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Abstract

Background: In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546
individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical
samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during
the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular
surveillance and phylodynamic analysis of HIV-1 in Thailand.

Methodology and Findings: Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a
function of vaccination treatment, viral load (VL) and CD4+ counts, to indentify transmission clusters and to investigate the
timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections),
subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts
and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P,0.02) in genetic
diversity were observed in CRF01_AE IDU with different VL and CD4+ counts. No phylogenetic structure was detected
regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections
fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread
among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983–1986), 3–6 years before the first
recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high
despite decreasing prevalence rates since the mid 1990s.

Conclusions: Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest
that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence.
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Introduction

HIV/AIDS emerged late in Thailand compared to other

countries worldwide [1]. The first case was reported in 1984,

although this was a returned emigrant who developed AIDS

elsewhere [2]. A few more cases were reported in 1984–1988

between men who had sex with men (MSM) and injecting drug

users (IDU) [3]. In 1989 AIDS hit Thailand hard after HIV spread

very quickly through the IDU community, and a year later entered

the commercial sex worker (CSW) networks [1,4]. In subsequent

years, prevalence rates among these high-risk groups grew

explosively from almost zero to 30 to 50% [5–7]. Since then,

the Thai HIV epidemic has been largely driven by CSW and IDU

[1], whose epidemics appear to be linked [8,9]. Over the last 12

years, for example, heterosexual (HT) and IDU transmissions

accounted for 80–85% and 5% of the infections, respectively

[3–5]; and although the former has now diminished considerably,

the latter has remained high [7].

In 1991, AIDS prevention became a national priority in

Thailand and between 1993 and 1997 the government increased

the national budget, launched several campaigns to control and

inform about AIDS spread (Ministry of Public Health, Thailand;

eng.moph.go.th) and initiated the ‘‘100 percent condom program’’

[10]. All these policies slowed down the spread of AIDS and the

national prevalence rate was reduced by 0.6% points [7]. These

AIDS campaigns were mostly successful at reducing HIV

infections in CSW, whose prevalence rate is now only 5%, but

older HIV epidemics in IDU and MSM continue unabated

(prevalence rates are .25%; [7]), fueling epidemics in CSW [11]

and causing new outbreaks [1]. Almost 1.5% adults are still

infected with HIV in Thailand (,610,000 infected individuals)

making AIDS a leading cause of death (30,000 deaths in 2007;
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[6,7]). The Thai HIV epidemic has become now more

heterogeneous [12] and it is increasingly affecting people

traditionally considered to be at lower risk of infection [7]. Of

even more concern, there are already signs that the epidemic

could grow in coming years: prevalence rates among high-risk

groups have increased, condom use has decreased, and risky

sexual behavior is on the rise [7,13].

In the early years of the AIDS epidemic in Thailand HIV-1,

subtypes were segregated by risk group. Subtype B was predom-

inant in IDU; while CRF01_AE (a recombinant between subtypes

A and E) was predominant in HT and MSM [9,14]. As the Thai

epidemic progressed, CRF01_AE increased in frequency across all

high-risk groups [15,16] and by 1995 it became also the

predominant subtype in IDU [17]. Thus, between 1995 and 2004

CRF01_AE accounted for 80–97% (depending on the study) of the

new HIV-1 infections [3,18]. But the Thai molecular epidemiology

has been gradually growing in complexity and now it seems to be

entering a new phase [3,9]. New recombinant CRF15_01B,

CRF01_AE/B and CRF01_AE/C isolates are constantly being

identified both within HT and IDU [3,9,19–22] and some may be

increasing their frequency rapidly (13% CRF01_AE/B in IDU;

[9]). Under this new epidemic scenario, molecular surveillance

becomes crucial to monitor emerging trends in HIV transmission,

assess intervention strategies, and evaluate vaccine efficiency and

design [9,22–25].

HIV spreads through often complex contact networks or

transmission (infection) chains [26,27]. The characteristics of such

networks play a crucial role in determining short- and long-term

disease dynamics [28]; hence, understanding those networks may

translate into more efficient prevention measures and treatment

interventions [29,30]. Several phylogenetic studies suggest that

transmission chains associated with acute (early) HIV-1 infection

may greatly contribute to viral transmission and spread of the

epidemic [31]. Data from both sexually- and drug-related acute

infections in Europe [31–36], Canada [37,38], and Panama [39]

have reported clustering in 24–65% of HIV-1 sequences.

However, in a genetic analysis of 130 early diagnosed HIV-1

infections in IDU from Bangkok only 7.4% of the subtype B and

16.5% of the CRF01_AE isolates formed transmission clusters

[40]. Similarly, in a recent study of sexually infected HIV-1

patients (mostly MSM) in North America, clustering was detected

in only 11% of the isolates [41]. Therefore, it seems like the extent

to which acute transmission of HIV-1 is clustered remains open.

Thailand is one of the key international partners in the HIV

vaccine efficiency trials with three trials already completed

[42–44]. In 2003, the first phase III placebo-controlled trial

(VAX003) of a candidate HIV-1 vaccine (AIDSVAX B/E) was

completed in individuals at high risk for HIV-1 infection [45–47].

The study enrolled 2,546 uninfected IDU from and around

Bangkok of which we obtained clinical samples for 215 who

became infected with HIV-1 between 1999 and 2003 despite

intensive risk reduction counseling. Plasma samples from these

individuals were obtained within the first 13 months after

infection, and envelope glycoprotein (gp120) viral sequences were

generated. These sequences (the ‘‘VAX003 dataset’’) have recently

been released to the scientific community through the Global

Solutions for Infectious Diseases HIV sequence Database (www.

