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ABSTRACT
Single-cell sequencing is a powerful approach that 
can detect genetic alterations and their phenotypic 
consequences in the context of human development, 
with cellular resolution. Humans start out as single-
cell zygotes and undergo fission and differentiation to 
develop into multicellular organisms. Before fertilisation 
and during development, the cellular genome acquires 
hundreds of mutations that propagate down the cell 
lineage. Whether germline or somatic in nature, some 
of these mutations may have significant genotypic 
impact and lead to diseased cellular phenotypes, 
either systemically or confined to a tissue. Single-cell 
sequencing enables the detection and monitoring of the 
genotype and the consequent molecular phenotypes at 
a cellular resolution. It offers powerful tools to compare 
the cellular lineage between ’normal’ and ’diseased’ 
conditions and to establish genotype-phenotype 
relationships. By preserving cellular heterogeneity, 
single-cell sequencing, unlike bulk-sequencing, allows 
the detection of even small, diseased subpopulations 
of cells within an otherwise normal tissue. Indeed, the 
characterisation of biopsies with cellular resolution 
can provide a mechanistic view of the disease. While 
single-cell approaches are currently used mainly in 
basic research, it can be expected that applications of 
these technologies in the clinic may aid the detection, 
diagnosis and eventually the treatment of rare genetic 
diseases as well as cancer. This review article provides an 
overview of the single-cell sequencing technologies in 
the context of human genetics, with an aim to empower 
clinicians to understand and interpret the single-cell 
sequencing data and analyses. We discuss the state-
of-the-art experimental and analytical workflows and 
highlight current challenges/limitations. Notably, we 
focus on two prospective applications of the technology 
in human genetics, namely the annotation of the non-
coding genome using single-cell functional genomics and 
the use of single-cell sequencing data for in silico variant 
prioritisation.

INTRODUCTION
Cells are unique—differing from one another in 
terms of their copy numbers, transcriptional land-
scape, physiological functions and spatiotemporal 
locations.1 The recent advances of single-cell 
sequencing (sc-seq) technologies have revolution-
ised how we profile genetic, epigenetic, transcrip-
tional or proteomic variations in individual cells. 
Named ‘Method of Year’ by Nature Methods in 
2013 and ‘Breakthrough of the Year’ by Science 
in 2018,2 sc-seq approaches have so far enabled 
the identification of new cell types, building of 
cellular atlases of human, mouse, zebrafish and frog 
embryos (https://www.humancellatlas.org/),3–11 
identification of disease mechanisms,12 detection 

and tracing of cancer progression and therapy13 as 
well as the screening of genomic regions at scale.14 15 
Organismal-level atlases provide insights into the 
development, the cell type constitution of mature 
organs and the spatial context of every cell. They 
provide a framework to readily investigate develop-
mental disorders as well as pleiotropism arising from 
ubiquitous cell types present across multiple organs. 
Merged atlases combining mouse and human data 
also provide a bridge to link human diseases to 
mouse models.3 By mapping the entire human body 
in adults and in embryonic stages as part of the 
Human Cell Atlas initiative, sc-seq technologies can 
also help decipher the cellular-level changes that 
occur during a specific disease and monitor subse-
quent anomalies in cellular differentiation.3

Of primary importance to human geneticists is 
the identification of genes, pathways or mecha-
nisms that give rise to disease phenotypes, as well 
as the detection, monitoring and prediction of 
disease, its progression or the response to an inter-
vention, which may be confined to a subpopulation 
of cells within a tissue or an organ. This necessi-
tates characterisation of biopsies and understanding 
of mechanisms at a cellular resolution. Unlike 
bulk-sequencing (bulk-seq), which only informs 
on the tissue averages, sc-seq enables identifica-
tion and quantification of cellular heterogeneities, 
such as in the case of neurological diseases16 or 
cardiac failure.17 Moreover, the introduction of 
high-throughput sequencing approaches in the 
clinic has led to a massive growth in the number 
of variants of uncertain significance, new candi-
date genes and new phenotypes.18 Screening of 
unannotated genomic regions and resulting pheno-
types using traditional low throughput methods is 
unfeasible. Sc-seq approaches, in combination with 
gene-editing technologies, make it now possible 
to screen thousands of genomic regions in a single 
experiment 19 and to identify phenotypes, previ-
ously overlooked by other technologies.20 For 
these reasons, sc-seq is finding increasing interest in 
human genetics research.

In this review article, we provide an overview of 
the current sc-seq technologies with an emphasis on 
the methods relevant to human genetics. To define 
the scope, we consider sc-seq as a congregation of 
methods that enables the profiling of individual 
cells by applying sequencing technologies. In this 
overarching definition, we include the profiling of 
the cellular genome, epigenome, transcriptome and 
proteome. But we exclude technologies that use 
immunofluorescence, in situ hybridisation, mass-
spectroscopy or other readout schemes, such as 
MERFISH (multiplexed error-robust fluorescence 
in situ hybridization), or CyTOF (cytometry by 
time of flight), which are reviewed elsewhere.21 22 
We mainly focus our discussions on well-established 
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methods, but have strived to point out promising recent devel-
opments in the field. At first, we discuss the progress made in 
the experimental workflow and then describe how diverse 
computational methods help to extract relevant information and 
construct models. In the latter half, we focus on two prospec-
tive applications, chosen for their immediate relevance to human 
genetics. These include the experimental screening of genomic 
regions and the prioritisation of variants using computational 
approaches.

