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ABSTRACT: In this work, new compositions of Sr0.8Mg0.2(Sn1−xZrx)O3 0.00 ≤ x ≤
0.06 ceramics are designed and synthesized by the conventional solid-state route. The
influence of Zr doping on the phase, microstructural, optical, and dielectric properties
is thoroughly investigated. The peaks (0 0 4) and (1 1 0) are observed to shift toward
lower 2θ values, due to the variation of the ionic radius between Zr4+ and Sn4+. X-ray
diffraction patterns reveal the orthorhombic structure with the space group Pbnm.
Scanning electron microscopy images reveal the presence of pores and particles with a
high degree of agglomeration. The functional groups and modes of vibration are
determined by Fourier transform infrared spectroscopy of the prepared metal oxide
samples. The existence of green emission of all the synthesized samples around 554.91
nm is identified by photoluminescence spectroscopy. The dielectric properties of the
fabricated samples are measured by using an impedance analyzer. The values of the
tangent loss and relative permittivity are found to decrease with increasing frequency.

■ INTRODUCTION
Stannate perovskites, i.e., MSnO3 (where M = Sr, Ca, or Ba)
are ceramics with technical and industrial interests. Semi-
conductor sensors (for humidity and gases), energy storage,
and barrier layer capacitors have been reported as applications
of stannates.1−5 Stannate synthesis routes are especially
interesting because of their importance. Stannates have already
been successfully synthesized using a variety of techniques, i.e.,
high-temperature solid-state reactions of M(NO3)2/SnO2 or
MCO3/SnO2 powder mixtures at different temperatures, i.e.,
1000−1450 °C.6−12 In addition to these ceramic preparation
methods, those stannates can also be made by using sol−gel
processes or by thermally decomposing oxalates.13 However,
the temperatures needed for these two alternate methods are
800 or 1000 °C, respectively. Low-temperature and quick
synthesis methods are uncommon even with the numerous
processes and characterizations of strontium stannate
(SrSnO3) that have been frequently investigated in the
literature.13−15 Long synthesis times are a feature of all of
the ceramic routes for the stannates mentioned above (up to
16 h). As a result, it is clear that a more cost-effective, shorter-
cycle, and lower-temperature synthesis process is required. The
exciting process of microwave-assisted synthesis involves the
synthesis of many inorganic compounds such as metals and
oxides, as well as chloroformates, phosphates, etc., demonstrat-

ing the broad scope of applications for this technology.16

Hydrothermal syntheses with microwave assistance method
have also been carried out for several compositions.17

Microwave dielectric ceramics with right relative permittivity
(εr), high quality factor (Q × f) values, and approximately zero
temperature coefficient of resonant frequency have been
extensively studied over the past few decades because they
are essential components for microwave substrates, resonators,
oscillators, and so on.18−23 In addition, with the rapid
development of wireless communication and the huge amount
of information discovery since the start of the 21st century,
there are new and higher requirements for microwave
dielectric ceramics.5,8,11 The focus of academic attention has
shifted more and more toward investigating the upper limit of
dielectric properties and looking for new low-loss candidates to
meet emerging requirements. Based on this, we previously
systematically investigated the synthesis of Sr3Ti2O7 bulk
ceramics and obtained excellent microwave dielectric proper-
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ties (εr = 63, Q × f = 84,000 GHz, and τf = 293 ppm/°C).24 It
has also been reported that compared to commercially
available materials systems like CaTiO3-NdAlO3 (εr = 45, Q
× f = 44,000 GHz, τf = +3 ppm/°C) and CaLa4Ti4O15 (εr =
41.6, Q × f = 34,911 GHz, τf = −25 ppm/°C), the Sr3Ti2O7
ceramics show optimum microwave dielectric properties
without noble elements.25−27 However, the large positive τf
value needs to be further optimized because it is unsuitable for
real-world use. Colla et al. concluded from a summary of
structural parameters and microwave dielectric characteristics
of complex perovskite ceramics based on Ba/Sr that the onset
of octahedral tilting is the primary factor in determining the τf
values.28 The reason is that the doped Zr4+ ions have a higher
ionic radius (0.72 Å) compared to Sn4+ (0.69 Å). The grain
size of the samples increases gradually with increasing Zr
doping concentrations, which indicates that Zr doping
increases the number of defect sites to promote the formation
of multiple nucleation centers.29−31

In the present study, an effort is made to synthesize
Sr0.8Mg0.2(Sn1−xZrx)O3 lead-free ceramics (0 ≤ x ≤ 0.6)
samples at frequencies 1.00−3.00 GHz via a conventional
solid-state route. The solid-state route is a mechanical
technique that is broadly used to grind powders into fine
particles, and its effect on the crystallite size, dielectric
properties, and microstructure development of milled powders
is studied. Due to this importance, we studied the effect of Zr4+
on the relationship between the structural, microstructural,
vibrational, and dielectric properties (dielectric constant and
tangent loss) of Sr0.8Mg0.2(Sn1−xZrx)O3 materials which by
varying the frequency are improved obviously.

