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Abstract

The evaluation of large amounts of digital image data is of growing importance for biology,

including for the exploration and monitoring of marine habitats. However, only a tiny percent-

age of the image data collected is evaluated by marine biologists who manually interpret

and annotate the image contents, which can be slow and laborious. In order to overcome

the bottleneck in image annotation, two strategies are increasingly proposed: “citizen sci-

ence” and “machine learning”. In this study, we investigated how the combination of citizen

science, to detect objects, and machine learning, to classify megafauna, could be used to

automate annotation of underwater images. For this purpose, multiple large data sets of

citizen science annotations with different degrees of common errors and inaccuracies

observed in citizen science data were simulated by modifying “gold standard” annotations

done by an experienced marine biologist. The parameters of the simulation were deter-

mined on the basis of two citizen science experiments. It allowed us to analyze the relation-

ship between the outcome of a citizen science study and the quality of the classifications of

a deep learning megafauna classifier. The results show great potential for combining citizen

science with machine learning, provided that the participants are informed precisely about

the annotation protocol. Inaccuracies in the position of the annotation had the most substan-

tial influence on the classification accuracy, whereas the size of the marking and false posi-

tive detections had a smaller influence.

Introduction

In recent years computer vision has made a big leap forward in tackling some of the most

demanding problems such as detection of cars or people in photos, owing to the emergence of

deep learning [1, 2]. Deep learning methods for image classification and object detection were

successfully proposed but mostly limited to everyday image domains, i.e. images showing

“everyday objects” from human civilization such as cars, furniture, people. Please note that in

machine learning, especially in deep learning, these images are often referred to as natural
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images, but due to the possibility of misunderstandings in interdisciplinary research, we will

refer to them as everyday images. The employment of deep learning algorithms brings with it

a number of requirements and assumptions, i) availability of huge collections of annotated

image data, ii) good image quality (high signal-to-noise-ratio, no extreme light exposure, lim-

ited cast shadows) and iii) high pixel-resolution for objects of interest in the images. One rea-

son for the rapid progress of deep learning in computer vision is the availability of many large

image collections (see i) above), accumulated by internet-based projects (e.g. ImageNet [3]).

Because everyday images are of common interest, much research focuses on these image col-

lections. Object detection/segmentation/classification contests like ILSVRC (ImageNet Large

Scale Visual Recognition Competition [4]) are held to compare network performance. Fur-

thermore, the competitors publish the pre-trained models, online, providing a starting point

for future projects. Unfortunately, in marine science, there are no such datasets or contests

available, which is likely also because the data volume is huge but the number of annotated

images is very limited, i.e. labels describing the content on a semantic level. The only competi-

tion known to the authors is the National Data Science Bowl—Predict ocean health, one plank-
ton at a time [5], but this competition is limited to plankton and did not receive the same

amount of attention as, e.g. the ILSVRC did.

Marine image informatics is an emerging field settled at the intersection of marine biology

and ecology, image processing, and machine learning. Owing to the availability of digital

camera systems and underwater imaging platforms like Remote Operated Vehicles (ROVs),

Autonomous Underwater Vehicles (AUVs) and towed sleds, large image collections (approx.

103 − 104 images) can be acquired during a single dive [6]. While the worldwide volume of

available marine image data is huge and continuously growing, the employment of deep learn-

ing for marine image analysis is by far not straightforward, because of the following reasons:

1. There is usually not enough training data (see i)—above) because image annotation in

marine sciences is non-trivial and laborious. Morphological/taxonomic classification is an

n-class problem and requires a considerable amount of education, training and experience.

Unlike in everyday images, where almost all objects can be recognized by almost everyone

growing up in a modern civilization, marine objects of interest (such as fishes, sea cucum-

bers, starfishes) can be hard to detect and classify even for human experts, henceforth called

experts for brevity. Therefore, image annotation performed by experts is time-consuming,

error-prone and expensive, particularly as there are a limited number of experts available

[7].

2. The annotation task is further complicated by the high diversity and low abundance of

marine life in the deep sea [8]. A large number of classes are represented by a low number

of examples. Moreover, it is a common observation that 80%-90% of the data belong to a

small subset of L0 classes among the total number of L observed classes, with L0 � L. This

observation is called the data imbalance problem in machine learning classification tasks.

