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Abstract 
Major histocompatibility class I (MHC-I) proteins mediate 
immunosurveillance against pathogens and cancers by presenting 
antigenic or mutated peptides to antigen receptors of CD8+ T cells 
and by engaging receptors of natural killer (NK) cells. In humans, 
MHC-I molecules are highly polymorphic. MHC-I variations permit the 
display of thousands of distinct peptides at the cell surface. Recent 
mass spectrometric studies have revealed unique and shared 
characteristics of the peptidomes of individual MHC-I variants. The cell 
surface expression of MHC-I–peptide complexes requires the 
functions of many intracellular assembly factors, including the 
transporter associated with antigen presentation (TAP), tapasin, 
calreticulin, ERp57, TAP-binding protein related (TAPBPR), 
endoplasmic reticulum aminopeptidases (ERAPs), and the 
proteasomes. Recent studies provide important insights into the 
structural features of these factors that govern MHC-I assembly as 
well as the mechanisms underlying peptide exchange. Conformational 
sensing of MHC-I molecules mediates the quality control of 
intracellular MHC-I assembly and contributes to immune recognition 
by CD8 at the cell surface. Recent studies also show that several MHC-I 
variants can follow unconventional assembly routes to the cell 
surface, conferring selective immune advantages that can be 
exploited for immunotherapy.
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Introduction
Major histocompatibility class I (MHC-I) proteins are  
expressed on the cell surface of nucleated cells and serve  
critical functions in the immune response by mediating the  
activation of CD8+ T cells and regulating the activity of natural  
killer (NK) cells. MHC-I molecules form trimeric complexes 
that consist of a heavy chain, a light chain (beta2-microglobulin, 
or β2m), and peptide. T-cell receptors of CD8+ T cells and the  
CD8 co-receptors of the same cell engage the membrane-
distal peptide-binding domain and the membrane-proximal 
domains, respectively, of individual peptide–MHC-I molecules, 
providing the initiating signal for CD8+ T-cell activation 
(reviewed in 1) (Figure 1A). Various NK cell receptors can 

bind to specific MHC-I molecules to inhibit or initiate NK cell  
activation (reviewed in 1). The CD8 co-receptor is also expressed 
on NK cells. Whereas the CD8αβ heterodimer is expressed on  
CD8+ T cells, a subset of NK cells expresses the CD8αα  
homodimer (Figure 1A). Recent studies show that KIR3DL1, 
an NK cell receptor for human MHC-I, uses the CD8αα  
homodimer as a co-receptor2. Thus, CD8 functions as an  
MHC-I engaging co-receptor, not just for T cells but also for  
NK cells.

Since MHC-I molecules are critical ligands for receptors of 
both T cells and NK cells, their assembly and expression are  
subject to elaborate cellular quality control. The MHC-I complex 

Figure 1. Major histocompatibility class I (MHC-I) surface interactions and assembly. (A) Crystal structure and cartoon 
representation of MHC-I (red: heavy chain, orange: β2m, yellow: peptide)/TCR (green) (PDB 5C073) on CD8+ T cells, MHC-I/CD8 co-receptor 
(cyan and magenta) (PDB 3DMM4 and PDB 3QZW5), or MHC-I/KIR3DL1 (blue) on natural killer (NK) cells (PDB 5B386). (B) Cryo-EM structure 
of MHC-I in the PLC (yellow: calreticulin, blue: tapasin, purple: ERp57) (PDB 6ENY7 adapted from data freely accessible at: https://www.
rcsb.org/structure/6ENY) or with TAPBPR (cyan) (PDB 5WER8) in the peptide-deficient form. Arrows highlight interactions between tapasin 
and MHC-I, calreticulin and the MHC-I glycan, calreticulin and tapasin, calreticulin and ERp57, and tapasin and Erp57. β2m, beta2-
microglobulin; KIR, killer cell immunoglobulin-like receptor; PLC, peptide loading complex; TAPBPR, transporter associated with antigen 
presentation-binding protein related; TCR, T-cell receptor.
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is assembled in the endoplasmic reticulum (ER), travels to the  
Golgi apparatus, and follows the secretory pathway to reach 
the cell surface9,10. Assembly in the ER occurs with the help of  
the peptide loading complex (PLC), a large macromolecular 
assembly comprising TAP subunits TAP1 and TAP2, tapasin,  
ERp57, and calreticulin in addition to MHC-I heavy chain and 
β2m9. Apart from the PLC proteins, ERAP variants ERAP1 
and ERAP2 and TAPBPR are important players in peptide  
trimming and peptide quality control, respectively.