■ RESULTS AND DISCUSSION
Phase Analysis. The X-ray diffraction (XRD) pattern of

sintered Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) ceramics is
shown in Figure 1. An X-ray powder diffractometer (JDX-

3532, JEOL, Japan) using Cu Kα radiation (λ = 0.154 nm)
within the angular range of Bragg’s angle, i.e., 2θ = 20−80°,
was used for phase identification and structural character-
ization of materials.
The XRD patterns of all the diffracted peaks indicate the

smooth crystalline structure of the samples. XRD analysis
confirmed the presence of an orthorhombic structure with
lattice parameters (a = 3.80 Å, b = 6.33 Å, and c = 14.60 Å)
and having the space group of (Pbnm) that are consistent with

the JCPDS/ICDD card info [01-087-2479] for the base
sample. The most intense peaks (004) and (110) observed at
angular positions 28.2 and 31.5°, respectively, are found to be
shifted toward a lower angle (2θ = 31.2°) for all samples, as
shown in Figure 1b. The shifting of peaks may be associated
with the increase of the volume of the unit cell due to replacing
SnO3 with (Sn1−xZrx)O3, wherein Zr4+ has a high ionic radius
(0.72 Å) compared to Sn4+ (0.69 Å).32,33

According to Bragg’s law, the angular position (θ) is inverse
to the lattice spacing (d), i.e., θ ∝ 1/d.34,35 The size of crystal
(D) of a sample should be measured by using the Scherrer
formula36

= =D
cos

0.9
cos (1)

where λ is the wavelength of Cu Kα radiation, θ is the angular
position of the diffraction peak, and β is the fwhm, while the
crystalline size depends on the microstrain of the lattice and
the radius of the substituted ions. The enlargement in the
calculated crystallite size is due to the distortion in the host
Sn4+ lattice by the foreign impurities of Zr4+.
Mathematically, the micro-strain (s) and the dislocation

density (δ) will be measured by using the following
equations36

=
D
1

2 (2)

=s
d

D 12 (3)

The dislocation of the material had a significant impact on
the structure and dielectrics of the material. Due to the dopant
element, the crystal structure of the material was improved,
and crystal defects were significantly reduced due to the proper
replacement of host ions within the lattice of the crystal. Using
the below equation,37 we were able to determine the lattice
strain (η).

= cos
4 (4)

The deviancy in measured values of lattice strain and
crystallite size of all the synthesized Sr0.8Mg0.2(Sn1−xZrx)O3
(0.0 ≤ x ≤ 0.6) ceramic samples with composition are shown
in Table 1. The microstrain decreases with increasing dopant
concentration, which might be due to the size of the dopant
element being greater than that of the host element (see Table
1).

Morphological Analysis. The morphological properties of
all samples were recorded at the same magnification of
×10,000 (1 μm) and is shown in Figure 2a−d. It depicts the
microstructure that expressively shows the dissemination of

Figure 1. (a) Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) ceramic XRD
pattern and (b) zoomed-in view of (0 0 4) and (1 1 0) peaks shifting
toward the lower angle.

Table 1. Crystallite Size (D), Dislocation Density (δ),
Lattice Strain (η), and Microstrain (ε) Were All Determined
for Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) Ceramics

parameters X = 0.0 X = 0.2 X = 0.4 X = 0.6

average crystallite size “D” (nm) 3.5735 5.1358 8.0364 7.5885
dislocation density “δ” (×10−2)
nm−2

7.8310 3.7912 1.5584 1.7437

lattice strain “η” (×10−3) 0.0970 0.0675 0.0431 0.0457
microStrain “ε” (×10−2) 1.4291 0.9941 0.6359 0.6747
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grain size. The scanning electron microscopy (SEM) images
revealed the grain size along with porosity. The grain size
increased, while the porosity decreased with increasing Zr4+
content. Studies have demonstrated that the size and
morphology of crystallites within compounds are affected by
nucleation and the formation of grains during synthesis.
Furthermore, particle morphology was also affected by the
calcination temperature.38,39