3. Also, the requirements ii) image quality and iii) pixel resolution are often not fulfilled satis-

factorily. ROVs, AUVs, and towed sleds are rarely used just for the purpose of image acqui-

sition. These platforms often carry other payloads and a multitude of sensor arrays serving

different purposes. Even if only images are acquired, quite often there are multiple objec-

tives, such as biodiversity studies, mapping the seafloor, resource assessment and habitat

mapping. Therefore, the speed of the platform and the optimal distance to the seafloor can

vary considerably. As a consequence, the object resolution and image quality may not be

ideal, in contrast to everyday images, where objects usually take up 30%-70% of the image

pixels. In many scenarios, the images are recorded below 200 m depth and so there is no
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natural light, therefore a flash has to be used. This leads to lighting artifacts, such as vignett-

ing or illuminating marine snow (small particles in the water column are illuminated by the

flash).

Marine image annotation can be described as a combination of two tasks, the task of object

detection and the task of morphological/taxonomic classification. Object detection can be

modeled as a one-class classification problem. In our recent work, we have shown that given

enough training data, training of a deep learning model for marine image patch classification

is possible [9, 10]. However, only the task of morphological/taxonomic classification for manu-

ally detected image patches was considered, the problem of object detection has not yet been

addressed. Two computational approaches to the marine object detection problem have been

published [11, 12], but no study about the generalization performance was reported yet, i.e. the

applicability of these methods on an arbitrary marine dataset. In a recent study we proposed

MAIA (Machine learning Assisted Image Annotation [13]), which shows promise in solving

some of the object detection problems. However, it is unfit for certain scenarios, where a rather

homogenous background is not given.

Fully automatic detection of objects in marine image collections may seem unfeasible

in many scenarios. Here, we demonstrate a promising alternative to a computational

approach: citizen science, which has quickly gained popularity in recent years [14]. In

the context of image analysis, citizen scientists (CS) are usually non-domain experts per-

forming a detection or classification task with a web-application. Some recent works

analyze the use of CS to increase the power of deep learning classification [15]. In the con-

text of this work, the CS would be asked to perform the task of general object detection, i.e.

finding all interesting objects without focusing on a single object class as most CS annota-

tion studies do.

The above observations motivate a new strategy for the detection and classification of

objects in marine images. First, citizen scientists are screening the large image collections for

regions of interest (ROI) and mark those with a circle of adjustable size. In parallel a subset of

the data is evaluated by an experienced domain expert, i.e. a marine biologist, who assigns

labels to objects, thereby providing a training set for a deep learning classifier. After the citizen

scientists have marked all ROI in the complete image collection, the trained classifier is applied

to all ROI for taxonomic/morphological classification (cf. Fig 1a)). This way the expensive

domain expert time could be employed most efficiently.

In this paper, we investigate the potential of such error-prone citizen science object detec-

tions in combination with powerful deep learning classifiers. In the first step I), we con-

ducted a primer-experiment as a small test experiment for citizen science-based marine

image analysis. The images were chosen to reflect typical examples and use cases. This

primer-experiment gave us valuable insights into typical errors made by citizen scientists

and protocol specifications for the main experiment. In step II), we performed a larger citi-

zen science study including ten CS each of which manually evaluated the same set of ten

images. The resulting data from I), II) and the gold standard annotations provided by

an expert are used in order to simulate the outcome of a large-scale CS study in step III)

resembling the errors usually done by CS. In step IV) we used the simulated annotations as

input for a deep learning architecture trained on the expert gold standard annotations to

answer the question if CS object detection is a valid/feasible replacement for expert object

detections as a method to drive the attention of the trained deep learning classifier. By vary-

ing our simulation parameters, we were able to investigate the effects of different types of

inaccuracies in the CS annotations, such as inaccurate position (IP) or inaccurate radius

(IR) (cf. Fig 1b)).
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Materials and methods