GSID.org).

Here, we analyze the VAX003 data to assess HIV-1 variation as

a function of treatment (vaccine or placebo), viral load, and CD4+

counts. Moreover, we perform a molecular surveillance of the

VAX003 gp120 dataset to identify HIV-1 circulating subtypes in

Bangkok and infer transmission networks in IDU. Finally, we

combine the VAX003 dataset with other Thai sequences available

in the HIV Los Alamos database (www.hiv.lanl.gov) to investigate

the timescale and molecular population dynamics of HIV-1 in

Thailand. The VAX003 dataset is the largest collection of gp120

sequences from infections resulting from new and recent

transmissions in Thailand and one of the few datasets collected

from a large IDU cohort. These data provide a unique

opportunity to study HIV-1 evolution in an epidemiological

context and we anticipate it will contribute to the analysis and

interpretation of the results from the RV144 Phase III HIV

vaccine trial recently completed in Thailand [48,49].

Results

Molecular surveillance and subtype diversity
We indentified 182 CRF01_AE (84.7%), 29 subtype B (13.4%),

and 4 discordant isolates that presumptively are CRF15_AE

(1.9%). This latter recombinant type is mostly CRF01_AE but also

includes most of gp120 (except for approximately the first 36

nucleotides) and the external portion of gp41 from subtype B [8].

Full genome sequencing of these discordant HIV isolates are

needed to confirm this result. Number of isolates (as percentages)

per year (1999 to 2003) was similar within each subtype

(Table S1).

Estimates of genetic diversity (h) were similar (,0.11) across

subtypes (Table 1). Selection estimates (v) were generally below 1

although subtype B [vPAML = 0.777; vomegaMap = 0.778 (0.673–

0.901)] showed higher (and significant for omegaMap) average

dN/dS rates than CRF01_AE [vPAML = 0.580; vomegaMap = 0.404

(0.366–0.443)]. Population recombination rates (romegaMap), how-

ever, were significantly lower for subtype B [3.95 (3.45–4.53)] than

for CRF01_AE [15.56 (14.65–16.65)]. DNA genetic divergence

(6SD) was higher for subtype B (0.09660.019) than for

CRF01_AE (0.06760.011). h, vPAML and genetic divergence

were also estimated in the North American VAX004 gp120

dataset [50] for comparison between B subtypes (Table 1). h
estimates were again similar between datasets, but vPAML

estimates were lower for the VAX004 dataset (0.432) than for

the VAX003 dataset (0.777), while genetic divergence was

significantly higher for the VAX004 dataset (0.11260.015).

Phylogenetic analysis
The GTR+C+I model [51] was chosen as the best-fit model for

both the VAX003 gp120 dataset and for all their corresponding

Table 1. Overall subtype diversity estimates.

HIV-1 h vPAML vomegaMap romegaMap GD

VAX003-
CRF01_AE (182)

0.110 0.581 0.404 15.56 0.067

(0.366–0.443) (14.65–16.65) (0.067–0.067)

VAX003-
Subtype B (29)

0.112 0.777 0.778 3.95 0.096

(0.673–0.901) (3.45–4.53) (0.094–0.098)

VAX004-
Subtype B (345)

0.105 0.432 - - 0.112

(0.112–0.112)

Genetic diversity (h), selection in PAML (vPAML) and omegaMap (vomegaMap),
population recombination rate in omegaMap (romegaMap), and genetic
divergence (GD). Number of isolates analyzed is indicated between parentheses
in the first column. Estimates from the North American VAX004 subtype B trial
were included for comparison.
doi:10.1371/journal.pone.0016902.t001
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codon-position partitions. ML and Bayesian phylogenies did not

show any obvious structure based on treatment, VL or CD4+

categories (Fig. 1). Individuals within each factor seemed to be

randomly distributed across the phylogeny.

Transmission clusters
ML and Bayesian phylogenetic analyses of HIV-1 subtype B

and CRF01_AE showed 3 and 31 well-supported clades (bootstrap

proportions $70% and posterior probability $0.95), respectively

(Fig. 1). These transmission networks involved 10 (34.4%) subtype

B and 91 (50%) CRF01_AE IUD isolates distributed in 2 small

(,5 isolates)/1 large ($5 isolates) and 26/5 clusters, respectively

(Table S2). Attendance to a particular clinic and estimated date of

seroconversion (considered as a time window of #6 months) were

found to be associated with 1 and 1 subtype B clusters,

respectively, and 6 and 13 CRF01_AE clusters, respectively.

Some overlap between factors was observed in some clusters (e.g.,

clade 2 in subtype B and clade 7 in CRF01_AE). Nonetheless,

these results suggest that between 1999 and 2003, the estimated

date of infection seemed to play a larger role than geographic

location at establishing transmission chains in CRF01_AE IDU

from Bangkok (Table S2).

Viral evolution and patient factors
Average h, r, and v intra-patient estimates within categories

were very low for both subtypes (Table 2). For most CRF01_AE

datasets v.1, while for the rest v<1. On the contrary, for most

subtype B datasets v,1, but v.1 was also found in several cases.

These intersubtype differences, nonetheless, were non-significant.

CRF01_AE sequences from individuals with lower VL and higher

CD4+ counts showed lower h values (0.005–0.006) than individ-

uals with higher VL (P = 0.016) and lower CD4+ (P = 0.007) counts

(0.007–0.009). These two factors were inversely correlated

(Pearson correlation coefficient = 20.218, P = 0.003).

Population dynamics
BEAST’s estimate of the substitution rate was 0.0055 (0.0050–

0.0060) for CRF01_AE and 0.0027 (0.0015–0.0038) for subtype B.