Fourier Transform Infrared Spectroscopy. Figure 3
displays the Fourier transform infrared (FTIR) spectra of

sintered Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) ceramics. The
FTIR spectra band positions and the absorption peaks are
directly influenced by the material compositions, lattice
microstrain, and shape of materials.40 Normally, the IR
spectrum under 1100 cm−1 is recognized as the deformations
mode of the Sn−O octahedral (SnO6) or O−Sn−O
deformation bridge.41 The bands at 400 and 900 cm−1 are
related to the molecular vibration of Sn−O.42 The absorption
peak with high intensity at 884.78 cm−1 is due to the existence
of vibration mode of Sn−O3

2−. The highest absorption peak at
509.6 cm−1 was likewise connected to the stretching vibration
of Sn−O bands, and this relationship verifies the occurrence of

SnO6 octahedral deformation in all compositions.43 The
material may experience O−H stretching vibrations as a result
of absorbing ambient moisture, as seen by the steep peaks at
858 and 2755.39 cm−1. The Sn−OH bonds’ asymmetric
stretching vibration is represented by the absorption peak. As a
result, the FTIR investigation supports the materials’ presence
of active IR modes and metal oxide vibrations (see Figure 3).

Optical Studies. Figure 4 displays the UV−vis absorption
spectra of sintered Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6). O−

M charge carrier transitions of the octahedral groups in SnO6
may be responsible for the formation of a large maximum
absorption peak in the 300−450 nm wavelength range.44 The
crystal size, microstrain, and shape of particles influence optical
absorption, hence the difference between the spectra of pure
and Zr-doped Sr0.8Mg0.2SnO3 compounds. The lattice strain is
particularly responsible for charge location at the interface and
surface or interfacial trapping.45 Increasing the dopant
concentration caused a noticeable change in absorption,
which led to the discovery of the likely electronic transitions
between the host and dopant lattices. Previous research
indicated that the spectral lines are influenced by the lattice’s
level of structural order or disorder.46 Additionally, optical
energy band gap (Eg) parameters correlate with the synthesis
method, particle surface shape, precursor solution temperature,
and pH. It should be mentioned that the degree of order or
disorder is linked to the presence of impurities, oxygen
vacancies, and distorted localization and caused the induction
of extra electronic levels in stannates’ prohibited band.41 As a
result, the SrSnO3 compound’s optical absorption was solely
dependent on the shift from 2p oxygen localities to the 3d
configuration of stannates. The Wood and Tauc equation was
used to determine the optical energy band gap (Eg) of pristine
and Zr-doped Sr0.8Mg0.2SnO3 compounds, as shown in Figure
5.

=h E(h )n
g (5)

where α is the absorbance factor, h is Planck’s constant, υ is the
frequency, and Eg is the band gap energy.34

Figure 2 . SEM images o f (a) Sr 0 . 8Mg0 . 2SnO3 , (b)
Sr0.8Mg0.2(Sn0.98Zr0.2)O3, (c) Sr0.8Mg0.2(Sn0.96Zr0.4)O3, and (d)
Sr0.8Mg0.2(Sn0.94Zr0.6)O3.

Figure 3. FTIR spectra of sintered ceramics with the formula
Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6).

Figure 4. Absorption spectra of (a) Sr0.8Mg0.2SnO3, (b)
Sr0.8Mg0.2(Sn0.98Zr0.2)O3, (c) Sr0.8Mg0.2(Sn0.96Zr0.4)O3, and (d)
Sr0.8Mg0.2(Sn0.94Zr0.6)O3.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04224
ACS Omega 2023, 8, 33794−33801

33796

https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04224?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04224?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Perovskite-based compounds show direct permissible
electronic transitions according to previous studies. The high
optical absorbance observed in the present work suggests that
all compounds exhibit direct permissible electronic transi-
tions.37 Figure 5 depicts the plot of Eg and (αhυ)2. The
spectral band gap of the Sr0.8Mg0.2SnO3 compound was
determined from the plot to be 4.89 eV. The samples show
the interdependent nature of absorption edge values and
demonstrated the effects of lattice strain, crystalline structure,
and variance on surface properties of the produced
compounds.47 Additionally, the band gap energy grows with
Zr4+ concentration (see Figure 5). As a result, it can be inferred
that the Eg is associated with the emergence of intermediate

energy levels as a result of distortions on [SnO6] octahedrons,
which supports the impact of Zr4+ incorporation into the
Sr0.8Mg0.2SnO3 system.