In humans, three sets of classical and non-classical MHC-I genes 
as well as several non-classic MHC-I genes encode the heavy  
chains of MHC-I proteins. The classical MHC-I genes are 
the human leukocyte antigen class I (HLA-I) genes HLA-A,  
HLA-B, and HLA-C. Each gene is polymorphic with multiple  
allelic variations, and more than 19,000 alleles were listed for 
classical HLA-I genes on the IPD-IMGT/HLA Database as of  
May 202011. Allelic variants of individual genes frequently occur 
as groups of co-inherited alleles called haplotypes12, which are  
jointly implicated in various disease susceptibilities13. The 
non-classical MHC-I genes encode HLA-E, HLA-F, HLA-G,  
cluster of differentiation 1 (CD1), and MHC-related protein 1 
(MR1). These genes display low allelic polymorphisms and engage  
various immune receptors to activate or inhibit immunity14. 
A number of recent studies have addressed the question of 
how classical MHC-I polymorphisms influence the assembly,  
conformation, and expression of individual human MHC-I  
variants, the impact of polymorphisms on the peptide repertoires, 
and the functional consequences for immunity, topics that are 
the focus of this review article.

Peptidomes of HLA-I molecules and the prevalence 
of spliced and post-translationally modified peptides
The heavy chains of MHC-I molecules contain a peptide-binding 
site (Figure 1), which is also the site of amino acid variations 
that define MHC-I polymorphisms, resulting in variable peptide- 
binding specificities (Figure 2)15. Immunoaffinity purifica-
tion in conjunction with mass spectrometric (MS) studies using 
data-independent acquisition (DIA) MS approaches has allowed 
for the identification of thousands of peptides associated with  
individual HLA-I variants (designated the peptidome)16. Many 
of the MS studies have used HLA-I null cells that are engi-
neered to express single HLA-I molecules (termed monoallelic),  
which are affinity-purified, followed by peptide elution and 
sequencing by liquid chromatography tandem MS (LC-MS/MS) 
approaches17–19. The monoallelic approach is advantageous over 
other methods in that the isolated peptidome can be attributed 
to a specific HLA-I without the need for prediction algorithms 
to assign peptides to a given HLA-I. A pan HLA-I antibody  
(W6/32)20 can be used for immunoisolating most HLA-I  
proteins. On the other hand, prediction algorithms are typically 
required for peptide/HLA assignments when primary cells  
are used, which typically express six HLA-I molecules, two 
each of HLA-A, HLA-B, and HLA-C. Alternatively, immu-
noaffinity purification can be modified to target specific MHC-I  
molecules within primary tissues and cells via the use of  
antibodies specific to a small subset of MHC-I. Owing to the 
large diversity and close relatedness of many MHC-I molecules, 