The aim of this review article is (i) to provide a comprehensive 
overview to a human geneticist entering the field, (ii) to gener-
alise and simplify concepts, where possible, so as to help under-
stand and interpret the literature, (iii) to provide an overview 
of the current use case scenarios of sc-seq in human genetics 
basic research and (iv) to forecast on prospective applications 
of the technology in the human genetics clinic. For focused 
information beyond the scope of this comprehensive review, we 
recommend several review articles that discuss the current trends 
on various topics in detail, including the different sequencing 
modalities, such as genome,23–26 epigenome,27–29 transcrip-
tome,30–34 multiome35–37 as well as their applications in cancer,38 
cardiovascular diseases39 and neurological diseases.40

HOW DOES SINGLE-CELL SEQUENCING WORK?
The workflow of single-cell sequencing
Contemporary sc-seq, be it genome, transcriptome or another 
modality, entails dissociating tissue into cells, capturing and 
tagging the molecules within each cell with a unique nucleotide 
sequence (cellular barcode), creating a sequencing library and 
sequencing. Ground-breaking innovations have been made in all 
these aspects of the workflow over the last decade (figure 1). As 
a result, improvements have occurred in the cellular throughput, 
the diversity of sequence-able molecular species (modalities) as 
well as many other characteristics (eg, sensitivity, quality, depth 
and cost) (online supplemental figure 1).41 In this section, we 
provide a brief overview of the workflow and summarise the 
current capabilities and any associated limitations. An exhaustive 
list of sc-seq techniques and analysis workflow is accessible in 
several recent reviews.26 30–32 35 42

From complex tissues to single cells
The first step in all sc-seq approaches is the dissociation of the 
tissue into single cells (figure  1A). It is normally achieved by 
mechanical (eg, cutting, crushing, mincing) and/or enzymatic 
(eg, trypsin) means, unless a more straightforward cellular sepa-
ration is possible, like in the case of blood.16 43–45 This key step 
influences the outcome of all downstream results, because tissues 
respond differently to the processing, due to the differences in the 
cellular composition and the extracellular matrix. This is espe-
cially the case in complex tissues (eg, brain), where such biases 
may give rise to skewed representation of cell types in the final 
data. For example, cryopreservation has been shown to result in 
the selective loss of epithelial cells.46 Enzymatic methods can also 
affect the omics-profile of the cell by inducing stress responses.46 
FACS sorting may often be required to enrich specific cell types 
as well as to reduce debris.16 Due to the difficulty of obtaining 
intact cells from certain tissues (eg, mature brain, frozen tissue), 
single-nuclei sequencing (for simplicity collectively denoted 
hereafter as sc-seq) has been gaining popularity, because intact 
nuclei are more easily suspended and barcoded than cells.46–49 
For this reason, many large-scale consortia, such as the Human 
Cell Atlas,3 50 mainly use single-nuclei sequencing for unbiased 
sampling.

Labelling the content of each cell by cellular barcoding
Barcoding the molecular contents of each cell allows tracing 
every sequencing-read back to its cell-of-origin. This is achieved 
by segregating the dissociated cells or nuclei into small ‘reaction 
microchambers’ represented either by microwells (figure  1B) 
or microdroplets within a microfluidic system (figure  1C).51 
Each reaction chamber contains a reagent cocktail, including 
enzymes, antibodies and/or primers, in order to permeabilise 
the cell/nuclear membrane, capture the molecules of interest 
and to impart a cellular barcode to every captured molecule 
within the reaction microchamber. The cellular barcodes are 
6–20 base nucleotide sequences in length and unique to each 
microchamber. In many of the high-throughput well or droplet 
technologies, the reagents for molecular capture and barcoding 
are either anchored to the bottom of the wells, added to the 
individual wells or encapsulated in microbeads. Cells are placed 
into such microchambers at random by means of microfluidics 
or pipetting. By minimising cases in which more than one cell 
ends up in a single microchamber (usually below 10%), all of 
the molecules within each cell, in most cases, receive a unique 
barcode. This allows in silico allocation of every sequencing-read 
back to its cell-of-origin.

Figure 1  Five stages of single-cell sequencing (sc-seq) experimental 
workflow. (A) Dissociation of the desired tissue into a cellular suspension 
is the first step in the sc-seq experimental workflow. (B–C) Cellular 
barcoding of all required molecules within a cell is realised by segregating 
individual cells in (B) wells or (C) droplets. Barcodes (demarcated by various 
colours) are introduced in a solution form or as beads, depending on the 
technology used. (D–G) The sc-seq allows interrogation of the cellular 
genome, transcriptome, proteome as well as the epigenome—referred to 
as sequencing modalities. (H, I) Construction of a sequencing library from 
the barcoded molecules. (H) The transcriptome and proteome are generally 
captured by taking advantage of poly-A sequences. This is either the 3’ 
poly-A tail in the case of mRNA or is part of oligonucleotide sequences 
conjugated to the antibodies used to recognise the proteins of interest. 
(I) Genome and epigenome sequencing requires DNA fragmentation, 
amplification and additional steps depending on the feature of interest. 
(J, K) Short-read sequencing offers high-accuracy and speed, but is limited 
to <200 bp read lengths, whereas long-read sequencing generally offers 
sequence lengths reaching tens of kilo bases.
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Among the numerous advances over the years, the cellular 
throughput—the number of cells that can be barcoded at once—
has seen a remarkable increase from a few cells since the initial 
demonstration52 to many thousands of cells using well-based 
and droplet-based techniques.53–57 Cellular throughput in the 
order of millions of cells, for example, to sequence organs or 
even entire embryos, is possible with ‘combinatorial indexing’ 
or ‘split-pool’ barcoding.7 58–60 The cellular throughput is only 
one of the many differences between these cellular barcoding 
approaches. Other differences include the levels of automa-
tion and convenience, cost, cellular capture efficiency, molec-
ular capture efficiency, doublet-rate, remote-processing (eg, 
compatibility with formaldehyde-fixed tissue) and customisa-
tion options.33 61 While generally low in throughput, well-based 
or plate-based methods allow cellular visualisation by micros-
copy and are more amenable to customisation.56 In contrast, 
droplet-based methods offer higher cellular throughput with 
automation, where the cell/nuclear lysis, molecular capture and 
barcoding occur ‘on-the-flow’.

Modalities of sc-seq
While the vast majority of sc-seq experiments assay the tran-
scriptome of each cell (figure 1E),52 62 63 the technology has now 
been expanded to other omics-modalities, including the genome, 
epigenome and proteome (figure 1D, F and G). These modalities 
provide information at the different levels of the central dogma: 
sc-genome-seq helps identify somatic mutations and mosaicism; 
sc-epigenome-seq measures features such as chromatin accessi-
bility, histone modifications, DNA methylation profile, three-
dimensional (3D) genome architecture, etc, which regulate 
transcription, cellular differentiation and disease progression; 
sc-transcriptome-sq quantifies the gene-expression, which often 
is used as a proxy for cell state or type and the sc-proteome-seq 
provides information about translated products, usually cell-
surface proteins.