The Most Recent Common Ancestor (MRCA) was dated in

1984.5 (1983–1986) for CRF01_AE and in 1965 (1950–1979) for

subtype B. The BSP analysis of CRF01_AE sequences (Fig. 2)

suggested that the relative genetic diversity increased exponentially

between 1984 and 1991, moderately between 1992 and 1995,

decreased between 1996 and 2004 with a spike in 1999–2000, and

then increased slightly between 2005 and 2006 (the age of our

most recent sample).

Discussion

Molecular surveillance and subtype diversity
The predominant HIV-1 subtype circulating in IDU (215

patients) from Bangkok during 1999–2003 was CRF01_AE (85%).

Subtype B accounted for 13% of the infections and CRF15_AE

for 2%. Two early (1995 to 1998) molecular surveys in Bangkok

[17,40] including 102 and 130 IDU, respectively, and using the

C2-V4 env region (345 bp), reported also high percentages of

subtype B isolates (20–21%) but no CRF15_AE recombinants.

Additional surveillances among IDU in Bangkok [21] during

1997–1998 (111 patients) using env (530 bp) and protease (297 bp)

still detected high percentages of subtype B isolates (23%), but also

3.6% CRF15_AE isolates. Interestingly in Northern Thailand, a

near full HIV-1 genome study (1999–2002; 38 patients) among

IDU detected an increasing proportion of CRF15_AE (13% total)

infections but no pure subtype B isolates, suggesting that the latter

subtype became extinct in this region [9]. Although full HIV-1

genome surveys increase the probability of finding intersubtype

recombinants, our surveillance from 1999 to 2003 suggests that

subtype B is declining and CRF15_AE is increasing among IDU

from Bangkok as previously predicted by others [24] and observed

in other high-risk groups across the country [3,22,52]. Nonethe-

less, considering subtype B prevalence rate and genetic diversity

(Table 1), it may remain circulating in Thailand for many years.

This information is important to ensure that the virus diversity

upon which vaccines are designed matches the circulating viral

population. Fortunately, vaccine candidates used in the RV144

Phase III HIV vaccine trial largely contain both subtype B and

CRF01_AE viruses [48,49].

Our estimate of gp120 genetic divergence in CRF01_AE viruses

(0.06760.011) from IDU was higher than previously reported for

env (0.05960.011) in Northern Thai IDU patients [9], but much

lower than those reported for the C2-V4 env region (mean: 0.109–

0.150) in other Thai regions among mostly (95%) sexually infected

individuals [3]. These comparisons must be considered with

caution since the env regions compared are not exactly the same

and we removed many of the variable sites after the GBlocks

analysis. Genetic divergence estimates using the full VAX003

gp120 alignment were of 0.10060.015. But independently of what

dataset we consider, both Tovanabutra et al. [9] and our own

estimates are higher than those reported in other Asian IDU

groups in, for example, China [53] or Vietnam [54,55], and closer

to those observed in sexual transmission cohorts [3], where

diversity is generally higher [56]. This result then suggests that the

IDU epidemic in Thailand is likely to be mature and that extensive

exchange between sexual and IDU exposures and transmissions

has been ongoing for years [9], which is also supported by our

phylogenetic results below.

gp120 subtype B sequences from Bangkok are significantly less

divergent than those from the North American VAX004 vaccine

trial (Table 1). This and previous gp120 CRF01_AE estimates

indicate that Thai HIV-1 populations are more homogeneous

than those observed in other areas like Vietnam (see below) or

North America. The increased homogeneity of viruses in Bangkok

has been attributed to the relatively recent introduction of HIV in

Thailand (1984) and a pronounced founder effect resulting from

the rapid spread of the virus [1,4]. This result then suggests a

greater opportunity to overcome the challenge of HIV diversity

[57] and to detect protective immunity induced by candidate

vaccines in Thailand compared to North America or Africa, where

viral genetic diversity is much higher. Indeed, the outcome of the

RV144 vaccine testing in Thailand seems to have had greater

success by better coverage of this limited diversity with vaccinated

volunteers showing 31.2% fewer infections than placebo recipients

[48,49]. American subtype B viruses also appear to be under

stronger purifying selection (v= 0.43–0.58) than the Thai subtype

B viruses (0.78). This suggests that differences could exist in the

intrinsic immune response among ethnicities [58] or transmission

type (i.e., IDU vs MSM) [59].

Our genetic estimators indicate that CRF01_AE experienced

almost four times more recombination than subtype B (Table 1).

Consequently, one could also expect that higher recombination

rates would inflate vPAML estimates [60–62], but that does not

seem to be the case, since subtype B showed significantly higher

levels of selection than CRF01_AE for all estimators. Similarly,

CRF01_AE presented a mean substitution rate per site twice as

high as that observed for subtype B. Significant differences in

adaptive selection and substitution rate between HIV-1 subtypes

have been reported before [59,63] and were attributed to

Phylodynamics of HIV-1 in Thailand
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differences in immune selective pressure from the host and in

mutation rate or generation time of the virus.

Phylogenetic structure of HIV-1 in Thailand
Our CRF01_AE and subtype B phylogenetic trees suggest that

HIV populations in IDU from Bangkok are not structured by any

of the epidemiological and clinical factors studied (Fig. 1).

Moreover, our BEAST analyses of both VAX003-LA gp120

subtypes did not show phylogenetic structuring based on

transmission type either (Fig. S1). These results agree with

previous CRF01_AE star-like phylogenies reported in IDU from

Bangkok [40]. Geographically broader CRF01_AE phylogenetic

studies in Central [64], Northern [9] and across Thailand [3,22]

also showed lack of structuring based on transmission type,

sociodemographic factors and geographic location. In the

Wirachsilp et al. [3] study, for example, sequences from Bangkok

clustered together with sequences from other regions. Similarly,

Keele et al. [65] also showed that viral env genes evolving from

individual transmitted or founder HIV-1 subtype B viruses

generally exhibited a star-like phylogeny, such as the one observed

in North American viruses [41].