few such HLA-I allotype-specific antibodies exist, and careful  
specificity controls must be performed prior to their use. The  
rather long duration of the affinity purification process is  
expected to result in the capture of only a subset of peptides  
displayed on the cell surface, especially those with high affin-
ity and abundance21,22. Additionally, other parameters, including  
chemical properties of individual peptides, which have to be 
able to bind a C18 column and be ionizable for successful  
MS-based detection, can skew peptide detection23. Nonethe-
less, the approach has resulted in the generation of datasets  
containing the identities of large numbers of actual HLA-I–
bound peptides, expanded the list of alleles for which peptidome  
datasets are available, helped improve predictive algorithms  
for peptide binding to HLA-I, and confirmed that a single  
HLA-I displays thousands of cell surface peptides17,19. A 
recent study exploited the monoallelic approach to define the  
peptidomes of 95 HLA-I proteins19. The resulting datasets 
have confirmed that peptide-binding motifs and sub-motifs are  
shared across HLA-I molecules that bear similarities in their 
peptide-binding sites (Figure 2, individual supertypes) and that  
9-mer peptides are dominant among the majority of tested  
allotypes (except for HLA-B*18:01 and HLA-B*52:01). The  
peptidome data have been combined with transcript abundance 
and peptide processing data to improve the available tools  
used for the prediction of peptides binding to a given HLA-I19.

The proteasomes are the major cellular proteolytic system to  
generate peptides from precursor protein for MHC-I binding24. 
In addition to conventional proteolytic activities, proteasomes 
are known to be able to catalyze transpeptidation reactions to  
generate spliced epitopes comprising non-contiguous segments 
from precursor proteins25,26. Recent studies have attempted to 
quantify the fraction of HLA-I ligandomes that correspond to  
spliced epitopes, both cis-spliced (spliced peptides originating 
from the same precursor) and trans-spliced (spliced peptides 
originating from different precursors)18,27,28. The validity of 
some of the approaches used for quantifying the spliced peptide  
fraction remains somewhat controversial28; to date, only a small 
number of the possible spliced peptides have been confirmed 
as products of proteasomal splicing or directly validated as  
spliced epitopes using other approaches. Thus, although it is 
clear that spliced peptides exist and function as T-cell epitopes  
in the immune response25,26, further studies are required to  
understand how frequently spliced epitopes might contribute to  
T-cell responses. Besides splicing, post-translational modifica-
tions of MHC-I epitopes further expand the peptide repertoires 
of presenting cells29. Specific forms of glycopeptides have also  
been identified in leukemia patients that can activate cytotoxic  
T-cell responses30.

The classical MHC-I assembly pathway and its 
dysfunction in disease
In the MHC-I assembly pathway, peptides are generated in 
the cytosol by the proteasome. A fraction of the peptides are  
brought into the ER via TAP in an ATP-driven process31. 
The PLC brings into close proximity many components for  
both stabilizing nascent MHC-I molecules and facilitating  
peptide binding to MHC-I heterodimers9. A cryogenic electron  
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Figure 2. Binding motifs of 9-mer peptides bound to select HLA-A, HLA-B, and HLA-C. Seq2Logo motifs of eluted 9-mer peptides 
that bind to the specified HLA-A, HLA-B, and HLA-C allotypes grouped by supertype for HLA-A and HLA-B. All motifs are derived on the 
basis of analysis of eluted peptide sets19 (adapted from data freely accessible at: ftp://massive.ucsd.edu/MSV000084172/). Within a given 
supertype32, the peptide motifs are similar. Many HLA-A allotypes lack the strong P2 restriction generally seen in HLA-B and HLA-C. The HLA-
B*07 allotype binds to peptides that are disfavored by transporter associated with antigen presentation (TAP), and allotypes belonging to 
this supertype are expressed at low levels on the surface of lymphocytes but at higher levels on TAP-deficient cells33. HLA, human leukocyte 
antigen.