The innovation in single-cell proteome and epigenome 
sequencing lies in library preparation, where information of 
interest (eg, the presence of a protein or the chromatin archi-
tecture) is converted to a sequence-able DNA library with 
cellular barcoding. Stoeckius et al,64 Shahi et al65 and Peterson 
et al66 demonstrated sc-proteome-seq by using oligonucleotide-
conjugated antibodies targeted against various proteins of 
interest. These oligonucleotides contained adaptor sequences 
required for library preparation as well as molecular barcodes 
unique to the antibodies to enable in silico proteome re-con-
struction. sc-proteome-seq offers unmatched scalability (at least 
theoretically) when compared with other methods with inherent 
limitations on the bandwidth (eg, microscopy, flow cytometry 
or mass cytometry): a 10-base oligonucleotide generates suffi-
cient unique molecular barcodes that exceed the number of 
known human-proteins.64 In practice, however, the number of 
detectable proteins is limited by antibodies available. For epig-
enome sequencing, Cusanovich et al58 and Buenrostro et al67 
developed sc-ATAC-seq (assay for transposase-accessible chro-
matin) to elucidate the mechanisms that give rise to intercel-
lular heterogeneity, despite harbouring the same genetic code. 
Other epigenomic modalities, such as DNA methylation, 3D 
genome architecture and histone marks, have also been demon-
strated,68–73 which are discussed in recent reviews.27 Recent 
advances have been focused on the combined sequencing of 
multiple modalities,36 74 such as co-assays to simultaneously 
profile chromatin accessibility and gene expression.60 75 76 Such 
methods allow linking regulatory elements to gene-expression 

patterns within the same cell and help delineate gene regulatory 
networks, and are becoming increasingly popular techniques for 
basic research in genetics.

Library preparation and sequencing technologies
The conversion of the molecules of interest within each cell 
into a barcoded, sequence-able DNA library is at the crux of 
sc-seq (figure  1H,I). Transcriptome and proteome sequencing 
usually take advantage of poly-A terminations of transcripts 
or oligonucleotide-tags on the antibodies to capture the frag-
ments, after which RT and PCR amplifications are performed 
to generate a sequencing library (figure 1H). To account for bias 
induced by exponential PCR amplification, certain protocols 
tag every captured molecule with a unique molecular identifier 
(UMI—a short random nucleotide sequence) prior to PCR. All 
sequencing reads from a cell (ie, cellular barcode) associated 
with a single UMI are pooled.

In general, for genomic and epigenomic sc-seq modalities, 
including whole genome sequencing, chromatin accessibility, 
methylation and other epigenetic information, the DNA is 
segmented, barcoded and amplified (figure 1I). Except for the 
additional cellular barcoding steps, these procedures are similar 
and often adapted from developments in bulk-seq. Specifically, 
several methods have been developed for single-cell whole 
genome amplification, such as random/degenerate oligonucle-
otide primed PCR, multiple displacement amplification, multiple 
annealing and looping-based amplification cycles, linear ampli-
fication via transposon insertion, which all result in sequencing 
libraries with lengths in the range of several hundred bases.26 
A recent development has also demonstrated sc-genome-seq 
with high-fidelity reads reaching kilobase lengths with the use 
of a transposase to fragment the DNA.77 The library prepara-
tion varies across the different sc-epigenome-seq techniques,27 28 
depending on the feature of interest. In the case of chromatin 
accessibility, enzymes such as DNase,78 Tn5 transposase58 67 
are used to fragment the genome at open chromatin regions, 
followed by barcoding and adaptor ligation. In the case of 
profiling histone-marks, earlier methods used free enzymes, such 
as MNase,73 to non-specifically fragment the DNA, followed 
by barcoding and pooled immunoprecipitation. More recent 
approaches to profile histone-marks without the additional step 
of immunoprecipitation use antibody-directed cleavage/tagmen-
tation, such as in single-cell CUT&TAG79 or CoBATCH.71

The sc-seq libraries thus generated are sequenced by short-
read sequencing technologies (figure 1J) or less often by long-
read sequencing methods (figure 1K) for read lengths of tens of 
kilo bases to up to a few million bases, at the expense sequencing 
accuracy, duration or cost.77 80 81 One of the primary challenges 
in sc-seq library preparation is the imperfect molecular capture 
efficiency, whereby only a subset of molecules in each cell is 
represented in the sequencing library. Referred to as ‘dropout’ 
events, this can result in bias, misclassification of cell types or 
batch effects. Further advances in library preparation as well as 
data analysis strategies are to be expected in the near future, 
resolving most of these limitations.

Recording additional cellular metadata
In addition to the profiling of the four omics modalities, recent 
advances also allow the recording of other cellular metadata. 
Technologies, such as sci-space,6 transcriptome in vivo analysis82 
and in situ sequencing,83 84 enable recording of spatial location of 
each cell, which is lost in the cell suspension-based library prepa-
ration described above. Preserving the spatial context can help 
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in understanding intercellular communication and its alteration 
in disease contexts by simultaneously describing the cellular 
subtypes and their physical proximities.6 Despite limitations 
in single-cell resolution, techniques such as slide-(RNA-)seq,85 
slide-DNA-seq86 and spatial-ATAC-seq87 demonstrate the value 
of capturing spatial information in characterising diseases. For 
example, slide-DNA-seq of a cancer model revealed that clonal 
populations are confined to distinct spatial regions—a discovery 
not possible with mainstream bulk-seq or sc-seq. Indeed, a 
recent publication reported on the development of Stereo-seq, 
which uses a DNA nanoball technology to sequence the sc-tran-
scriptome with submicrometre spatial resolution and map the 
mouse embryo development to generate a Mouse Organogen-
esis Spatiotemporal Transcriptomic Atlas.11 Developmental cell 
lineage information can be computationally extracted from the 
omics-profiles in developmentally heterogeneous cellular popu-
lations8 88–92 or it may be measured in individual cells by longi-
tudinally ‘recording the cell states’.93 Niche techniques such 
as Patch-seq enable associating a neuron’s electrophysiological 
profile with its expression profile. Thus, it is currently possible 
to profile single cells at many omics-modalities, in parallel and 
in association with cellular meta-features. Commercial offer-
ings of such multi-omics sc-seq kits are also beginning to appear 
(Mission Bio and 10x Genomics), foreshadowing the possibility 
of being able to mix-and-match the modalities and cellular meta-
features of interest at ease in the near future.