Given the age of the HIV-1 epidemic in Thailand and the fact

that the virus is thought to mutate at a rate of 1% per year [66,67],

the possibility existed that different clades would have emerged in

different regions or high-risk groups in Thailand. Indeed

phylogenetic structuring based on these factors has been observed

before between subtypes in, for example, Africa [68] and Asia [69]

and within subtypes in, for example, Vietnam [54] and China

[70]. But contrary to what happened in those HIV/AIDS

epidemics, the Thai epidemic spread exponentially across the

whole country and risk types [1], which could erase early genetic

differentiation and results in star-like gene genealogies [71,72].

Moreover, both molecular (this study and [8,9]) and Thai

behavioral [11,73] data indicate that bridging between drug and

sexual epidemics through CSW has been ongoing for years, which

again reduces the opportunity for differentiation.

Phylogenetic clusters in acute transmissions
The extent to which acute transmission of HIV-1 is clustered is

not clear. Some studies [31–38,74] report high clustering (24 to

65%) levels, while others [40,41] show much lower values (7 to

17%) for the same subtypes and transmission routes. Our more

comprehensive phylogenetic analyses of IDU from Bangkok show

higher proportions of early subtype B (35%) and CRF01_AE

(50%) infections falling into clusters, confirming that transmission

chains associated with acute infection play a key role in HIV-1

transmission and spread [31]. Transmission clusters in Nguyen et

al. [40] were inferred using the C2-V4 env region (345 bp). This

gene region, although broadly used in HIV genetic studies, is less

informative than the gp120 (,1.5 kb) region used here for

estimating phylogenetic clustering. As for Pérez-Losada et al. [41],

that study covered North America, while our Thai study and

others before, focus on a single city, a small country or a recently

infected area. This suggests that the size and population structure

of the studied area affect our ability to identify HIV-1 transmission

chains. Moreover, differences in clustering have been also

observed between subtypes, transmission routes and regions

[33,34,41]. Hence future HIV vaccine trials should pay attention

to potential sources of clustering that can effectively render

samples non-independent.

Viral evolution and patient factors
No significant differences in recombination, mutation, and

selection rates were observed among vaccinated and placebo

individuals in both subtype B and CRF01_AE. This is consistent

with the overall outcome of the VAX003 trial where immuniza-

tion with AIDSVAX B/E did not significantly affect the rate of

infection, the VL, the CD4+ count, or the clinical outcome of

vaccine recipients compared to placebo recipients [45]. Lower VL

and higher CD4+ counts, however, were significantly associated

with lower mutation rates in CRF01_AE (Table 2). Since genetic

Figure 1. HIV-1 subtype phylogenetic trees. Maximum likelihood phylogenetic inference of Bangkok HIV-1 CRF01_AE and subtype B population
structuring as a function of treatment [placebo (P) and vaccine (V)], viral load (VL), and CD4+ counts. Branch lengths are shown proportional to the
amount of change along the branches. Clades supported by bootstrap proportions $70% and posterior probabilities $0.95 in the Bayesian analysis
(transmission chains) are shown in red color and their terminals in bold. Only one clone per isolate (numbered) is represented for simplicity.
doi:10.1371/journal.pone.0016902.g001

Table 2. Mean patient diversity estimates.

HIV-1 h rLDhat vPAML vHYPHY

Subtype CRF01_AE

Treatment

Placebo (92) 0.007 4.8 1.045 1.208

Vaccine (87) 0.007 3.0 1.057 1.229

VL Categories (RNA copies/mL)

1: ,16104 (29) 0.005 6.1 0.999 1.150

2: 16104–56104 (48) 0.006 3.7 1.030 1.198

3: 56104–106104 (40) 0.007 2.8 0.958 1.110

4: 106104–256104 (45) 0.008 4.4 1.265 1.451

5: .256104 (21) 0.009 2.5 0.905 1.082

CD4+ counts (cells/mm3)

1: ,36102 (31) 0.009 2.4 0.921 1.082

2: 36102–56102 (79) 0.007 3.8 1.100 1.250

3: 56102–76102 (39) 0.006 3.7 1.003 1.187

4: .76102 (34) 0.006 5.9 1.119 1.317

Subtype B

Treatment

Placebo (17) 0.008 5.5 0.775 0.869

Vaccine (14) 0.008 4.4 0.978 0.997

VL Categories (virions/mL)

1: ,16104 (8) 0.004 3.8 0.653 0.707

2: 16104–56104 (9) 0.009 2.3 0.873 0.887

3: 56104–106104 (7) 0.011 11.4 0.998 1.199

4: .106104 (7) 0.007 1.9 1.100 1.047

CD4+ counts (cells/mL)

1: ,36102 (31) 0.011 12.4 0.870 0.899

2: 36102–56102 (79) 0.006 5.2 0.847 0.950

3: 56102–76102 (39) 0.010 2.0 0.762 0.818

4: .76102 (34) 0.006 4.3 1.121 1.078

Genetic diversity (h), population recombination rate in LDhat (rLDhat), and
selection estimates in PAML (vPAML) and HYPHY (vHYPHY). Number of isolates
analyzed is indicated between parentheses.
doi:10.1371/journal.pone.0016902.t002
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diversity may be positively correlated with Ne, one could expect

that greater VL (census size) would also cause an increase on the

number of effective virions [41].