microscopy (cryo-EM) structure of an entire PLC was recently 
solved at a resolution of 5.8 Å for most components (PDB  
6ENY; Figure 1B)7. Reconstruction of the low-resolution map 
was accomplished by superposition of higher-resolution crys-
tal structures. The PLC comprises TAP1, TAP2, and two  
molecules each of tapasin, peptide-free MHC-I, and calreticu-
lin–ERp57. Of these components, TAP1, TAP2, and tapasin 

are encoded within the MHC gene complex along with MHC-I  
heavy chains and function as dedicated assembly factors.  
Additionally, the PLC comprises two generic co-chaperones 
of the ER: the glycoprotein-specific chaperone calreticulin and 
the thiol oxidoreductase ERp579. In the PLC, peptide-deficient  
MHC-I interacts with tapasin at two sites. The first site involves 
the interaction of membrane-proximal C-terminal domain of  
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tapasin with the MHC-I α
3
 domain and β2m interface, close to 

the CD8-binding region of MHC-I. The second site involves the  
interaction of membrane-distal N-terminal domain of tapasin 
and MHC-I peptide-binding domain at the α

2–1
 region of MHC-I  

(Figure 1B). The additional incorporation of the calreticulin– 
ERp57 complex into PLC stabilizes the tapasin–MHC inter-
action via two associations within the PLC: one between the 
N86-linked glycan of MHC-I and the glycan-binding site of  
calreticulin and other one formed by a disulfide-linked  
conjugate between C95 of tapasin and C57 of ERp57. The  
peptide-deficient form of MHC-I is generally unstable and 
is the form recruited to the PLC. The structure of the PLC  
illustrates how a peptide-deficient MHC-I becomes stabilized 
by multi-pronged interactions with dedicated and generic  
chaperones7. Peptide binding causes the release of peptide- 
bound MHC-I from the PLC, allowing forward trafficking into  
the Golgi apparatus.

MHC-I molecules are critical for effective immunity, and a func-
tional PLC, in turn, is critical for effective MHC-I assembly. 
Many viruses and cancers are known to disrupt the functions 
of components of the PLC to evade immune recognition  
(reviewed in 34–36). In particular, herpesviruses encode many 
proteins dedicated to the inhibition of TAP expression or  
function34. A recent study shows that tapasin becomes a  
degradation target in cells infected with molluscum conta-
giosum virus, thereby negatively affecting MHC-I assembly37.  
Somatic mutations of calreticulin have recently been reported 
in a subset of myeloproliferative neoplasms (MPNs). Most of  
these mutations are mapped to exon 9 of the calreticulin gene 
and alter the protein reading frame such that the C-terminus of  
mutant calreticulin becomes enriched in basic amino acids, in 
contrast to the acidic C-terminus of the wild-type protein38,39.  
The two most common mutations are 52–base pair deletion  
(type 1) and 5–base pair insertion (type 2) mutations39. These 
mutant proteins are known to be secreted since they lack the  
KDEL retention sequence (reviewed in 40). The significance of 
calreticulin in MHC-I antigen presentation was demonstrated  
in earlier studies that showed downregulation of surface  
MHC-I and impaired antigen presentation in calreticulin- 
deficient cells41,42. Mutants of glycan binding residues of  
calreticulin show reduced incorporation of calreticulin and  
MHC-I into PLC and reduced MHC-I assembly and cell surface 
expression42. Interestingly, the surface expression of MHC-I is 
lower in cells expressing MPN mutants of calreticulin compared 
with those expressing wild-type protein43, despite an intact  
glycan-binding site on the mutants. The weaker interactions of  
mutant calreticulin proteins within the PLC and reduced  
MHC-I surface expression compared with wild-type calreticu-
lin are observed even for recombinant MPN calreticulin mutants  
engineered to contain a C-terminal KDEL sequence. Notably,  
within the PLC structure, the C-terminal helix of calreticu-
lin points toward the ER-luminal membrane leaflet and lies 
close to the C-terminal immunoglobulin-like domain of tapasin7  
(Figure 1B), and previous studies also show that various  
(non-MPN) calreticulin mutants negatively influence cellular 
steady-state levels of tapasin42. Loss of interaction between the 
C-terminal helix of calreticulin and tapasin in the context of  
mutated calreticulin can be postulated to account for the  

inability of cells expressing MPN calreticulin mutants to restore 
the MHC-I surface expression to normal levels even when a  
KDEL sequence is added to mutant calreticulin proteins43. 
These and other recent findings indicate a role for MPN  
mutant calreticulin-mediated immunosuppression in tumor 
development and progression43,44 in addition to the more direct  
cell-transforming potential of the calreticulin mutants40.