Considerations when performing sc-seq experiments
The goals of a particular project/experiment, the nature of the 
sample to be studied, budget, available expertise both in the 
laboratory and in analysis, available infrastructure, samples 
variability can all dictate the numerous choices that need 
to be made in the above described steps of the sc-seq work-
flow. Here, we summarise a few key considerations that can 
provide preliminary guidance to a reader planning an sc-seq 
experiment.

The choice of the sequencing modality is dictated by the goal of 
the study. However, given the abundance of methods (including 
commercial kits) and analysis pipelines that enable multimodal 
sc-seq experiment and analysis, studies may often benefit from 
the combined data (eg, epigenome, transcriptome and proteome), 
which has facilitated more accurate cell type annotation and 
establishing regulatory networks.94 However, the trade off often 
includes increased costs and reduced data quality compared with 
single modality sc-seq. The sample, whether fresh, frozen or fixed, 
imposes further constraints on the choice of methodology. For 
example, tissue dissociation into single cells (as opposed to nuclei) 
is often only possible from fresh tissues. Moreover, the use of fixed 
cells/nuclei for sc-transcriptome-seq is only possible with a subset 
of technologies and may require further optimisation.95 96 The 
choice of sequencing cells or nuclei can in turn impact downstream 
analyses, such as RNA velocity, which draws inferences from the 
difference between spliced and unspliced transcriptome.97 In terms 
of time, cost and expertise required to establish and perform the 
assays, comercial end-to-end solutions often perform better than 
non-commercial solutions. Another crucial trade off, particularly 
in sc-transcriptome-seq, is between the number of cells sequenced 
versus the number of genes detected per cell (online supplemental 
figure 1). Many well-based methods are aimed at deeper sequencing 
of a smaller number of cells and combinatorial indexing-based 
methods fall on the other end of the spectrum, capable of sequencing 
millions of cells, although at a lower number of transcripts detected 
per cell. In this regard, the droplet based barcoding methods offer 

middle ground. Online supplemental figure 1 also provides an over-
view of the cost of preparing the sequencing libraries per cell, where 
non-commercial methods often have the edge. However, when the 
additional sequencing costs are considered, commercial kits may be 
on par with the non end-to-end solutions.

Analysis and visualisation
The sc-seq produces large volumes of data (20–120 GB per 
sample),98 which necessitates sophisticated computational 
and statistical techniques for analysis. After sample collection, 
processing and sequencing as described in the previous section 
(figure  2A), the sequenced reads are first demultiplexed using 
the cellular barcodes, tracing each read back to the cell-of-origin, 
thus effectively creating an omics-profile for each cell. The 
demultiplexed reads are aligned to the reference genome (sc-ge-
nome-seq, sc-epigenome-seq, sc-transcriptome-seq) or feature 
tag (sc-proteome-seq) and quantified. This is organised into a 
matrix in which each row contains the feature information and 
each column the cellular identity, forming the feature-barcode 
matrix. Due to biological variations, diverse microenvironments 
and the statistical nature of and inherent biases in the sc-seq 
experimental workflow (eg, PCR), no two cells, even of the same 
cell type, will have identical omics-profiles. Normalisation of the 
feature-barcode matrix makes the data comparable between cells 
by accounting for the variations, such as the sequencing depth, 
(PCR) amplification bias, the number of molecules identified 
and dropout events. At this stage, the feature-barcode matrix is 
ready for biological variance interpretation. Various computa-
tional tools are available for the analysis workflow.99–104

Clustering
Clustering refers to the grouping of cells with similar features, 
for example, accessible chromatin and methylation profiles in 
the case of epigenome sequencing, mutational landscape in the 
case of genome sequencing or expression profile in transcrip-
tome or proteome sequencing (figure  2B). For clustering, the 
features (often several thousands) are condensed, using methods 
like principal component analysis (PCA), which reduce the data-
dimensionality.105 These condensed data are then clustered using 
methods like k-means, network clustering, which are adopted 
and implemented in the single-cell analysis workflows. The 
clustering results are commonly visualised in a further dimen-
sionality reduced fashion, where the principal features (PCA 
components) are condensed into two or three dimensions, using 
methods—Uniform Manifold Approximation and Projection 
(McInnes,106 Uniform Manifold Approximation and Projec-
tion for Dimension Reduction, 2018, http://arxiv.org/abs/1802.​
03426, accessed 5 July 2021) or t-distributed stochastic neigh-
bour embedding107. Both these methods result in scatter plots, 
where each dot represents a cell and the cells in a cluster are 
characterised with a similar cellular profile. The visualisation 
methods are rapidly evolving and there is still ambiguity about 
how to infer the underlying biology from the high dimensional 
data.108 Annotation of the cell type corresponding to each cluster 
is then carried out by identifying cluster-specific features (or 
differential features) that distinguish it from the other clusters.

Differential features
Differential feature analysis helps in identifying the source of 
variability between clusters as well as across samples. Within 
a sample, the differential feature analysis is typically used to 
identify cell types, states or clones based on the cluster-specific 
features. This is either performed manually based on the 
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literature on the identified cluster-specific features (eg, differ-
ential features or gene enrichment analysis) or using automated 
methods based on correlation-based, probabilistic or supervised 
machine learning models, as reviewed elsewhere.109 Whereas 
across samples, it is used to compare the differences between, 
for example, the control and a diseased tissue, in order to estab-
lish genotype-phenotype relationships as discussed below. Thus, 
sc-seq is able to capture differences stratified into cell types, 
unlike bulk-seq where the differences are averaged over all 
cells and often miss smaller changes between cells. There are 
multiple methods and algorithms available for the differential 
feature analysis—the choice of the right method will reduce the 
false discovery rates.110 Dot plots, heatmap and violin plots are 
the widely used visualisation methods to portray the differences 
in features like methylation status, mutational landscape, gene 
and protein expression between the cell types and also across 
samples. Figure  2C shows a dot plot, where the hypothetical 
subclusters of haematopoietic cells are compared to identify 
features that differentiate lymphoma cells from normal cells.