Population dynamics of Thai HIV-1 subtypes
Previous full-genome phylogenetic analyses of HIV-1

CRF01_AE in Southeast Asia [54] indicate that CRF01_AE was

introduced from Africa to Thailand and then spread elsewhere.

Our coalescent estimate of the time of emergence of CRF01_AE

in Thailand was 1984.5 (1983–1986). An slightly earlier estimate

(198162 years) was previously reported by Liao et al. [54] using

the same method but including 64 near full-length CRF01_AE

nucleotide sequences from Africa, China, and Vietnam. Hence,

both studies suggest that CRF01_AE was circulating cryptically in

Thailand for 3–10 years before it was first detected in 1989 [75].

Similar time lags between evolutionary estimates and the

recognition of symptomatic patients have been observed before

in other countries such as United States [76] and Vietnam [54]. In

Western countries, the estimated median incubation period before

AIDS development in the absence of antiretroviral therapy is 10–

12 years [77], although in Thailand a shorter incubation period (7

years) has been suggested [78]. HIV testing in Thailand started in

1985 and only 3 cases were detected [79]. There were no cases

reported in 1986, but many thousands were detected over the next

3 years, particularly among IDU from Bangkok [75]. By February

1990, almost 15,000 cases of HIV-1 infection have been already

documented across the country [80]. Similarly to what happened

in other regions, CRF01_AE could have been introduced in

Thailand years before its detection in 1989.

Phylogenetic analyses of HIV-1 subtype B env data collected

worldwide [76] indicate that this subtype was introduced from

Africa to Haiti and then spread elsewhere (pandemic clade). In

that study, the Thai subtype B isolates did not seem to form a

separate cluster (independent HIV-1 expansion), hence our

coalescent estimate of the time of emergence of subtype B

(1965615) approximates that of the emergence of the subtype

worldwide (1968–196963 years) [41,76]. Discrepancies between

these and our current estimate are probably due to differences in

sample size: the subtype B dataset analyzed here is geographically

more restricted and includes fewer sampling points. A short

interval of sampling years, for example, provides less information

about the average rate during that interval than does a long

interval [63,81]. The larger HPD intervals of the Thai estimate

supports that idea.

Our BEAST analysis of CRF01_AE past dynamics (Fig. 2)

agrees well with the history of HIV/AIDS spread in Thailand and

the prevalence and incidence rates reported [6] and predicted

using backcalculation models [82]. Prior to 1987 the prevalence of

HIV in Thailand was low, but once HIV entered the MSM, IDU

and CSW networks (1988–1993) prevalence rates exploded rising

from virtually zero to up to 50% [4–7] and so did the relative

genetic diversity (Net). In 1991, AIDS prevention became a

national priority at the highest level and several campaigns were

launched to control AIDS spread (Ministry of Public Health,

Figure 2. HIV-1 CRF01_AE past population dynamics. Bayesian skyline plot of the HIV-1 CRF01_AE subtype in Thailand. Solid black lines show
the median estimate and dashed black lines the 95% high posterior density limits. The estimated incidence and prevalence rate are indicated in red
and blue, respectively (see text for details).
doi:10.1371/journal.pone.0016902.g002
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Thailand; http://eng.moph.go.th/). Consequently, prevalence

rates began to decline soon after (Fig. 2; see also [10]) and HIV

incidence was reduced by a third [82]. Concomitantly, Net leveled

off and slowly began to decline in 1996. In 1998, due to the Asian

Financial Crisis, HIV/AIDS funding was severely reduced [83]

and many programs like the HIV prevention schemes were

downscaled or suspended [7,83,84]. This led to a decline in

awareness and possibly an increase in unsafe sexual behavior [7].

Consequently, the incidence rate spiked for two years and so did

Net. In 2002 Thailand launched the third National Plan for the

Prevention and Alleviation of HIV/AIDS (Ministry of Public

Health, Thailand; eng.moph.go.th). Consequently, both incidence

and Net decreased again until 2004, but since then the former has

remained constant and the latter has increased slightly and

remained relatively high. Under circumstances of low surveillance

and high HIV diversity, new or existing infective strains could

expand exponentially and provoke a resurgence of AIDS across

the country. There are already signs that the epidemic could grow

in coming years [7,13]. More importantly, the epidemic has never

eased off among certain groups like IDU, where infection rates are

still very high (,30%; [7]) and continue to be a reservoir for HIV

fueling old and causing new epidemics [1,11]. Thailand must then

increase prevention efforts, especially among high-risk groups such

as IDU and MSM, but also among the general population since

the AIDS epidemic seems to be more heterogeneous now [12]. In

light of these concerns, the current government has increased

HIV/AIDS prevention efforts. In 2007, a three-year strategic plan

was announced that would focus on those most at risk of HIV

infection and difficult-to-reach groups [85]. How these new

policies are going to affect HIV-1 diversity and dynamics is for

further studies to see.

Materials and Methods

VAX003 vaccine trial participants
The 2,546 volunteers participating in the VAX003 trial

(NCT00006327) were recruited from 17 clinics in and around

Bangkok [45–47]. They all were considered at high risk for HIV-1

infection through injection drug use. The vaccine trial protocol did

not specify racial categories and no effort was made to distinguish

linguistic and geographic groups. Volunteers were randomly

assigned to vaccine or placebo groups according to a 1:1 ratio.