Some HLA-I variants can acquire peptides via TAP- 
and tapasin-independent pathways, which may 
confer immune advantages
Some HLA-I allotypes are known to be able to load peptides 
and reach the cell surface even in the absence of a functional  
TAP or tapasin33,45–49. Recent studies involving many of the  
frequent North American HLA-B allotypes revealed a range of 
abilities to become expressed under TAP- or tapasin-deficient  
conditions33,49. These findings suggest the widespread prevalence 
of allotypes for which the conventional assembly routes are 
non-essential for measurable surface expression. Considerable  
attention in the field has been focused on the mechanisms that 
govern tapasin- and TAP-independent cell surface expression.  
Generally, but not in every case, the degrees of TAP-independ-
ent and tapasin-independent expression correlate with each  
other and with the intrinsic stability of a peptide-deficient 
HLA-B, which allows efficient assembly independently of the  
assembly factors33,49. Additionally, some allotypes have more 
efficient HLA-I assembly and surface expression under  
TAP-deficient conditions than others because those HLA-I  
molecules bind peptides that are better represented within  
signal sequences or protein transmembrane domains, allowing 
higher levels of peptide access in the ER lumen independently of  
TAP33,45. Recent studies involving the analysis of MHC-I  
peptidomes from spleen cells of TAP-deficient mice found that 
the peptidome was enriched in signal sequence–derived peptides 
as well as those derived from precursors in the extracellular  
space50. Notably, endoglycosidase H–resistant forms of  
HLA-B are detectable on the cell surface under TAP-deficient 
conditions, indicating a role for unconventional secretory  
pathways in trafficking of HLA-B from the ER to the cell  
surface in TAP-deficient cells33. Although the nature of these  
pathways remains to be elucidated, it is possible that this 
mode of trafficking allows for peptide loading of endocytosed  
extracellular antigens within endolysosomal compartments. 
It is also noteworthy that some HLA-B allotypes that display  
higher levels of expression on TAP-deficient cells bind peptides 
with a proline residue at the P2 position, which are disfavored 
for transport by TAP51, and such HLA-B allotypes are expressed 
at low levels on the surface of primary lymphocytes52. It is  
possible that such allotypes have evolved to enable some level 
of antigen presentation under pathogenic conditions in which  
the normal TAP-dependent pathway becomes blocked.

For some alleles, the peptide repertoire size of MHC-I  
molecules has been discussed as being correlated to tapasin-
independent and TAP-independent expression levels53,54. These  
suggestions are based in part on studies that showed  
that chicken MHC-I molecules had varying promiscuities of  
peptide binding (peptide repertoire sizes) that inversely  
correlated with surface MHC-I expression levels53. By  
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extension, low-expressing human MHC-I allotypes have been  
suggested to be promiscuous peptide binders (based on ear-
lier peptide repertoire predictions55,56) and were noted to be  
tapasin-independent53. More detailed studies showed that, in 
primary human cells, the cell surface expression patterns of  
MHC-I molecules were complex and both allele- and cell  
type-dependent. As noted above, expression variations are 
determined at least in part by the match between the binding  
specificities of TAP and the MHC-I allotype52. Furthermore, 
there are at least two major and distinct determinants of a larger  
peptide repertoire size for a given MHC-I. These are (i) the  
intrinsic structure of the peptide-binding site that can result 
in a broader peptide repertoire (examples such as A*25:01,  
B*15:01, and C*15:02 are shown in Figure 2) and (ii) high  
intrinsic stabilities of the peptide-deficient forms and high  
efficiencies of peptide loading, which can result in the pres-
entation of suboptimal epitopes under suboptimal assem-
bly conditions relevant to many infections and cancers. Many  
TAP/tapasin-independent allotypes are expected to be capa-
ble of binding and presenting suboptimal epitopes on the basis 
of their high intrinsic stabilities and efficiencies of peptide  
loading, but such expanded peptide repertoires may not be 
captured by conventional LC-MS/MS methods and derived  
predictive tools, which, as discussed above22, are best able to  
identify high-affinity epitopes. Thus, immunological approaches 
in addition to predictive and MS approaches are required to 
define and compare the full peptide repertoire sizes of MHC-I  
allotypes.