Images

The image collection {In,n=1. . .N}, where N is the total number of images, used in this work is

from a Pacific region referred to as the Area of Particular Environmental Interest 6 (APEI-6),

centered on 122˚ 55’ W, 17˚ 16’ N. This is a marine protected area designed to safeguard and

monitor biodiversity and ecosystem function in an abyssal Pacific region (the Clarion Clipper-

ton Zone) targeted for deep-sea nodule mining [16]. The dataset comprises N = 10052 images

of size 2448 × 2048 pixels with a total of M = 54894 annotations. The images were captured

using a digital camera mounted to the Autosub 6000 AUV [17] at depths between 4013 m

and 4235 m and with a distance to the seabed between 2 m and 4 m. Ten different classes are

annotated by experts (for examples see Fig 2). In this paper, Arthropods is a morphotype, i.e. a

category based on visual appearance rather than on taxonomy, encompassing a multitude of

heterogeneous objects on a coarse level, as they cannot be labeled on a finer level due to image

quality.

Methods

Domain experts annotated a volume of images {In,n=1. . .N}. An annotation is defined as tuple

Aa ¼ ðx; y; r; In;OÞ, with x and y being the position of the center of a square, r being its radius

(i.e. half of the side length), In being the Image on which the annotation is done and O being

the label, i.e. morphotype/taxonomic category assigned to it. The set of all annotations A ¼
fAa; a ¼ 0 . . . Mg is split into a training set T and a validation set V with the ratio 90%/10%,

with T [ V ¼ A and T \ V ¼ ;.
I) Citizen science primer-experiment ðCSPÞ. In the citizen science primer-experiment

eight CS detected and marked objects in two hand-selected images. In contrast to the expert,

the CS only needed to detect and mark objects without providing a label, thus a CS annotation

Fig 1. a) Workflow of a Citizen Science based annotation study. b) Workflow of our parametrized simulated Citizen Science study.

https://doi.org/10.1371/journal.pone.0218086.g001
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is defined as a tuple AC
¼ ðxC; yC; rC; InÞ. One image featuring visually easier to spot objects

and one showing harder to spot small objects were presented. The annotations were gathered

using the Biigle 2.0 [18] annotation system. The CS were given a video instruction on how to

use the annotation tool and were provided with the example images shown in Fig 2, as well as

the instruction to look for interesting objects (excluding stones/nodules and sand). Further-

more, the CS were advised to zoom in to identify smaller objects. Further instructions were

not provided intentionally. One could, for instance, provide a specific protocol on the zoom

level, or the specific part of each object that should be annotated, which would require the

CS to additionally classify the object implicitly. We intentionally omitted this, because this

would involve the classification of objects and the application of a specific protocol, which

would lead to errors. In addition, we wanted to investigate whether relatively good results

could be achieved without the use of a protocol. If this were possible, it would make the realiza-

tion of a CS study easier and reduce the necessary effort, i.e. more people can be recruited

without the need for preparation. We evaluated the CS annotations against the expert annota-

tions A, depicted in Fig 3.

II) Citizen science study ðCSSÞ. In the Citizen Science Study hereinafter referred to as

CSS, we asked ten CS to annotate every image, i.e. provide CS annotations AC
, without a label

to image regions, of a hand-selected set of ten images, so that each image was inspected by ten

CS. Motivated by the observations in the primer-study we eliminated protocol differences by

asking the expert and the CS to label like the intuitive CS protocol from the CSP experiment,

i.e. encircling the whole object. The instructions to the CS and the execution of the study were

identical to the CSP-experiment.

III) Simulated citizen scientists ðSimCSÞ. Based on the observations in the primer-

experiment CSP and the CS study CSS we simulated CS object detection for all images

{In,n=1. . .N}. This enabled us to assess the final classification results for these annotations, as we

could use the domain expert’s original annotations as a gold standard. To render one set of

simulated CS detections, the domain expert annotations A ¼ fAag were taken and trans-

formed (x, y, r, In, O) 7! (x0, y0, r0, In, O) to simulate inaccurate positioning (IP) or radius selec-

tion (IR) different from the expert’s annotation. In the following, we will omit the annotation

index a for clarity of presentation. To simulate annotations suffering from inaccurate position-

ing (IP), we computed new artificial annotations Co
p ¼ fðx

0; y0; r; In;OÞg resembling the

Fig 2. Example image patches for the object classes found in the APEI-6 area. Arthropods, Mollusca, Echinodermata, and also Cnidaria have

a wide variety of shapes, but only one example image per label is shown for brevity.