All subjects were immunized with AIDSVAX B/E, a bivalent

vaccine prepared by combining purified recombinant gp120s from

two different strains of the HIV-1 virus incorporated in alum

(aluminum hydroxide) adjuvant: the subtype B strain (MN) and

the subtype CRF01_AE isolate (A244). All subjects were

immunized according to a 0, 1, 6, 12, 18, 24, and 36-month

schedule. Serum samples were collected immediately prior to each

injection and two weeks after each injection, with a final blood

sample taken at 6 months following the final injection. The

specimen taken prior to each injection was used to calculate pre-

boost anti-gp120 titer values and submitted for HIV testing

(ELISA). The immunoassays selected for HIV diagnosis were

unaffected by antibodies to the AIDSVAX B/E antigens. If

evidence of HIV infection was obtained, confirmatory testing was

carried out by immunoblot. Once HIV-1 infections were

confirmed, HIV-1+ subjects were enrolled in a separate protocol

(Step B) where plasma and cells were collected at regular intervals

for up to two years post infection. Plasma samples were used for

measurement of viral loads and envelope glycoprotein sequencing.

Frozen lymphocytes were cryopreserved for immunologic and

genetic testing. The date of infection was defined as the midpoint

between the last seronegative specimen and the first seropositive

specimen. The estimated time of infection ranged from 0 to 13

months with a mean time of infection of 3–4 months. Viral load

(VL) and CD4+ measurements were taken and patients were

subdivided into 4 or 5 categories for genetic analyses (see Table 2).

Molecular datasets
Of the 2,546 volunteers enrolled in the trial 230 became

infected with HIV-1 [45] and we obtained clinical samples for 215

of them. Three to six clones per individual were collected from the

same earliest post-infection plasma sample and sequenced for the

viral gp120 gene (665 sequences total). A listing of the sequence

data used for this analysis has recently been released online and

can be accessed at www.gsid.org. All gp120 sequences were

determined using an ABI 3100 sequencer and assembled using

Sequencher (www.genecodes.com).

HIV-1 subtype was determined using the REGA HIV

Subtyping Tool 2.0 [86] and the Recombinant Identification

Program: RIP 3.0 [87] at Los Alamos (http://hiv-web.lanl.gov/

content/index). Discordant (intersubtype recombinants) isolates

were visually inspected and confirmed in RDP 3.0 [88,89]. Two

main HIV-1 subtypes were identified, CRF01_AE (182 isolates)

and subtype B (29 isolates) (see the Molecular Surveillance and

Subtype Diversity section). Because of their genetic and epidemi-

ological differences [90], these subtypes were analyzed separately.

For population dynamic analyses full VAX003 gp120 sequences

(only one clone per patient) were combined with other full length,

dated Thai gp120 sequences from the Los Alamos database as of

January 2010 to generate final datasets of 343 CRF01_AE (from

1990 to 2006) and 47 subtype B (from 1990 to 2003) isolates.

These combined datasets included 217/34 IDU, 36/4 HT, 3/0

CSW and 87/9 unknown risk-group CRF01_AE/subtype B

isolates.

Sequence alignment
Nucleotide sequences were translated into amino acids and

aligned in MAFFT 5.7 [91] using the global algorithm (G-INS-i).

Ambiguous regions in the resulting alignment were identified and

removed using GBlocks 0.91b [92]. Conserved amino acid regions

were translated back to nucleotides generating alignments of

1,317–1,329 sites for CRF01_AE and 1,398–1,413 sites for

subtype B. Full gp120 sequences (1,497–1,629 bp) were analyzed

for each patient, in which case the alignments were trivial.

Phylogenetic analysis
The best-fit model of DNA substitution was selected with the

Akaike Information Criterion [93] as implemented in jModelTest

1.0 [94]. Maximum likelihood phylogenetic trees were inferred in

RAxML 7.0.3 using 3 codon-position partitions [95]. Nodal

support was assessed using the bootstrap procedure [96] with

1,000 replicates. Heuristic searches were performed under the

best-fit model. In addition, Bayesian trees were inferred in

MrBayes 3.1.1 [97] using also 3 codon-position partitions. We

ran four chains (one cold and three heated) for 26107 generations,

sampling every 1,000 steps. Each run was repeated twice.

Convergence and mixing of the Markov chains were assessed in

Tracer 1.5 [98].

Phylogenetic transmission (infection) clusters [29] were defined

as those clades with bootstrap proportions $70% and posterior

probabilities $0.95. Attendance at a particular clinic (which

served as proxy for location of residence) and estimated date of

seroconversion were screened for all the isolates contributing to

clusters. Genetic divergence estimated as the mean pairwise

genetic distances under the K2P model [99] was also calculated for

comparison with previously published estimates.
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Genetic estimates and patient factors
The VAX003 trial included vaccinated and non-vaccinated

individuals with different VL and CD4+ counts. These individuals

do not constitute natural populations, therefore, all genetic

estimators described in this section were either applied to intra-

patient datasets (3 to 6 clones) or full-subtype datasets (29 subtype

B and 182 CRF01_AE isolates). Genetic diversity (h) and

population recombination rate (r) was estimated for each patient

using LDhat 2.1 [100]. Here, each analysis was repeated 10 times

and the r mean estimate was used for subsequent analyses.

Molecular adaptation was assessed using the ratio of nonsynon-

ymous (dN) to synonymous (dS) substitution rates (v) and estimated

using the model M0 (one-ratio) in PAML 3.14 [101] and Fixed

Effects Likelihood (FEL) in HYPHY 1.0 [102]. In the latter case,

recombination was taken into account by first detecting recom-

bination breakpoints with GARD [103] and then estimating the

dN/dS ratios independently for each fragment. Simultaneous

estimation of v and r was also performed in omegaMap [62]

for the full-subtype datasets.