Residue 114 and 11647–49,57–59 as well as other amino acid  
positions (residues 9760, 14761, and 15660,62) are known to be 
important determinants of tapasin dependence of MHC-I.  
Molecular dynamics (MD) simulations have been performed 
of HLA-B allotypes that differ by a single amino acid at  
position 116 and in their tapasin dependencies61,63–65. With 
some HLA-B pairs, these studies indicate a greater structural 
stability of the F pocket (near the peptide C-terminus) of  
tapasin-independent allotypes in their peptide-deficient  
forms64–66 as well as greater α

1
 helix flexibility of peptide-

bound forms of tapasin-dependent allotypes63. In contrast, MD  
studies with a set of closely related HLA-B pairs found that the 
tapasin-independent allotype was more dynamic when peptide 
was absent compared with the tapasin-dependent allotype61.  
Although further studies are needed to compare the dynam-
ics of different sets of tapasin-dependent or tapasin-independent  
allotypes under similar experimental conditions, these different 
results with the distinct allelic pairs raise the possibility that  
distinct sets of conformational variations can influence the  
degree of tapasin independence. Nuclear magnetic resonance  
(NMR) studies have shown chemical shift variations in β2m 
residues at the heavy chain–β2m interface between a pair of  
tapasin-dependent or tapasin-independent allotypes that differ  
only at residue 11667. Such variations can be indicative of  
potential differences in the stabilities of specific β2m–heavy 
chain complexes in the absence of peptides, which in turn 
could render the PLC less critical for peptide loading for  
some allotypes. Remarkably, not only do tapasin and CD8 
share a binding site on MHC-I (Figure 1) but CD8, like  
tapasin, has higher apparent affinity for the peptide-deficient 

form of MHC-I. Peptide-deficient forms of MHC-I are induced 
on the cell surface under some conditions, and once there, 
these forms can engage CD8 at the immune synapse and 
enhance antigen-specific immune responses68. Thus, MHC-I  
conformational sensing is used by both ER assembly factors and 
cell surface receptors for MHC-I.

The identification of TAP-independent routes of peptide  
transport to the ER has generated interest in the development 
of strategies to exploit TAP downregulation in cancer for  
enhancing anti-tumor immunity. In cancers, the proteolytic  
products of mutated proteins (termed neoantigens) can be  
assembled with MHC-I for presentation to CD8+ T cells,  
resulting in the activation of protective anti-tumor CD8+ T-cell 
responses69. Such presentation is indispensable for immune 
control of cancer and for the success of immunotherapy-based  
cancer treatments. Additionally, TAP-independent routes of  
peptide transport in tumors with TAP downregulation may  
allow presentation of MHC-I epitopes called TEIPPs (T-cell  
epitopes associated with impaired peptide processing) which  
are derived from non-mutated self-proteins that are not  
presented by TAP-proficient cells70. Several such HLA-A*02:01-
restricted neoantigens that are potential candidates for cancer 
immunotherapy have been identified. CD8+ T cells specific to 
these epitopes are present in healthy donors and are not affected  
by tolerance mechanisms71. T cells against an epitope derived 
from the leader sequence of LDL receptor-associated protein 1  
(LRPAP1) are shown to recognize TAP-deficient tumor cells 
of different histological origins, but not healthy cells71. Based  
on these findings, recent studies focused on the evaluation 
of a therapeutic model that involved the use of targeted  
knockdown of TAP in tumor cells to enhance the efficacy 
of conventionally used checkpoint inhibitors and to test the  
potential of TEIPP-based peptide vaccines in cancer  
therapy72,73. The success of these strategies in the clinic, though 
promising, is bound to be affected by several factors, including  
the HLA-I genotype of the patients, identity of specific antigens 
being tested, and the type of cancer.