https://doi.org/10.1371/journal.pone.0218086.g002
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Fig 3. Images used for the CS primer-experiment including the expert annotations, whereas the color indicates

the taxa/morphotype assigned by the expert. Image a) features larger easier to spot objects, while image b) mostly

features hard to spot Porifera.

https://doi.org/10.1371/journal.pone.0218086.g003
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behavior of citizen scientists, with o being the minimum overlap with the original annotation

(x, y, r, In, O) in percent. To create Co
p in the vicinity of the expert annotations featured in the

validation set Va, we sample new positions (x0, y0) according to the following equations,

x0 ¼ xþ Zx � r; ð1Þ

y0 ¼ yþ Zy � r ð2Þ

with

Zx � Uð� ð1 �
ffiffiffi
o
p
Þ � 2; ð1 �

ffiffiffi
o
p
Þ � 2Þ

and

Zy � Uð� ð1 �
ffiffiffi
o
p
Þ � 2; ð1 �

ffiffiffi
o
p
Þ � 2Þ

with Uða; bÞ being the uniform distribution on the interval [a, b]. We explicitly use only the

validation set as a basis to generate new positions to prevent mixture of training and validation

set, also known as data leakage. For evaluation, three different test sets with different minimum

overlaps C87:5

p ; C75

p ; C
50

p were generated. For each expert annotation in the validation set V four

different citizen scientist annotations Co
p were sampled.

To simulate inaccurate setting of the annotation radius (IR), we generate further sets

Cs
r ¼ fðx; y; r

0; In;OÞg. These overestimate the radius by a maximum of 10% and 25% respec-

tively (C0:1

r ; C
0:25

r Þ or underestimate it by a maximum of 10% and 25% (C� 0:1

r ; C� 0:25

r Þ, but keep

the positions of the expert annotations.

r0 ¼ ð1þ ZrÞ � r; Zr � Uð0; sÞ ð3Þ

In addition, we simulate false positives (FP) annotation produced by CS. Therefore for each

image (of the validation set V), we generate two random background annotations of the size

64 × 64, which are non-overlapping with expert annotations, i.e.

Abg
¼ ðxb; yb; 64; In;O ¼ BackgroundÞ

with

dððxb; ybÞ; ðx; yÞÞ > r þ 64Þ

(and d(�, �) the Euclidean metric), which form Cbg
.

Furthermore, we generated a dataset CCSP
resembling the results of the CS primer-experi-

ment CSP. Therefore we removed outliers and simulated deviations in position and radius

using Gaussian distributions with parameters according to the CS primer-experiment data

(see Fig 4b)).

Deep learning classifier A classifier f(x) = O is trained on T . In this case, we used the well

established AlexNet (see Fig 5) [19], because of its fast and robust classification. Training was

performed using the caffe deep learning framework [20] and took 19 minutes on an NVIDIA

Titan X. The network was trained for 30 epochs. No pretrained weights were used. Classifying

the simulated data with the trained model took below 1 min for each dataset. The paper com-

pares the results of f ðVÞ and f ðC87:5

p Þ, f ðC
75

p Þ, f ðC
50

p Þ, f ðC
0:1

r Þ, f ðC
� 0:1

r Þ, f ðC
0:25

r Þ, f ðC
� 0:25

r Þ; f ðCCSP
Þ

as well as the ability to recognize background patches f ðCbg
Þ in the following section.
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Fig 4. a) Deviation in x- and y-direction. Depicted are the deviation in the respective direction divided by the radius,

i.e. x0 � x
r . Each blue dot represents a CS annotation AC

of the Citizen Science Primer-experiment CSP. Please note that

five outliers are not depicted in favor of a more detailed visualization. The red cross is just for orientation and depicts

no deviation at all. b) Overlap displays the overlap of the expert annotation with the CS annotation. Relative radius r0
r is

the ratio of the radius r0 of the CS annotation and the radius r of the expert annotation. c) and d) show the same

information on the same scale as a) and b) respectively but are protocol-corrected (see section Results for more details).

e) and f) show the results for the Citizen Science Study CSS. Each dot represents a CS annotation AC
of the CSS:.

https://doi.org/10.1371/journal.pone.0218086.g004
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Ethics statement

In our image annotation experiment, no personal data was collected for individual users. And

the individual performance/record of the users was not ranked or plotted or displayed. The

evaluation of citizen scientist data was performed like it would have been performed for multi-

ple annotators from the scientific community. Only a statistical evaluation was done, without

paying attention to any individual performance. Verbal or written consent was given (depend-

ing on the way of communication) and recruitment was done by asking known non-scientific

subjects.