Average estimates of r, h, and v were compared across factors

(e.g., vaccinated and placebo; see Table 2) using the Kruskal-

Wallis test in Aabel 3 (www.gigawiz.com). Tests based on linear

models (e.g., ANOVA) were not applied because their underlying

assumptions were not met by some of the data sets.

Population dynamics
Past population dynamics of CRF01_AE in Thailand was

inferred in BEAST 1.5.3 [104] using the Bayesian Skyline Plot

(BSP) model [105] and a relaxed clock (lognormal) model of rate of

substitution [106]. BSP searches showed overdispersed 95% High

Posterior Density (HPD) intervals for subtype B, hence the

exponential growth model was used instead. Relative genetic

diversity through time (Net) was estimated directly from dated

isolates under the best-fit model of nucleotide substitution. The

hyperparameter m (number of grouped intervals) was set up 1/4 of

the sequences in each case. Two runs 108 and 26107 generations

long were completed for each CRF01_AE and subtype B,

respectively. All output generated by BEAST was analyzed in

Tracer 1.5 to test for convergence and mixing and implement the

BSP model.

Supporting Information

Figure S1 HIV-1 BEAST Bayesian trees. BEAST maximum

clade credibility trees of Thai HIV-1 CRF01_AE (large tree) and

subtype B (small tree) isolates. Injecting drug users (red),

heterosexuals (blue), commercial sex workers (green), and

unknown risk group (black) infections are indicated. Branch

lengths are shown proportional to the amount of change along the

branches. Only one clone per patient is represented for simplicity.
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51. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of

DNA sequences; Miura RM, ed. Providence, RI: Am Math Soc. pp 57–86.

52. Watanaveeradej V, Benenson MW, Souza MD, Sirisopana N, Nitayaphan S,

et al. (2006) Molecular epidemiology of HIV Type 1 in preparation for a Phase

III prime-boost vaccine trial in Thailand and a new approach to HIV Type 1
genotyping. AIDS Res Hum Retroviruses 22: 801–807.

53. Piyasirisilp S, McCutchan FE, Carr JK, Sanders-Buell E, Liu W, et al. (2000) A
recent outbreak of human immunodeficiency virus type 1 infection in southern

China was initiated by two highly homogeneous, geographically separated

strains, circulating recombinant form AE and a novel BC recombinant. J Virol
74: 11286–11295.

54. Liao H, Tee KK, Hase S, Uenishi R, Li XJ, et al. (2009) Phylodynamic analysis
of the dissemination of HIV-1 CRF01_AE in Vietnam. Virology 391: 51–56.

55. Kato K, Kusagawa S, Motomura K, Yang R, Shiino T, et al. (2001) Closely
related HIV-1 CRF01_AE variant among injecting drug users in northern

Vietnam: evidence of HIV spread across the Vietnam-China border. AIDS Res

Hum Retroviruses 17: 113–123.

56. McCutchan FE, Sanders-Buell E, Salminen MO, Carr JK, Sheppard WH

(1998) Diversity of the human immunodeficiency virus type 1 envelope
glycoprotein in San Francisco Men’s Health Study participants. AIDS Res

Hum Retroviruses 14: 329–337.

57. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM (2008) The
challenge of HIV-1 subtype diversity. N Engl J Med 358: 1590–1602.

58. Pérez-Losada M, Posada D, Arenas M, Jobes DV, Sinangil F, et al. (2009)
Ethnic differences in the adaptation rate of HIV gp120 from a vaccine trial.

Retrovirology 6: 67.

59. Choisy M, Woelk CH, Guegan JF, Robertson DL (2004) Comparative study of

adaptive molecular evolution in different human immunodeficiency virus

groups and subtypes. J Virol 78: 1962–1970.

60. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the

accuracy of the likelihood method for detecting positive selection at amino acid
sites. Genetics 164: 1229–1236.

61. Shriner D, Nickle DC, Jensen MA, Mullins JI (2003) Potential impact of
recombination on sitewise approaches for detecting positive natural selection.

Genet Res 81: 115–121.

62. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional
constraint in the presence of recombination. Genetics 172: 1411–1425.

63. Abecasis AB, Vandamme AM, Lemey P (2009) Quantifying differences in the
tempo of human immunodeficiency virus type 1 subtype evolution. J Virol 83:

12917–12924.

64. Utachee P, Jinnopat P, Isarangkura-Na-Ayuthaya P, de Silva UC, Nakamura S,

et al. (2009) Genotypic characterization of CRF01_AE env genes derived from

human immunodeficiency virus type 1-infected patients residing in central
Thailand. AIDS Res Hum Retroviruses 25: 229–236.

65. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, et al. (2008)
Identification and characterization of transmitted and early founder virus

envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105:
7552–7557.

66. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, et al.

(1999) Consistent viral evolutionary changes associated with the progression of
human immunodeficiency virus type 1 infection. J Virol 73: 10489–10502.

67. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, et al. (2000) Timing the
ancestor of the HIV-1 pandemic strains. Science 288: 1789–1796.

68. Papathanasopoulos MA, Hunt GM, Tiemessen CT (2003) Evolution and

diversity of HIV-1 in Africa-a review. Virus Genes 26: 151–163.

69. Oelrichs RB, Crowe SM (2003) The molecular epidemiology of HIV-1 in

South and East Asia. Curr HIV Res 1: 239–248.

70. Cheng CL, Feng Y, He X, Lin P, Liang SJ, et al. (2009) Genetic characteristics

of HIV-1 CRF01_AE strains in four provinces, southern China. Zhonghua Liu
Xing Bing Xue Za Zhi 30: 720–725.

71. Marjoram P, Donnelly P (1994) Pairwise comparisons of mitochondrial DNA

sequences in subdivided populations and implications for early human
evolution. Genetics 136: 673–683.

