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Abstract: Chronic inflammation is inextricably linked to cardiovascular disease (CVD). Macrophages
themselves play important roles in atherosclerosis, as well as acute and chronic heart failure. Although
the role of macrophages in CVD pathophysiology is well-recognized, little is known regarding the
precise mechanisms influencing their function in these contexts. Long non-coding RNAs (lncRNAs)
have emerged as significant regulators of macrophage function; as such, there is rising interest in
understanding how these nucleic acids influence macrophage signaling, cell fate decisions, and activity
in health and disease. In this review, we summarize current knowledge regarding lncRNAs in directing
various aspects of macrophage function in CVD. These include foam cell formation, Toll-like receptor
(TLR) and NF-kβ signaling, and macrophage phenotype switching. This review will provide a
comprehensive understanding concerning previous, ongoing, and future studies of lncRNAs in
macrophage functions and their importance in CVD.
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1. Introduction

Macrophages are a subtype of immune cells that comprise an important fraction of the innate
immune system. Initially described by Ilia Metchnikoff in 1882, the macrophage was identified as
a cell capable of ingesting particles and/or other cells in a process termed phagocytosis—a function
heralded as a protective mechanism against pathogens [1]. Since then, our knowledge regarding the
role of macrophages in human physiology and pathology has substantially evolved [2]. Macrophages
are actively recruited to various tissues during early development to facilitate organ development
and function [3,4]. Tissue-resident macrophages are deposited in two independent waves during
embryonic development. First, a transient hematopoietic wave of erythro-myeloid progenitors (EMPs)
emerges from the posterior plate mesoderm and forms yolk sac blood islands. These yolk sac-derived
macrophages are formed independently of hematopoietic stem/progenitor cells and monocytes.
They are called “primitive macrophages” due to their immature immunophenotype (i.e., absence
of typical macrophage markers) and lack of detectable phagocytic activity. The second wave starts
when EMPs seed fetal liver and differentiate to fetal monocytes and further form macrophages. Thus,
tissue-resident macrophages deposited during embryogenesis are composed of yolk sac “primitive
macrophages” and fetal liver monocyte-derived macrophages [4–7].

Many tissue macrophages deposited in organs during development remain in adult tissues.
These tissue-resident macrophages have a distinct phenotype and function from monocyte-derived
macrophages, which are recruited to tissues and organs during injury and/or infection [4,8].
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Tissue-resident macrophages are highly abundant in all organs, including the skin, gastrointestinal
tract, lymphoid organs, and lungs. Macrophage populations are aptly named according to the tissue
in which they reside, as well as their function; for example, Kupffer cells refer to macrophages in the
liver, microglia in the brain, and alveolar macrophages in the lung [4,9]. In general, all macrophages
share several important functions: (1) they play a role in tissue development and maintenance;
(2) tissue surveillance and sampling; and (3) pathogen clearance, antigen presentation, inflammation
resolution, and tissue repair. Depending on the organ or tissue localization, macrophages may
fulfill several of these tasks and, as such, comprise highly heterogeneous cell populations with
various phenotypes and functions [9]. Macrophages are also known for their plasticity, as they may
undergo phenotype switching in response to various stimuli [4,10]. For example, lipopolysaccharide
(LPS) exposure stimulates macrophage activation and the production of proinflammatory cytokines,
while interleukin 4 (IL-4) stimulation elicits anti-inflammatory cytokine secretion [11]. Although
many signaling pathways have been identified that direct macrophage polarization and function,
it is not fully understood how such pathways are regulated; however, RNA-mediators, such as long
non-coding RNAs (lncRNAs), have emerged as important signaling components dictating various
aspects of macrophage biology [12–14]. To this end, here, we review the current knowledge regarding
the regulation of macrophage function by lncRNAs in the context of cardiovascular disease (CVD).
Compared to other similar review articles in recent years [15,16], we summarize current knowledge
regarding lncRNAs in directing various aspects of macrophage functions in CVD, including foam cell
formation, Toll-like receptor (TLR) and NF-kβ signaling, and macrophage phenotype switching.