Photoluminescence Spectroscopy. Figure 6 shows the
photoluminescence (PL) behavior of pure and Zr-doped
Sr0.8Mg0.2SnO3 sintered ceramics at room temperature. The PL
features of the perovskite-like structure arise due to distortions
of constellations located in this system. It is acknowledged that
the PL emissions are significant for the order/disorder ratio in
a sample.48 In semiconductors, the PL characteristics depend
upon the surface morphology and calcination temperature of
the raw materials.49,50 As a consequence, the production of
medium-energy levels and the enabling of various energetic
transitions between them led to the formation of the wide
emission spectra that were seen in the samples.22

The PL spectra observed in the region of 800−400 nm at
the exciting wavelength λex = 550 nm and energy = 2.24 eV are
given in Figure 6 in order to study optical properties of the
synthesized Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) solid
solution. The energy of each peaks are calculated by eq 6.51,52

=E
hc

(6)

The PL spectra (Figure 6) have been deconvoluted for each
sample properly.53,54 We have calculated the value of excitation
potential energy of each peaks observed at wavelengths 422,
466.75, 554.27, 671.12, 690.76, 705.44, and 757 nm as 2.95,
2.66, 2.24, 1.85, 1.80, 1.76, and 1.64 eV, respectively. The
slight energy difference occurring with increasing Zr4+
concentration was due to the presence of oxygen vacancies,
formation of defects, and quantum confinements.52 Generally
speaking, it was said that the synthesis process, which affects
the form, size, and crystalline nature of the particles, was
closely related to the luminous efficiency.55 In addition, it was
found that the luminosity of SrSnO3 compounds is mainly
affected by the particle size.52 In Figure 6, green emission of
the entire synthesized samples is observed around 554.91 nm,

Figure 5. Band gap energies of (a) Sr0.8Mg0.2SnO3, (b)
Sr0.8Mg0.2(Sn0.98Zr0.2)O3, (c) Sr0.8Mg0.2(Sn0.96Zr0.4)O3, and (d)
Sr0.8Mg0.2(Sn0.94Zr0.6)O3.

Figure 6. PL spectrum of ceramics: (a) Sr0.8Mg0.2SnO3, (b) Sr0.8Mg0.2(Sn0.98Zr0.2)O3, (c) Sr0.8Mg0.2(Sn0.96Zr0.4)O3, and (d) Sr0.8Mg0.2(Sn0.94Zr0.6)-
O3.
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and the identified peak corresponds to direct transitions
between O 2p and Sn 5s energy states.56,57

Microwave Dielectric Properties. Figures 7 and 8
illustrate the frequency dependence of the microwave dielectric

characteristics (i.e., dielectric constant and tangent loss) of the
sintered ceramic samples of Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤
0.6). The graph character indicates the dispersion of the
material as well as the effects of blocking. The main reasons for
this dispersion are the related mobile charge carriers as well as
the polarized composition of the sample studied.58 The
presence of several polarizations such as dipolar and ionic
electronic polarizations as well as interfacial polarizations may
be influenced by the large dielectric constant disper-
sions.9,25,59,60 By application of the local field, the electrons
inside the material move opposite to the field by a small
displacement (dipole moment) resulting in electronic polar-
ization, and this behavior occurs above 1 GHz operating
frequency.61 Moreover, the dielectric constant decreases with
frequency (see Figure 7); it is due to the permanent dipole
moments which further affected the overall polarization
mechanism inside the material. At a high frequency, the field
changes for strong dipole moments which orient in the
direction of the field. This dipole moment is never sustained
for a long time inside the material, and it is the main cause of
variation of dielectric constant with frequency.62 So, the value

of the dielectric constant decreases with frequency, as has been
reported in our work. Figure 8 shows the variation of dielectric
loss or tangent loss (tan δ) with frequency as well. This
variation in tangent loss is due to the relaxation mechanism.
The increase in tangent loss shows the existence of a hopping
mechanism (frequency-dependent) in the sample, which was
due to the charge carrier phenomenon.63 Dielectric materials
may increase the storage capacity of electronic devices. So, the
capacitance of a material is directly associated with the
dielectric constant.64,65 The dielectric constant can be
measured as