72. Rosenberg NA, Hirsh AE (2003) On the use of star-shaped genealogies in
inference of coalescence times. Genetics 164: 1677–1682.

73. Family Health International (2001) What drives HIV in Asia? a summary of
trends in sexual and drug-taking behaviours. Arlington: Family Health

International.

74. Ahumada-Ruiz S, Flores-Figueroa D, Toala-Gonzalez I, Thomson MM (2009)
Analysis of HIV-1 pol sequences from Panama: identification of phylogenetic

clusters within subtype B and detection of antiretroviral drug resistance
mutations. Infect Genet Evol 9: 933–940.

75. McCutchan FE, Hegerich PA, Brennan TP, Phanuphak P, Singharaj P, et al.
(1992) Genetic variants of HIV-1 in Thailand. AIDS Res Hum Retroviruses 8:

1887–1895.

76. Gilbert MT, Rambaut A, Wlasiuk G, Spira TJ, Pitchenik AE, et al. (2007) The
emergence of HIV/AIDS in the Americas and beyond. Proc Natl Acad

Sci U S A 104: 18566–18570.

77. NIAID (2004) How HIV causes AIDS. USA: National Institutes of Health.

78. Rangsin R, Piyaraj P, Sirisanthana T, Sirisopana N, Short O, et al. (2007) The
natural history of HIV-1 subtype E infection in young men in Thailand with up

to 14 years of follow-up. AIDS 21 Suppl 6: S39–46.

79. Phanuphak P, Locharernkul C, Panmuong W, Wilde H (1985) A report of
three cases of AIDS in Thailand. Asian Pac J Allergy Immunol 3: 195–199.

80. Smith DG (1990) Thailand: AIDS crisis looms. Lancet 335: 781–782.

81. Seo TK, Thorne JL, Hasegawa M, Kishino H (2002) A viral sampling design

for testing the molecular clock and for estimating evolutionary rates and
divergence times. Bioinformatics 18: 115–123.

Phylodynamics of HIV-1 in Thailand

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e16902



82. Punyacharoensin N, Viwatwongkasem C (2009) Trends in three decades of

HIV/AIDS epidemic in Thailand by nonparametric backcalculation method.
AIDS 23: 1143–1152.

83. Saengdidtha B, Rangsin R (2005) Roles of the Royal Thai Army Medical

Department in supporting the country to fight against HIV/AIDS: 18 years of
experience and success. J Med Assoc Thai 88 Suppl 3: S378–387.

84. Marais H, Phoolcharoen W, Posyachinda V, Kanchanachitra C, Teokul W
(2004) Thailand’s response to HIV/AIDS: progress and challenges. Bangkok,

Thailand: United Nations Development Programme (UNDP). 95 p.

85. USAID (2008) HIV/AIDS health profile. Southeast Asia Region. Available:
http://www.usaid.gov/our_work/global_health/aids/Countries/ane/aneregion.

html.
86. de Oliveira T, Deforche K, Cassol S, Salminen M, Paraskevis D, et al. (2005)

An automated genotyping system for analysis of HIV-1 and other microbial
sequences. Bioinformatics 21: 3797–3800.

87. Siepel AC, Halpern AL, Macken C, Korber BT (1995) A computer program

designed to screen rapidly for HIV type 1 intersubtype recombinant sequences.
AIDS Res Hum Retroviruses 11: 1413–1416.

88. Martin DP, Williamson C, Posada D (2005) RDP2: Recombination detection
and analysis from sequence alignments. Bioinformatics 21: 260–262.

89. Martin DP, Posada D, Crandall K, Williamson C (2005) A modified bootscan

algorithm for automated identification of recombinant sequences and
recombination breakpoints. AIDS Research and Human Retroviruses 21:

98–102.
90. Crandall KA, ed (1999) The Evolution of HIV. Baltimore, MD: The Johns

Hopkins University Press. 504 p.
91. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement

in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518.

92. Castresana J (2000) Selection of conserved blocks from multiple alignments for
their use in phylogenetic analysis. Mol Biol Evol 17: 540–552.

93. Akaike H (1974) A new look at the statistical model indentification. IEEE Trans
Autom Contr 19: 716–723.

94. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:

1253–1256.
95. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phyloge-

netic analyses with thousands of taxa and mixed models. Bioinformatics 22:

2688–2690.
96. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the

bootstrap. Evolution 39: 783–791.
97. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic

inference under mixed models. Bioinformatics 19: 1572–1574.

98. Rambaut A, Drummond AJ (2009) Tracer: MCMC trace analysis tool. 1.5 ed.
Edinburgh: Institute of Evolutionary Biology, http://tree.bio.ed.ac.uk/software/

tracer/.
99. Kimura M (1980) A simple method for estimating evolutionary rate of base

substitutions through comparative studies of nucleotide sequences. J Mol Evol
16: 111–120.

100. McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for

detecting and estimating recombination from gene sequences. Genetics 160:
1231–1241.

101. Yang Z (2001) PAML: Phylogenetic Analysis by Maximum Likelihood. 3.1 ed.
London: University College London.

102. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing

using phylogenies. Bioinformatics 21: 676–679.
103. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006)

GARD: a genetic algorithm for recombination detection. Bioinformatics 22:
3096–3098.

104. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol 7: 214.

105. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent

inference of past population dynamics from molecular sequences. Mol Biol
Evol 22: 1185–1192.

106. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed
phylogenetics and dating with confidence. PLoS Biol 4: e88.

Phylodynamics of HIV-1 in Thailand

PLoS ONE | www.plosone.org 10 March 2011 | Volume 6 | Issue 3 | e16902