TAPBPR recognizes peptide-deficient and peptide-
filled HLA-I variants
TAPBPR is structurally related to tapasin74–77 (Figure 1B), but 
unlike tapasin, TAPBPR does not incorporate into the PLC78. It  
has been found in both the ER and the Golgi apparatus78. Simi-
lar to tapasin79, TAPBPR preferentially binds the peptide-deficient  
form of MHC-I, and binding of selected peptides to MHC-I 
can destabilize its association with TAPBPR80,81. However,  
complexes between peptide-bound MHC-I and TAPBPR have  
been detected for some MHC-I molecules76,77,82. The 
TAPBPR–MHC-I interaction appears to be higher-affinity than  
tapasin–MHC-I complexes, as stable complexes of MHC-I 
with TAPBPR but not tapasin are detected by gel filtration  
chromatography and by analytical ultracentrifugation for the 
same MHC-I allotype81. Thus, it has been possible to study the  
structure and dynamics of the TAPBPR and MHC-I complexes 
using crystallography8,75 and NMR76,77.

A number of recent studies showed that TAPBPR could  
function as a peptide exchange catalyst76,77,80,83. Consistent with 
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these findings, when TAPBPR is knocked out in cell lines, the  
number of unique peptides presented by MHC-I increases 
compared with cells expressing TAPBPR80. Recent NMR  
studies provide considerable insights into the dynamics of  
peptide–MHC-I complexes in the presence and absence of  
TAPBPR and suggest mechanisms for functional activities of 
TAPBPR76,77. The murine MHC-I molecule H2-Dd has been  
found to undergo specific localized conformational variations 
at sites of TAPBPR binding. Both peptides and TAPBPR  
individually mitigate the measured conformational dynamics  
of MHC-I. TAPBPR is suggested to function as a chaperone 
that allows for enhanced kinetic stability of peptide–MHC-I.  
TAPBPR forms a “latch” onto the MHC-I α

2–1
 region which 

is in dynamic equilibrium between open and closed confor-
mations. High-affinity peptides that form stable interactions  
within the peptide-binding site can stabilize the closed latch  
conformation, thereby causing the dissociation of TAPBPR. 
This model suggests negative allosteric coupling between  
peptide–MHC-I and TAPBPR–MHC-I76,77. Furthermore, deep 
mutagenesis studies confirm that key TAPBPR binding sites 
are located within the α

2
 domain of the MHC-I peptide-binding  

site but that TAPBPR binding is generally tolerant to substi-
tutions in the α

1
 domain77. Thus, local folding in a nascent  

MHC-I molecule may be sufficient to induce TAPBPR bind-
ing as a chaperone and this function is suggested to have  
broad and multi-allele specificity. On the other hand, allele- 
dependent binding of TAPBPR to peptide-bound MHC-I has 
been found to be related to the distinct dynamic profiles of  
MHC-I allotypes. Peptide–MHC-I complexes that display 
high conformational dynamics at the sites of TAPBPR binding  
(defined by both the identity of bound peptide and the intrin-
sic features of individual heavy chain) are selectively recognized 
by TAPBPR and predicted to be subjected to more extensive  
TAPBPR-mediated editing77. A recent study addressed the 
role of the TAPBPR helical loop called the scoop loop84. The  
loop is proposed to be positioned to interact within the F pocket 
of the peptide-binding site. This placement of the scoop loop  
is suggested to generate competition for the incoming peptide  
substrates and allow the selective binding of only high-affin-
ity substrates with MHC-I84. This model remains somewhat  
controversial, as there are discrepancies in the placement of the 
loop between the two crystal structures8,75,85.