=r
m

0 (7)

where “εr” is the dielectric constant, “εm” is the permittivity of
medium, while “ε0” is the permittivity of free space. The
permittivity of medium can be determined by using the
following equation

= Cd
Am

0 (8)

Here, “C” is the capacitance of material calculated by the
impedance analyzer “d” is the thickness of pellets, and “A” is
the area of pellets.
In a perfect dielectric, if an ac voltage is applied across a

capacitor, then the charging current leads the applied voltage
by phase angle 90. But in commercial use, due to some defects
or leakage current, the phase angle 90 is disturbed by the
amount of “δ”, called the loss angle, and causes the power
dissipation in the material. So, the tangent loss can be
calculated as

=
fC R

tan
1

2 p p (9)

Here, “Cp” and “Rp” are, respectively, the measured parallel
capacitance and resistance at frequency “f”. A commonly used
technique for device miniaturization involves the placement of
materials with high dielectric constants at the local level of the
structure, taking into account the distribution of electro-
magnetic fields at the operating frequencies of the device.66

■ CONCLUSIONS
In this work, pure and Zr-doped Sr0.8Mg0.2SnO3 compounds
synthesized by the mixed oxide route have been investigated.
The XRD patterns reveal the materialization of the
orthorhombic phase with the space group (Pbnm). The
metal oxide vibrations of all the samples were analyzed via
FTIR spectra. The SEM images revealed that the particle size
increases with the Zr4+ content and there is a high degree of
agglomeration. The absorption spectrum confirmed the good
optical behaviors of all the samples. The emission center does
not change by the addition of Zr4+ in Sr0.8Mg0.2SnO3 sintered
ceramics, as investigated by PL analysis. Optical band gap
energy is increased with the content of Zr4+. The dissipation
factor decreases with increasing frequency and Zr4+ contents.
The reducing dissipation factor for this material renders it
suitable for the application of device miniaturization.

■ EXPERIMENTAL METHODS
Synthesis of Sr0.8Mg0.2(Sn1−xZrx)O3 (x = 0, 0.2, 0.4, 0.6)
ceramics was done through a mixed oxides route using
materials of high purity such as SrCO3 (Merck) (99.99%),

Figure 7. Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) sintered ceramics
exhibit frequency-dependent changes in relative permittivity.

Figure 8. Variation of tangent loss with the frequency of
Sr0.8Mg0.2(Sn1−xZrx)O3 (0.0 ≤ x ≤ 0.6) ceramics.
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SnO2 (Merck) (99.99%), MgCO3 (Aladdin Biochemical
Technology Co., Ltd., Shanghai, China), and ZrO2 (Merck)
(99.99%). Stoichiometric concentrations of oxides were
weighed and ball-milled (wetting media) for 24 h. The
solution was dried at 80 °C in an oven. After drying, the
powder mixture was calcined at 900 °C for 3 h to achieve high
purity in alumina crucibles. To avoid agglomeration, the
calcined powder was manually ground by using mortar and
pestle for 1 h. The powder was made into 10 mm diameter
pallets, and the thickness of pellets was 5 mm under 5 ton/in2
pressure using a pellet pressor (Carver, USA). After pellet’
formation, the pellets were sintered at a temperature of 800 °C
for 3 h with a heating and cooling rate of 5 °C/min. The phase
formation was analyzed by using an X-ray diffractometer (JDX-
3532, JEOL, Japan) with Cu Kα (λ = 0.15406 nm). The
sample density was measured by using an electronic
densitometer (MD-3005). The surface morphological study
of the samples was carried out by a scanning electron
microscope (JEOL 7600F) operated at 15 KV. The absorption
spectrum of the samples was recorded by using the FTIR
spectrometer (PerkinElmer GX) to obtain 10 cm−1 spectral
resolution in the range of 400−4000 cm−1 region. The
UNICO 2150-UV spectrophotometer was used to measure the
sample’s absorbance of light in the UV−vis range. To measure
the PL spectrum, a Jobin Yvon-Horiba Triax 190 was used
with a spectral resolution of 0.30 nm. For the purpose of
determining the dielectric characteristics of the sintered
ceramic samples, an instrument known as a VNA (vector
network analyzer) (ZVB20, Schwarz & Rohde, Germany) was
utilized.
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