single-phase/volume approach. 
In contrast, the RTOG/NRG recommends a two-phase/vol-
ume approach wherein the second phase/volume consists 
of a “cone-down” or boost to a smaller target volume. At 
this time, no consensus exists within the radiation oncol-
ogy community with respect to the optimal approach. It 
is recognized that glioma extends along white matter tract 
pathways within the brain parenchyma, and older autopsy 
and histopathologic correlative studies suggest that tumor 
cells may be found even beyond regions of abnormal signal 
depicted on post-contrast T1-weighted and T2-weighted 
MRIs. [23, 24] However, published retrospective studies 
have shown that the majority of failures tend to be within 
the enhancing central tissue, and no differences in pat-
tern of failure have been observed between the EORTC 
and RTOG/NRG target volume definitions [25, 26]. The 
reported ESTRO-ACROP guideline for target delineation 
of GBM recommends a CTV defined by a margin of 2 cm 
beyond that of GTV, although it acknowledges that a range 
of margins have been allowed on various EORTC clinical 
trials [9]. On the other hand, a number of studies have sug-
gested that a reduction in CTV margin may not alter the 
pattern of failure in GBM, as most failures tend to be in-
field within the high dose volume. Such margin reduction 
and, thus, treated volume exposed to high dose radiation 
may translate into potential reduction in toxicities [25–29]. 
Therefore, for consistency of delineation, the current study 
utilizes a 1.5 cm and 1.0 cm margin for CTV in GBM 
and grade II or III gliomas, respectively, while respecting 
anatomic barriers. This definition is consistent with those 
proposed by reported multi-center phase III GBM and 
high-risk low grade glioma studies [6, 30]. Table S3 sum-
marizes a comparison of the key findings and recommen-
dations proposed in published reports of GBM consensus 
contouring, including the present study. We observed that 
Korean Radiation Oncology Group did not propose spe-
cific recommendations with regards to CTV modifications 

in relation to the surrounding anatomy although adjust-
ments were made with varying frequency depending on 
the adjacent structure: the falx (80%), the tentorium (71%), 
and the ventricular system (34%) [10]. Furthermore, the 
ESTRO-ACROP GBM guideline, although providing a 
detailed expert consensus of target delineation, lacked 
quantitative analyses of inter-observer contour variability 
[9]. Finally, Kruser et al. recently reported an NRG brain 
tumor specialist consensus report on GBM contouring, 
which highlighted several similar findings with respect to 
limiting the CTV to anatomical boundaries such as the 
falx, the tentorium cerebelli, and extension of the CTV 
across the commissural pathways and into the brainstem 
[8]. However, the NRG study was limited by only a few 
study cases (4 GBM cases in total) and, therefore, tumor 
locations. Moreover, comparison of CTV volumes with the 
present study’s recommendations is difficult given the two-
phase approach adopted in the NRG study. Ultimately, the 
appropriate target volume definition is a balance between 
a thorough understanding of the anatomic pathways of 
spread, the anatomic barriers (falx, tentorium cerebelli, 
bone), and minimization of toxicities to adjacent OAR.

A key strength in the present study is the large number 
of study cases intentionally selected to represent variation 
in tumor location and proximity to surrounding anatomy. 
Our study evaluated both target volumes (GTV, CTV) and 
OAR commonly delineated in glioma radiation planning, 
and a high level of agreement was observed in nearly all 
cases. Furthermore, this study is the only report to date 
investigating both CT-MRI and MRI-only workflows 
with an analysis to assess any differences in agreement 
between the two workflows. With the recent development 
of MR-guided radiotherapy systems, specifically integrated 
MRI-linear accelerator systems, the precision of radiation 
treatment could be improved through daily MRI and plan-
ning streamlined with the implementation of an MRI-only 
workflow [7]. The potential benefits of an MR-Linac are 
multifold. First, an MRI-only workflow could be time- and 
cost-saving while minimizing uncertainty associated with 
CT-MRI registration. Further, MRI-based treatment delivery 
workflow allows direct visualization of normal tissues and 
tumor-related changes that cannot be adequately appreciated 
on CT to prompt anatomical based adaptations throughout 
the course of therapy. Most importantly, an MR-Linac intro-
duces the potential for functional image acquisition such 
as diffusion, chemical exchange saturation transfer (CEST), 
perfusion, and other quantitative MRI (qMRI) biomarkers to 
facilitate early outcome prediction and thereby individual-
ized patient selection for treatment modifications [31–36]. 
It cannot be underscored enough that consistent contouring 
approaches for all target and OAR structures in glioma is 
critical in an adaptive strategy based on MR-guided radio-
therapy, facilitates radiomics in glioma research [37], and 

Fig. 2  Individual physician and consensus target volume contours 
on selected axial slice for the GTV and CTV in low and high grade 
gliomas, cases 6–10. Consensus contours are shown in thick white 
and individual contours in shades of other colors. MRI magnetic reso-
nance imaging, GTV gross tumor volume, CTV clinical target volume

◂
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underpins interpretation of dosimetric and clinical outcomes 
in future collaborative studies.