Results

Analyzing the CS primer-experiment from step I) we observed four kinds of errors or inaccu-

racies. First, the CS have produced false positives (FP), i.e. objects of no interest, or second,

missed objects, so-called false negatives (FN). Third, in the case of true positive detections, the

CS sometimes marked inaccurate positions (IP) of the annotations, or fourth, an inappropriate

circle size (IR) was chosen.

The CS primer-experiment CSP produced 228 annotations {AC
} in total. Of these 82 (36%)

were valid, i.e. had an overlap with one of the expert annotations {Aa}. This results in 146

(64%) false positives (FP). Of the 42 expert annotations, 21 (50%) were found and 21 (50%)

were not found (FN). All of the 21 objects which were not found were of the same class (Pro-
tista). In the image featuring visually easier to spot objects, 8 out of 8 expert annotations were

found. This shows how the quality of object detection is dependent on the difficulty of the

Fig 5. An overview of the modular architecture of AlexNet used for the classification of the (simulated) CS ROIs.

https://doi.org/10.1371/journal.pone.0218086.g005
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task. There is a high deviation in the position of the CS annotations from the expert annota-

tions in the CS primer experiment CSP (Fig 4a and 4b). It can be seen in Fig 4a) that most

annotations are quite close to the expert annotations, but some large deviations can also be

observed (cf. inaccurate position (IP)).

Every person annotating image collections either implicitly or explicitly uses a protocol, i.e.

a model on how to mark an object with a circle marker. The CS primer-experiment showed

that the CS had implicitly used a protocol other than that of the expert. Experts marked objects

not only to detect them but also to quantify their mass, thus sometimes only marking part of

an object. In contrast, citizen scientists were focused on encircling the whole object, thus

resulting in a change of center as well as a significantly higher radius (see Fig 6). In a second

evaluation, we transformed the expert annotations {Aa} to the protocol-corrected expert

annotations {A0a}. To this end the CS annotation protocol was applied to each expert annota-

tion, i.e. the expert annotations were manually modified to enclose the entire object, also shift-

ing the center of the annotation if necessary (cf. Fig 6). The results are shown in Fig 4c and

4d). The protocol differences can be confirmed comparing the CS annotations with the proto-

col-corrected expert annotations (cf. Fig 4a, 4b, 4c and 4d). The protocol differences are

also observable when looking at the radii in Fig 4b and 4d), which are mostly overestimated

Fig 6. Results of the annotation of a Porifera in the CS primer-experiment CSP. The expert annotation is in red

while the CS annotations are in yellow and the protocol-corrected expert annotation is in blue. The radii selected by

the CS are more than 10 times the expert annotation radius.

https://doi.org/10.1371/journal.pone.0218086.g006
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(cf. inaccurate radius (IR)). Furthermore, we noticed that the CS rather increase the radius to

encircle the whole object than running a risk of not capturing everything. This could also be

owing to the lack of experience in operating annotation software on a regular basis, i.e. finding

the correct center of an object as well as selecting an appropriate zoom level for the task (also

cf. Fig 6). Owing to the rather generous radii provided by the CS annotators, most annotations

have complete overlap with the expert annotations.

The CS study CSS produced 804 annotations {AC
} in total. Of these 366 (46%) were valid,

i.e. had an overlap with expert annotations {Aa}. This results in 438 (54%) false positives (FP).

Of the 108 expert annotations, 70 (65%) were found and 38 (35%) were not found (FN). In Fig

4e and 4f we show the resulting deviations of the expert annotations compared to the CS anno-

tations as observed in the CS study CSS.

In Table 1 we show the classification accuracies for the different datasets starting with the

validation data V (first column, Table 1).