A recent comprehensive analysis of TAPBPR binding to multiple 
human HLA-I allotypes revealed preferential binding of TAPBPR 
to HLA-A allotypes over HLA-B and HLA-C82. There is an  
additional hierarchy among the HLA-A allotypes, and members 
of the A*02 and A*24 supertypes demonstrate preferential  
binding to TAPBPR. Interestingly, the addition of soluble  
TAPBPR to cells facilitates peptide exchange on the surface 
from selected HLA-I allotypes83, which can be used to generate  
peptide–MHC-I libraries in vitro86. TAPBPR binding prefer-
ences for a given allotype correlate with the ability of TAPBPR 
to mediate cell surface peptide exchange on the respective  
allotype82. Residues H114 and Y116 in the F pocket of MHC-I 
have been found to be key determinants of TAPBPR binding.  
Additionally, amino acid residue M12, present on HLA-A*68:02, 
one of the strongest measured TAPBPR binders, has a strong 
influence on TAPBPR binding. H114 and Y116 are buried  

within the F pockets of HLA-I molecules forming contacts with 
C-termini of bound peptides, and their effects on TAPBPR  
binding are likely driven via an indirect influence on HLA-I  
residue dynamics, induced by peptide repertoire variations.  
Similarly, a conformational (rather than direct) influence is  
predicted for M1282.

Notably, HLA-B and HLA-C allotypes lack the H114/Y116  
residue pattern. Introduction of H114/D116 amino acid residues 
in the F pockets of HLA-B induced TAPBPR binding and cell  
surface peptide exchange. As noted above, residues 114 and 116 
have been previously shown to be important (but not the sole)  
determinants of HLA-B dependencies on tapasin47–49,57–59. For a 
small subset of HLA-I allotypes, the hierarchies of tapasin and  
TAPBPR binding are matched82, suggesting similarities in  
chaperone requirements and preferences between TAPBPR 
and tapasin. Nonetheless, numerous HLA-B allotypes display 
very strong dependencies on tapasin for their cell surface  
expression whereas TAPBPR binding is poor for these  
HLA-B allotypes, highlighting important differences between 
the modes of tapasin and TAPBPR function. Given the structural  
relatedness of tapasin and TAPBPR8,74–77, the molecular basis  
for such functional differences and the functional basis of the 
preferential activity of TAPBPR toward HLA-A remain to  
be elucidated. The functional differences between the two  
MHC-I–dedicated chaperones are likely driven by the weaker 
affinity of the tapasin–MHC-I complex compared with the  
TAPBPR–MHC-I complex, the incorporation of tapasin into 
the PLC, and subcellular localization differences. Overall,  
TAPBPR functions as a powerful peptide editor for several  
HLA-A molecules. Tapasin also functions as a peptide  
editor for a distinct group of alleles87–89, although its assem-
bly-promoting (chaperone) function within the PLC may be  
dominant90.

Summary
Human MHC-I molecules are highly polymorphic with  
specific peptide motif preferences that are now being visualized 
in expanding numbers, which allow more accurate predictions 
of peptide repertoire sizes and antigenic epitopes. Spliced  
peptides, originating from distinct protein precursors, and 
post-translationally modified peptides are components of the  
peptide repertoires of MHC-I molecules. HLA-I molecules  
exhibit varying TAP and tapasin dependencies, and there are  
distinct influences of TAPBPR on HLA-I allotype assembly and 
surface expression. Several HLA-I molecules are able to bypass 
the conventional assembly route, which can confer selective  
immune advantages and be exploited for immunotherapy. The 
CD8-binding site of MHC-I is a common CD8 and chaperone  
interaction region, the conformation of which is sensitive to  
MHC-I peptide occupancy. The finding that CD8 preferentially 
engages peptide-deficient MHC molecules indicates the existence 
of common mechanisms of MHC-I conformational sensing 
by a cell surface receptor and ER chaperones and shows that  
MHC-I conformational sensing directly influences immunity.
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