Trajectory analysis
The omics-profiles of cells even within a cluster (cell type) exhibit 
diversity, although at a finer level than between clusters. While 
experimental artefacts may account for some of this, it also 
contains biologically relevant information, such as their differ-
entiation state, cell cycle state and somatic evolution. Trajectory 
analysis is an approach to organise cells within a cluster based 
on their progress along an expected/apparent biological process. 
The analysis assumes that certain features in these cells vary 
continuously along a gradient with the progression of biological 
processes. Therefore, these gradients are represented as branches, 
showing the minute differences in the state of the cells. Insightful 
information can often be gained from trajectory analyses and 
the so-called pseudotime plots, which assign a timestamp to 
each cell based on its progression along the feature gradient103 

(figure 2D). In the case of genomic data, such an analysis can 
help trace the accumulation of somatic mutations within a cell 
type (eg, cancer) to study clonal evolution. Figure  2D shows 
the hypothetical organisation of cells from stem cells to mature 
haematopoietic cell types. Also depicted is a diseased lymphoma 
trajectory that deviates from normal lymphoid cells. Research 
initiatives, such as LifeTime, expect that such trajectory anal-
yses can help in early disease detection by monitoring trajecto-
ries that deviate from a reference trajectory.111 Another analysis 
that extracts temporal information from the static sc-transcrip-
tome-seq data is RNA velocity. It captures the transcriptional 
dynamics in the cells, for example, a cell differentiating from 
a progenitor state to a mature state. It infers each cell’s future 
state by comparing the proportion of unspliced versus spliced 
transcripts of every gene within a cell.112

WHAT CAN WE DO WITH SC-SEQ TECHNOLOGIES IN HUMAN 
GENETICS?
Current implementations of sc-seq in human genetics basic 
research
Human genetics is in part the identification of the causative 
reasons behind a diseased state. Before sc-seq, bulk-seq was 
often used for the molecular phenotyping of genetic disease 
by comparing the average omics-profiles of the diseased and 
the control samples. While this approach has been successful 
in some cases, the resolution of bulk-seq is too low to detect 
changes in cellular heterogeneity during development. With 
the advent of sc-seq, such investigations are being performed 
at a much higher resolution to understand the cellular-level 
changes pertaining to diseases. sc-genome-seq has been applied 
in studying genetic mosaicism,26 aneuploidy113 and clonal evolu-
tion.114 As an example, sc-genome-seq in patients with acute 
myeloid leukaemia helped to detect significantly more muta-
tions and also mutations exclusive to clones compared with the 

Figure 2  Workflow of single-cell sequencing (sc-seq) data analysis and visualisation. (A) The cell or nuclei suspension from a tissue biopsy is subjected 
to sc-seq of the desired modality(-ies). After data quality control, (B) cells are clustered and visualised in a map (eg, Uniform Manifold Approximation and 
Projection), where each cell is represented by a dot and coloured by its cluster identity. The coordinates of the map are arbitrary and represent non-linear 
reductions of the omics-features. Each cluster may be further subclustered. Cell type or state of each cluster or subcluster is identified by differential features 
analysis, that is, features which differentiates it from the others. (C) The differential features can be visualised using dot plots, where the size and opacity of 
the dots scale with the percentage of cells and the quantity at which a feature is present in a cluster. (D) Pseudotime-trajectories enable the visualisation of 
biological processes, including differentiation or disease development. Early identification of disease-forming, ectopic trajectories (eg, lymphoma, black) is 
one of the promises of the sc-seq technology. (A–D) Synthesised data, purely for illustrative purposes. (D) Represents a hypothetical scenario adapted from 
Rajewsky et al.111
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bulk-genome-seq, because of its sensitivity to filter at a subpop-
ulation level.114 Sc-epigenome-seq and sc-transcriptome-seq 
have been demonstrated to track regulatory and transcriptional 
cellular heterogeneity, respectively, in patients and control 
profiles in various diseases,16 115–121 and therapy strategies,122 123 
which would have been missed with bulk-seq. Sc-ATAC-seq 
of mitochondrial DNA revealed the kinetics in the levels of 
heteroplasmy in mitochondrial disorders across cell types, 
which were difficult to interpret from bulk-seq data.124 Singh 
et al125 combined short-read sequencing with targeted long-read 
sequencing of T cell receptor and B cell receptor at single-cell 
level. Towards this aim, the cDNA library was split before the 
usual fragmentation step required for short-read sequencing to 
allow parallel short-read and long-read sequencing on the same 
sample. This enabled them to characterise the isoforms due to 
alternative gene splicing. Various modalities and approaches 
of sc-seq discussed earlier can help uncover the complexity 
of diseases as well as monitor therapeutic effects (figure  3). 
The multiplexing of different sc-seq modalities lends itself for 
more specific questions to be addressed.95 126 127 For example, 
linking gene regulators with the gene regulation is facilitated by 
combining sc-epigenome-seq with sc-transcriptome-seq.95 128–131 
This can enhance the interpretation of the regulatory pathways 
involved in development and maturation of cells in a disease 
perspective. Overall, sc-seq has established itself in human 
genetics as a tool to characterise diseases, where cellular hetero-
geneity (at any level of the central dogma) plays a role, as well as 
to disseminate regulatory mechanisms by taking advantage of the 
rich data. However, the application of the technology remains 

confined to exploratory research settings and yet to make its way 
into routine clinical use.

Prospective applications in human genetics
Here, we describe two prospective applications in human genetics, 
which take advantage of the latest developments and promises 
of sc-seq to address current challenges in human genetics. The 
first relates to our quest to understand the non-coding genome. 
Specifically, the functional annotation of cis-regulatory elements. 
Here, sc-seq in combination with functional genomics allows 
thousands of functional experiments to be performed in a 
single, multiplexed assay (prospective application 1). The second 
addresses the challenges spawned by next-generation sequencing 
(NGS), namely the thousands of rare variants in each genome, 
and the vast majority of them being located in the >98% of the 
human genome that is non-coding.132 Here, the richness of the 
sc-seq data combined with machine learning models help prior-
itise variants based on biological characteristics, such as gene 
expression and chromatin accessibility (prospective application 
2).