Our main interest lied on the question, to what extent the position and size of the CS anno-

tation influences the classifier performance. Looking at the impact of the positioning inaccu-

racy (IP) on classification accuracy in Table 1 columns 2-4, we see a tendency that a decreasing

minimum overlap yields a decreasing classifier accuracy. While Protista even gains 2 basis

points when the minimum overlap changes to 87.5% due to IP, Echinodermata losses 6 basis

points and Osteichthyes even losses 11 basis points. An explanation for this could be that Pro-
tista seem to have a unique texture everywhere, whereas Osteichthyes and Echinodermata have

prototypical features at specific parts, e.g. the front and fins of Osteichthyes or the spines and

the round shape of some Echinodermata (cf. Fig 2). When shifting the position from the center

of the object to the periphery, this information can be partly lost or distorted. In Fig 7 (left col-

umn) this is illustrated for a Crustacea. When the minimum overlap decreases the classifica-

tion results get worse. The classification results for Annelida and Protista are not affected as

much as the other phyla (cf. Table 1 C75

p ).

Looking at the experiments where the radii of the annotation have been varied (cf inaccu-

rate radius (IR), Table 1, columns 5-8) we observed an increase in classification accuracy for

decreasing radii for most taxa. A larger radius seems to spoil the classifier performance.

Although the overall accuracy decreases/increases, the per class accuracies behave quite

Table 1. Classification accuracy for the expert, the simulated citizen scientist annotations, and the CS primer-experiment. The arrows are just for illustration pur-

poses. Differences of more than 3 basis points compared to the results of V are depicted with # or ". Differences of less than 3 basis points compared to V are depicted with

& or%.

inaccurate position (IP) inaccurate radius (IR)

V Cp87:5 C75

p C50

p C0:25

r C� 0:25

r C0:1

r C� 0:1

r CCSP

Protista 0.84 % 0.86 = 0.84 # 0.72 & 0.83 % 0.87 = 0.84 % 0.86 # 0.55

Porifera 0.82 = 0.82 & 0.79 # 0.75 & 0.81 & 0.79 % 0.84 & 0.80 # 0.68

Osteichthyes 0.71 # 0.60 # 0.50 # 0.46 # 0.57 " 0.86 % 0.72 " 0.77 # 0.05

Mollusca 0.76 = 0.76 # 0.69 # 0.33 # 0.66 % 0.78 # 0.72 % 0.78 # 0.10

Echinodermata 0.79 # 0.73 # 0.69 # 0.38 # 0.74 # 0.70 % 0.77 = 0.79 # 0.16

Crustacea 0.54 # 0.49 # 0.47 # 0.21 # 0.48 % 0.57 # 0.49 % 0.55 # 0.10

Cnidaria 0.79 & 0.77 # 0.73 # 0.61 # 0.71 % 0.82 # 0.75 % 0.81 # 0.37

Bryozoa 0.75 & 0.74 # 0.64 # 0.54 # 0.68 # 0.67 # 0.69 # 0.71 # 0.43

Arthropods 0.25 # 0.17 # 0.20 # 0.11 # 0.14 " 0.29 # 0.14 # 0.21 # 0.09

Annelida 0.57 = 0.57 & 0.55 # 0.36 & 0.55 % 0.59 & 0.56 % 0.59 # 0.16

Avg 0.62 & 0.59 # 0.55 # 0.41 # 0.53 % 0.63 & 0.59 = 0.62 # 0.24

Weighted Avg 0.77 = 0.77 # 0.73 # 0.59 # 0.73 % 0.78 & 0.75 % 0.78 # 0.41

https://doi.org/10.1371/journal.pone.0218086.t001
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Fig 7. For illustration purposes we show the impact of different inaccuracies in position (IP) and radius (IR) on an annotation with the

label Crustacea.

https://doi.org/10.1371/journal.pone.0218086.g007
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differently, i.e. some classes seem to profit from the change while for others the accuracy

drops. In contrast to the positioning inaccuracy (IP), the classifier appears to be more robust

when the circle radius is changed (IR).

When looking at the classification results of CCSP
(cf. Table 1, last column), we see a signifi-

cant decrease in performance compared to the other experiments. However, this was some-

what expected because of the significant differences in the CS annotations compared to the

expert annotations. Interestingly Porifera again only looses 14 basis points in classification

accuracy in contrast to all other classes losing up to 66 basis points.