It is recognized that several limitations exist within 
the current study. First, although the cases were selected 
to represent a wide range of clinical scenarios and tumor 
locations, the recommendations may not be applicable to 
all situations, and unique circumstances will require the 

clinical expertise and judgment of the treating physicians. 
Second, it is not the intent nor within the scope of the pre-
sent study to address the CTV margin expansion as a range 
of margins has been applied to the GTV in clinical trials 
for low and high grade gliomas, although the margins used 
in this study are consistent with pattern-of-failure data and 
recent clinical trial protocols.

Table 2  STAPLE and dice similarity coefficient (DSC) analysis for target volumes (GTV and CTV) for each of the 10 cases among participating 
physicians

SENS STAPLE sensitivity, SPEC STAPLE specificity, DSC dice coefficient, MR magnetic resonance imaging, CT computed tomography

Case no Mean SENS Mean SPEC Mean Kappa (к) Mean DSC

MRI-Only CT-MRI MRI-Only CT-MRI MRI-Only CT-MRI P-value MRI-Only CT-MRI P-value

1    GTV 0.95 0.95 0.99 0.99 0.94 0.94 0.36 0.93 0.93  < 0.01
      CTV 0.96 0.97 0.96 0.96 0.88 0.89 0.48 0.88 0.89 0.48
2    GTV 0.85 0.85 0.98 0.99 0.83 0.84 0.24 0.80 0.81  < 0.01
      CTV 0.92 0.91 0.98 0.98 0.88 0.88 0.98 0.86 0.86 0.49
3    GTV 0.95 0.95 0.99 0.99 0.93 0.93 0.36 0.93 0.93 0.04
      CTV 0.97 0.98 0.96 0.96 0.88 0.89 0.73 0.88 0.89 0.83
4    GTV 0.92 0.92 0.99 0.99 0.90 0.90 0.36 0.90 0.90 0.06
      CTV 0.92 0.92 0.95 0.96 0.83 0.84 0.41 0.81 0.83 1.00
5    GTV 0.82 0.82 0.99 0.99 0.83 0.83 0.36 0.77 0.76 0.16
      CTV 0.88 0.88 0.98 0.98 0.87 0.87 0.82 0.84 0.84 0.40
6    GTV 0.91 0.91 0.98 0.98 0.87 0.87 0.08 0.83 0.83 0.16
      CTV 0.96 0.95 0.98 0.98 0.91 0.91 0.53 0.90 0.90 0.78
7    GTV 0.95 0.95 0.99 0.99 0.93 0.93 0.79 0.92 0.92 0.62
      CTV 0.94 0.94 0.99 0.99 0.92 0.92 0.70 0.92 0.92 0.55
8    GTV 0.89 0.89 0.98 0.98 0.87 0.87 0.17 0.85 0.85 0.19
      CTV 0.93 0.93 0.98 0.98 0.90 0.90 0.66 0.90 0.90 0.77
9    GTV 0.90 0.90 0.98 0.98 0.87 0.87 0.14 0.85 0.85  < .0001
      CTV 0.93 0.93 0.98 0.98 0.89 0.90 0.23 0.89 0.89 0.01
10  GTV 0.88 0.89 0.99 0.99 0.88 0.88 0.22 0.85 0.85 0.04
      CTV 0.91 0.92 0.99 0.99 0.89 0.90 0.12 0.88 0.88  < 0.01

Table 3  Recommendations for CTV contouring of low and high grade gliomas

Recommendations

1 In the absence of contiguous white matter tracts, the CTV should be limited, without additional margin, by the following anatomical barriers: 
falx, tentorium cerebelli, and inner table of the skull

2 The brainstem is an anatomical barrier when the enhancing or T2/FLAIR hyperintense tumor is not situated along a contiguous white matter 
pathway; however, for tumors located in adjacent structures along white matter tracts (i.e. thalamus, internal capsule), the CTV should 
extend into the brainstem (whether the ipsilateral half or entire brainstem need to be taken in the CTV expansion is not well defined)

3 The CTV should be limited by, without additional margin, the optic nerves and chiasm; however, the optic tracts (+/− chiasm/optic 
nerves) should not be excluded from the CTV when the GTV is in contiguity anatomically with the optic structures

4 The CTV does not need to be excluded from the ventricles, and should be included in event of ependymal or leptomeningeal involvement
5 The CTV should cross into the contralateral hemisphere if the enhancing or T2/FLAIR hyperintense tumor encroaches on the following white 

matter tracts: corpus callosum (genu and splenium), anterior commissure (inferior to the frontal horns and superior the third ventricle), and 
posterior commissure (dorsal to the cerebral aqueduct)

6 The interthalamic adhesion is present in most human brains, and consideration should be given to extend the CTV into the contralateral thala-
mus if the enhancing or T2/FLAIR hyperintense tumor encroaches on the medial thalamus
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Conclusions

In conclusion, our study demonstrates that the addition of 
CT to an MRI-only workflow does not provide additional 
anatomical information in gliomas to significantly reduce 
inter-observer contouring variability with the exception of 
the cochlea. Dedicated MRI sequences may be required for 
consistent delineation of the cochlea when inclusion of the 
OAR is indicated. Consensus contouring recommendations 
for CTV in low grade and high grade gliomas were estab-
lished, supported quantitatively by a high level of agreement, 
which represents an important contribution in consistent 
delineation of targets. This will serve as a basis for further 
investigation, in particular collaborative studies in the con-
text of emerging MRI-only workflow strategies within the 
international MR-Linac consortium.
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