Prospective application 1: single-cell functional genomics—
annotating the non-coding genome
Delineating the function of the 98% of the genome that is non-
coding and deciphering the pathogenicity of the variants identi-
fied in these non-coding regions is the central challenge of human 
genetics in the next decade. However, we are far from this goal, 
because: first, the ‘regulatory code’ of the non-coding sequence 
is still unknown; second, an important aspect of physiological 
gene regulation by cis-regulatory elements and enhancers lies in 
the 3D architecture of the genome and lastly, the number of non-
coding variants per generation is so high that traditional func-
tional tests have reached their limit. This underscores the urgent 
need for high-throughput functional screening technologies to 
study the endogenous functions of the non-coding genome. 
Until recently, annotating a non-coding region in a native 
context (cf. their identification in plasmids, eg, STARR-seq133) 
faced trade-offs between the number of regions simultaneously 
screened versus the complexity of phenotypes assayed.134 On the 
one hand, pooled genetic screens, for example, with CRIPSR/
Cas9, have mostly been associated with hypothesis-driven assays 
of simple phenotypes (eg, proliferation/survival screens, reporter 
expression).135–138 This precludes the systematic investigation of 
the enhancer-driven phenotypes. On the other hand, the unbi-
ased phenotype screening offered by sc-seq has been mostly 
applied to investigate a handful of mutations or diseases, but 
often in a non-multiplexed fashion.139 Here, the effect of one 
or a few genomic perturbation(s) is assayed separately or at best 
in an arrayed format, which requires a separate experiment per 
enhancer and severely restricts scalability.

The integration of sc-seq with CRISPR/Cas9 has resulted in 
a new set of technologies that eliminate this trade-off, enabling 
the screening of non-coding (as well as coding) regions and 
their phenotypic consequences in a multiplexed fashion, at 
an unprecedented scale. Gasperini et al used this approach to 
functionally characterise ~6000 human candidate enhancers.19 
They used a pool of CRISPR/Cas9-based genetic perturbations 
to inactivate these candidate enhancers (CRISPRi) in a collection 
of ~250 000 cells, followed by sc-seq to measure the functional 
consequence in terms of expression  >10 560 genes. In total, 
they could interrogate ~80 000 potential cis-regulatory relation-
ships in a single experiment. The innovation of the technology 
is in the ability to identify the perturbation(s) present (ie, the 

Figure 3  Current use cases of single-cell sequencing (sc-seq) in the field 
of human genetics. Sc-seq enables unbiased molecular phenotyping of 
diseases. (A) The mutational landscape leading to clonal evolution can be 
studied using sc-genome-seq. It provides insight into somatic mutations 
such as CNVs and single nucleotide variants (SNVs), particularly in cancer. 
(B) The activities of cis-regulatory elements and transcription factors 
related to disease progression can be explored using sc-epigenome-seq. 
(C) The cellular composition of a diseased tissue can be uncovered using 
sc-transcriptome-seq and sc-proteome-seq (not shown). They allow 
quantification of differential expression at both transcript and protein 
levels. (A–C) Synthesised data based on Smajić et al, Morita et al and 
Corces et al.16 114 115
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enhancer targeted) in each cell from the sc-seq data, such that 
the effect of the perturbations on the omics-profile could be 
quantified. This is achieved by including a transcribable barcode 
(guide barcode, unique guide index or the gRNA sequence itself) 
along with every CRISPR guide RNA (gRNA), which gets inte-
grated into the genome (figure 4A,B). Thus, the read-out of the 
guide barcode along with the rest of the cell’s sequencing library 
by sc-seq, made it possible to associate the omics-profile of every 
cell to the perturbation present in that cell (figure 4C). In effect, 
the technology enabled the transformation of each perturbed 
cell into a patient harbouring (non-)coding variant(s), from an 
expression quantitative trait loci (eQTL) perspective.

The initial demonstrations of the technology (called 
Perturb-seq,15 140 CRISP-seq14 and CROP-seq141) were focused 
on elucidating gene functions (as opposed to non-coding 
regions). They perturbed the genes in a loss-of-function 
manner by implementing CRISPR/Cas9 in a knockout fashion 
(CRISPRko) and measured their trans-effects on the entire 
transcriptome. Dixit et al knocked out 24 transcription factors 
in bone marrow-derived dendritic cells and investigated the 
effect of these perturbations in the single-cell transcriptome. 
These initial studies screened tens of genes and assessed their 
trans-effect on the transcriptome of thousands of cells in a 
single experiment. Since these pioneering demonstrations, the 
technology has been optimised and adapted, for example, to 
improve the efficiency,142 to study the effect of upregulation 
using CRISPR-activation,143 to read out the effect of pertur-
bations on the epigenome 144 or proteome145 to dissect the 
function of protein domains (sc-Tiling),146 as well as to eluci-
date gene functions147 and gene regulatory networks related 
to development, diseases148 or DNA-chromatin structure.149

Xie et al demonstrated that this approach can be used to 
measure the function of enhancers (figure 4D,E).150 They used 
the CRISPR/dCas9-KRAB system and sgRNAs to epigenetically 
suppress the activity of 15 super-enhancers (containing a total of 
71 constituent enhancers) in topologically associated domains 
containing highly expressed genes and quantified their func-
tion. They dissected the contribution of the individual constit-
uent enhancers within these super-enhancers and concluded 
that often only a few constituent enhancers contribute to the 
regulation of target-gene expression. Moreover, by targeting 
multiple enhancers per cell (3.2 sgRNAs per cell on average), 
they could evaluate combinatorial enhancer activity and 
observed evidence of enhancer compensation. However, the 
design of this pioneering study was limited to quantifying the 
function of enhancers with known gene associations. Gasperini 
et al extended the approach with a goal to functionally char-
acterise  ~5779 candidate enhancers, where each perturbation 
was found in a median of 900 cells and each cell contained on 
average 28 gRNAs. They used an eQTL-inspired analysis frame-
work to establish ~600 new enhancer-gene pairs. A similar use 
of the dCas9-KRAB system was recently demonstrated by Lopes 
et al151 to evaluate the  ~15 000 putative regulatory elements 
engaged by oestrogen receptors in the context of breast cancer. 
By combining the sc-seq data, HiC maps and functional assays 
(cell proliferation), they could map the oestrogen receptor-driven 
oncogenic programme and decipher the role of the respective 
non-coding regions.