The different taxa feature individual degrees of difficulty/robustness (see Fig 8) with

Arthropods being the most complex classification task. We can also see that some taxa are

more robust to changes than others in general. While Protista, Porifera and Annelida show

only small changes, especially Osteichthyes show considerable variations in classification accu-

racy when changing the simulation parameters and thus the inaccuracies.

Although the experiments CSP and CSS show a quite high number of FP, these could be

identified in the classification step and therefore compensated to some degree. The correct

classification of FP as f ðCbg
Þ ¼ Background was performed with an accuracy of 96.78%.

Discussion and conclusion

In our study, we have identified and analyzed the four common annotation parameters reflect-

ing the differences between a CS derived annotation and an expert-derived one. Those are

false positives (FP), false negatives (FN), inaccurate position (IP) and inaccurate radius/size

(IR).

In the primer-experiment (eight citizen scientists detect objects in two images), we

observed these problems and showed that large deviations, compared to expert annotations,

can occur (IP and IR). As shown with the protocol-corrected expert annotations (cf. Fig 4c

and 4d), these deviations mostly result from protocol differences, which could be minimized

by providing the citizen scientists with more detailed instructions as shown in the CS study

(CSS). In addition, the study showed that if a small crowd of untrained citizen scientists were

assigned a rather complex task such as general object detection in marine images, a significant

amount of data can be generated (CSP: 228 annotations CSS: 804 annotations), but not all

data is meaningful, i.e. a lot of false positives (FP) are annotated. Furthermore, because of the

complexity of the objects to be annotated, some objects are not found at all (FN).

We simulated datasets featuring different degrees of IP, IR and FP and used these as input

to the deep learning classifier. We observed that incorrect radii (IR) are less severe than a posi-

tion shift of the center with the correct radius (IP). Besides, some objects are more sensitive to

deviations than others, most likely owing to their shape/structure. Objects incorrectly anno-

tated as being interesting but belonging to a background class (FP) can be recognized with

96.78% accuracy by the classifier, which seems like a good enough value to compensate for this

kind of error.

The above observations motivate the following recommendations for CS data collections in

the context of machine learning applications:

1. CS should be provided with clear instructions and examples about the way the position and

radius of the object should be marked.

2. The correct position seems more important than the correct radius.

3. Annotation radius should be selected not larger than necessary and should also be

described by examples or explicitly defined for each taxon considered.
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Fig 8. Classification accuracy for the expert, the simulated citizen scientist annotations, and the CS primer-

experiment. a) Shows the accuracies aggregated by experiment and b) Each boxplot represents the aggregated results

from each dataset (V; C87:5

p ; . . .) for each specific taxon.

https://doi.org/10.1371/journal.pone.0218086.g008
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4. If CS annotations are used for classification, a smaller crop of the ROI can be tested for

more accurate classifications.

The answer to the question of whether citizen scientists annotations are a feasible replace-

ment for marine object detection in combination with deep learning classifiers has to be

answered dichotomously. On the one hand, the results of the CS primer-experiment CSP sug-

gest that if a significant divergence with expert annotations exists there is a considerable impact.

This is underlined by the predictions of our CS simulations. On the other hand, if the deviations

are not that huge like in the CSS, a minor impact in classification performance is noticeable.

Furthermore, measures to counter error-prone CS annotations using variations in the deep

learning architecture or the training procedure, e.g. feeding simulated data to the classifier or

increasing the size of the pooling layer might help in minimizing problems. For example, in

this paper we showed that FP can be minimized by training the deep learning classifier to rec-

ognize background samples.

We conclude that if the CS study is well designed (see 1.-4. above, also cf. [7]), citizen scien-

tist annotations are a valuable asset and errors can be within the limits of the other simulated

data. Doing a joint annotation session or limiting the type of objects to be detected by a group

of citizen scientists, thus splitting the task into object categories would also be useful to make

the task more manageable for the citizen scientists and minimize errors. If this training is done

thoroughly, it can be concluded that citizen scientist annotations are a compelling way to solve

the marine object detection problem. Also, the same issues described here also arise when gen-

erating automatic detections and a similar conclusion can be drawn.
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