In the above-mentioned studies, the perturbations were 
introduced in a particular cell type followed by omics-
profiling at a particular time-point or, at best, within a 
time-window. This could, however, lead to missing enhancer 
functions, because of their time-dependent and cell type-
dependent activity. That is, the perturbation of an enhancer 
active during the development of a specific cell type would 
go unnoticed if it is perturbed in an unrelated cell type. To 
overcome this challenge, Jin et al applied the Perturb-Seq 
technology in utero, in the developing brain at E12.5, to 
study the function of a panel of 35 neurodevelopmental 
delay-related genes.12 As a result, a wide variety of cell types, 
including neurons, microglia and oligodendrocytes, were 
targeted and the effect of the perturbations on the expres-
sion of 14 gene modules could be assessed. Another advan-
tage of this approach was the feasibility to query the effect 
of the otherwise lethal genetic perturbations, since only 
0.1% of the cells were perturbed at a time. Application of 

Figure 4  Single-cell sequencing (sc-seq) CRISPR screening of cis-
regulatory elements. (A) To perturb the various (non-coding) genomic 
regions of interest, a CRISPR library is created by inserting guide RNAs 
(gRNAs) targeting these regions, along with barcodes unique to each 
gRNA, a fluorescence protein (eg, GFP - green fluorescent protein), and 
necessary promoters into a (lentiviral) vector. Perturbing non-coding 
regions, such as enhancers, followed by sc-transcriptome-seq can help 
establish enhancer-gene relationships. The method can also be used to 
reveal the functions of unannotated regions (not shown), which can help 
prioritise variants in that region. (B) Transfection/Transduction is followed 
by the integration of the gRNA library (and the CRISPR/Cas9 machinery; 
not shown) into the genome of the cells. Depending on the multiplicity 
of infection (MOI), the number of gRNAs (therefore, perturbations) per 
cell can be tuned. For simplicity, the figure depicts a maximum of one 
gRNA per cell. Multiple perturbations within a cell can be used to assess 
functional cooperativity between regulatory elements (eg, enhancer 
compensation) or to reduce the number of cells. FACS-sorting or selection 
for antibiotic resistance enables filtering out cells without any perturbation. 
(C) The identity and the number of gRNA barcodes per cell detected is 
identified from the sc-seq data. Cells (columns) can be ordered based on 
the perturbations they harbour for downstream analysis purposes. Note: 
each row would have traditionally been a separate experiment and each 
column would have been a sample or an experimental repeat, which can 
now be pooled into a single experiment. (D) Enhancer screening—the 
cis-regulatory functions of non-coding loci on the expression profiles of 
genes of interest can be investigated using sc-transcriptome-seq. Here, 
perturbation of the enhancer 2, results in the downregulation of gene 1. 
(E) The entire transcriptome can be assessed for changes in expression 
on individual (or cooperative) perturbations to establish enhancer-gene 
relationships. (A–E) Synthesised data based on Gasperini et al and Xie et 
al.19 150
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this approach to screen the function of non-coding regions 
relevant to development or in an in vivo context is, however, 
yet to be demonstrated.

Taken together, it is currently possible to screen the 
effects of perturbing multiple coding or non-coding genomic 
regions on the transcriptome, epigenome or the proteome, 
with single-cell resolution in a single experiment. While 
most studies have used this multiplexed screening technology 
to evaluate the functions of genes, a handful of studies have 
already applied it to establish regulatory relationships. The 
technology can be performed in cultured cells or within a 
developing organism. Commercial kits are readily available 
from vendors such as 10x Genomics for similar experiments. 
In human genetics, the functional characterisation of unan-
notated genomic regions will assist in interpreting vari-
ants in these regions. Global efforts to annotate molecular 
and cellular phenotypes, such as the MorPhiC programme 
(National Institutes of Health, funding RFA-HG-21-029), 
would also benefit from the evolution of such technologies.

The next logical advance is the direct experimental 
screening of the variants, but this is just out of reach of the 
gene-editing technology, due to limited efficiency and accu-
racy. However, early demonstrations to profile single nucle-
otide variants do look promising.152 Transduction-based 
overexpression instead of gene-editing has also been used as 
a method to overcome the limitations for functional annota-
tion of variants.147 As the gene-editing technologies improve 
in efficiency, resolution, accuracy and specificity,153 154 it is 
increasingly likely that such technologies currently restricted 
to research will find direct applications in Personal Genomics 
for high-throughput experimental screening of variants iden-
tified in an individual. In the meanwhile, computational 
approaches combined with sc-seq data can be used to priori-
tise (if not annotate) variants, as is discussed next.

Prospective application 2: in silico variant prioritisation using sc-seq 
data
Genome-wide association studies (GWAS) and the widespread 
introduction of NGS technologies in medical genetics have led 
to a massive increase in the identification of common and rare 
variants, respectively.155 Most of these variants fall into the non-
coding genome. By far, not all these variants have an associated 
disease phenotype yet, and the experimental screening of vari-
ants is expensive, laborious and time-consuming. Currently, 
databases like Clinvar, HPO and OMIM are used to filter for 
known gene variants (figure  5A). Computation methods play 
a key role in the interpretation of these unknown variants, 
but current variant prioritisation methods, like deep-learning 
methods to prioritise non-coding variants,156–159 CADD score,160 
SIFT159 and several other methods161 use bulk-seq data to rank 
these candidate variants based on highest disease-association 
probability. Sc-seq can enhance these methods by providing 
information at a cell type level rather than at a tissue level. This 
higher dimensionality information can enhance the interpre-
tation of how subtle changes can lead to diseases. This section 
focuses on how machine learning models trained on sc-seq data 
can prioritise a given of variants found either through GWAS or 
whole genome sequencing.

Corces et al115 and Trevino et al162 showed that an sc-ATAC 
atlas of brain cells can be used to prioritise non-coding vari-
ants (figure 5B–D). Corces et al prioritised GWAS variants for 
Alzheimer’s disease and Parkinson’s disease by developing a 
machine learning model (gkm-SVM). They trained their model 
with sc-ATAC-seq data of adult human brains to predict the 
importance of each allele for chromatin accessibility. Trevino et 
al also used the sc-ATAC of developing human cerebral cortex, 
but to prioritise non-coding de novo mutations from patients 
with autism spectrum disorder from the Simons Simplex Collec-
tion.163 They used BPNet,164 which is a deep convolutional neural 

Figure 5  Variant prioritisation workflow with sc-ATAC data. (A) The current molecular diagnostic workflow starts with the next-generation sequencing 
(NGS) of a patient with a specific disease (eg, autism spectrum disorder), which identifies a large number of variants. Various databases are used to filter 
and rank the variants in the coding region. Meanwhile, a large number of variants in the non-coding regions are discarded, due to the lack of prioritisation 
methods. (B–D) Variant prioritisation with sc-seq data helps rank every variant pertinent to a cell type even if it is previously not known. (B) Supervised 
machine learning approaches are trained on sc-ATAC peaks, transcription factor sequence motifs and matched GC content of the peak and non-peak 
regions of a control sample. (C) sc-ATAC-seq data provide the machine learning model insights into the chromatin accessibility profile of all the cell types 
in the tissue and the sequence motifs inform the model on the allelic importance. Pathogenicity of unknown variants are predicted based on the disruption 
it causes to the accessibility of the loci. For example, the sequence motif shows the significance of the alleles which are accessible only in cell type 3. Single 
nucleotide variant (SNV)1 (G>A), therefore, causes a large disruption to the epigenome and thus receives a high score. Whereas SNV3 (C>G) is in the same 
accessible region, but the allele in the motif is not significant and the disruption it causes is low, hence it is scored low. (D) Variants are ranked based on the 
predicted pathogenicity scores. (A–D) Synthesised data based on Corces et al and Trevino et al.115 162
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network model that predicts each transcription factor’s per base 
binding signal as counts (ChIP-nexus).163 Both methods were 
trained with cluster-specific sc-ATAC-seq peaks, transcription 
factor sequence motifs in the peak region, along with the regions 
where GC content of the peak region matches with the non-
peak region to reduce the bias due to GC content in the predic-
tion (figure 5B). This enabled them to predict an importance or 
disruption score based on the changes in the chromatin accessi-
bility with allelic changes (figure 5C and D). This way, variants 
whether identified de novo or through GWAS approaches could 
be prioritised. Trevino et al tested their model with sc-ATAC-seq 
data of cell types from other organs like heart and noticed that 
there was no change in the case versus control mutations, signi-
fying that the disease state was highly cell type specific. They 
were also able to predict the most frequently disrupted motifs 
in autism. Even though the conservation score and the distance 
to the gene were similar in case and control mutations, sc-ATAC 
was able to rank the pathogenic mutations, which would have 
been difficult to identify by other methods. Similar sc-ATAC-seq 
data-based approaches have been used to prioritise 527 GWAS 
variants in 48 diseases5 and in type 2 diabetes.165 Sc-seq data 
can also help elucidate the mechanisms in which GWAS variants 
affect haematopoiesis166 and type 1 diabetes.167

With such applications being validated across various diseases 
and with the establishment of Human Cell Atlas of disease and 
healthy individuals, we can be hopeful that the in silico variant 
prioritisation methods using sc-seq data will evolve further to be 
able to rank the effect of rare de novo mutations for routine clin-
ical diagnostics. Currently, however, these methods stop short 
of providing insights into the global mechanistic consequences 
of the ranked variants, especially when the variants are located 
in unannotated genomic regions. Methods such as sc-RNA-
eQTL168, sc-ATAC-eQTL169 and single-cell functional genomic 
approaches (prospective application 1) can further enable func-
tional annotation of the ranked variants by tracking cellular-level 
changes, which would be missed by bulk-seq, and help uncover 
holistic disease biology.

CURRENT LIMITATIONS
While the sc-seq technology and the ways in which it is imple-
mented to address current challenges are advancing at a stag-
gering pace in basic research, several aspects currently hinder 
their adoption in clinic practice, in particular the cost. Even if 
the cost was not an issue, several practicalities require that the 
diagnostics work in collaboration with a research lab special-
ised in single-cell sequencing, imposing additional barriers. For 
example, the experimental workflow, especially at the stages of 
tissue dissociation, requires case-by-case optimisation, depending 
on the tissue type, whether the tissue is fresh or frozen, as well as 
the age. Careful consideration of parameters such as sequencing 
depth and cost are required, especially for multimodal co-as-
says. As an example, the additional sample processing steps in 
sc-ATAC-seq can come at the expense of the transcriptome data 
quality when performing such co-assays. Even with commercial 
kits, generation of high-quality data may require adaptation or 
customisation of protocols, which adds to the time and cost. 
Enormous amounts of data are generated in all the single-cell 
sequencing approaches, posing data storage issues. The data are 
also information-rich, making it on the one hand versatile, but 
on the other hand complex. It necessitates sophisticated analysis 
to extract biological meaning and clinical significance. Dropout 
events are an ongoing issue in sc-seq. In sc-transcriptome-seq 
and sc-proteome-seq, dropouts occur when not all molecules 

are captured during library preparation.170 In sc-genome-seq 
and sc-epigenome-seq, amplification imbalances cause allelic 
or site dropouts.101 Dropout events result in the sparsity of the 
data, making the downstream analysis such as feature selection, 
dimensionality reduction and differential analysis strenuous. 
Another pitfall is batch effects between samples processed sepa-
rately. While batch correction methods can be applied during 
data analysis, it may lead to the loss of true biological effects. 
Additionally, many of the analysis methods have not yet been 
fully standardised and require the judgement and interpretation 
of an experienced bioinformatician.171 The field is growing at a 
rapid pace with many of these practical limitations soon to be 
addressed.

OUTLOOK
With increasing cellular throughput and the possibility to multi-
plex samples during the barcoding process, the drop in the cost 
per sample is expected to continue.7 172 Computational methods 
are also evolving daily to overcome the challenges posed by the 
high data dimensionality, data sparsity due to dropout events, 
data variability between batches, etc. It is foreseeable that fully 
integrated and automated instruments will become commercially 
available over the next decade, streamlining all aspects of the 
single-cell sequencing resulting in a ‘plug-n-play’ workflow. As 
with all high-throughput in vitro technologies for variant testing, 
functional sc-seq approaches may also generate data of uncertain 
clinical significance or misclassify individual variants. Therefore, 
it is important to note that these data cannot stand alone but 
need to be integrated with all other available clinical and molec-
ular information. The medical genetics community will have 
to develop frameworks on how to integrate high-throughput 
variant testing into clinical decision making. The technology is 
at the doorsteps of human genetics diagnostics. However, similar 
to whole genome and exome sequencing, it may take time until 
we see the routine use of these powerful sc-seq technologies in 
the clinic.
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