2. Role of Macrophage in Cardiovascular Disease

CVD broadly describes a class of diseases that affects the heart and/or blood vessels. A host of risk
factors (including high blood pressure/hypertension, smoking, diabetes and obesity, and sedentary
lifestyle) have been identified as major contributors to CVD. Such risk factors contribute to the
accumulation of fats, cholesterol, and inflammatory cells in coronary vasculature, which can lead to
plaque formation and blood flow restriction—a pathology commonly referred to as atherosclerosis.
The role of macrophages in the pathogenesis of atherosclerosis has been well-established. Much of
what is now known regarding macrophages in this process is derived from preclinical animal models
of atherosclerosis and clinical cohorts [17–20]. Animal models include mice deficient in apolipoprotein
E (ApoE) supplemented with a Western-style diet. In these models, elevated fat and sugar levels
trigger an emergency-mediated hematopoietic response in the bone marrow and spleen, resulting
in the overproduction of monocytes [19,21,22]. The surplus of splenic- and bone marrow-derived
monocytes is released into the circulation, where they adhere to the atherosclerotic endothelium and
extravasate into lesions, where they differentiate into macrophages. The combinatorial accumulation
of monocyte-derived macrophages and lipids in the perivascular space leads to the retention of lipid
droplets within the macrophage’s cytoplasm, giving them the characteristic appearance of foam-like
structures. The accumulation of foam cells in arterial walls is a hallmark of early atherosclerotic
lesion formations [19,20]. An unremitting accumulation of monocytes and their lineage descendant
macrophages can contribute to fibrous cap thickening, hematoma, thrombi, calcification, and the
degeneration of plaque integrity. The relative abundance of macrophages in atherosclerotic plaques is
regulated by their exit and/or death but, also, the sustained recruitment of monocytes. An efficient
macrophage exit, or reduced monocyte recruitment, results in a reduction in the lesional macrophage
number and regression of the disease. On the other hand, factors contributing to increased monocyte
recruitment accelerate atherosclerosis [23,24].

The destabilization and rupture of arterial plaque may lead to partial or complete occlusion of
the coronary artery, which can lead to acute cardiac ischemic events, such as myocardial infarction
(MI). Ischemic injury to the myocardium triggers a sterile systemic inflammatory response that is
required for the activation of the tissue-healing program [25–27]. In response to MI, the bone marrow
and spleen generate a surplus of myeloid cells, mostly neutrophils and monocytes, which are released
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to the peripheral blood and, subsequently, home to the damaged myocardium [28,29]. Recruited
neutrophils and monocytes are necessary for the removal of necrotic tissue, the initialization of
angiogenesis, and the stimulation of myofibroblasts for collagen synthesis and wound healing [27].
This initial myocardial myeloid response is imperative for proper healing. A reduction of neutrophil or
monocyte/macrophage infiltration, either through systemic depletion or splenectomy, impairs optimal
post-MI healing and results in progressive myocyte death, excessive fibrosis, and possible cardiac
rupture [29,30]. On the other hand, excess neutrophils and monocyte/macrophage recruitments lead
to an abundant secretion of proinflammatory mediators that negatively affect tissue healing and
contribute to myocardial damage [31]. Thus, a balanced immune response due to ischemic injury is
necessary for proper infarct healing and recovery after MI.

On the other hand, despite the apparent beneficial effects of myeloid cells on infarct healing,
macrophages also contribute to the progression of fibrosis and impaired pump functions in chronic heart
failure. Following MI, the heart experiences significant cell death and tissue necrosis. The myocardium
is then rapidly overwhelmed by an intense inflammatory response that facilitates both the removal of
dead/necrotic tissue, as well as supports tissue replacement with an akinetic, collagen-based scar [25,27].
This remodeling process is an adaptive response that serves to preserve the structural integrity of the
myocardium after ischemia-mediated tissue loss. However, the remodeling process, characterized
by ongoing collagen deposition (defined as reactive fibrosis) and reduced ventricular compliance,
is considered maladaptive in the long term—contributing to sustained myocyte dropout, cardiac
hypertrophy, and progressive decrements in ventricular function, which eventually culminate in
end-stage heart failure [32]. Systemic inflammation is considered a hallmark feature of chronic heart
failure in patients [25–27]. Proinflammatory cytokine levels, such as tumor necrosis factor-alpha (TNF-α)
and IL-6, are closely associated with the heart failure status, suggesting that inflammatory cytokine
signaling contributes to progressive pump failure. Likewise, studies in mice models of heart failure
demonstrate that, after MI, there is a sequential (4-8 weeks after MI events) accumulation of macrophages
in nonischemic regions of the heart, which may provoke continued matrix deposition, myocardial
stiffening, and impaired ventricular performance [32,33]. Compatible with this view, the inhibition of
monocyte infiltration via the blockade of adhesion molecules, or splenectomy in mice with established
heart failure, dampens and improves adverse cardiac remodeling [32,33]. These findings highlight
a potentially detrimental role for macrophages in chronic heart failure. While the precise molecular
mechanisms underlying macrophage development, polarization, and biologic activity/function in
atherosclerosis and heart failure pathophysiology remain a focus of intense scientific investigation,
much remains unknown. Nevertheless, recent studies have brought attention to the importance of
lncRNAs in macrophage biology—providing evidence that they actively participate in gene regulatory
networks during complex biological processes.

3. Non-Coding RNA Nomenclature

Though lncRNAs are broadly defined as any non-protein-coding RNAs whose lengths are longer
than 200 nucleotides, they are ultimately stratified according to their genomic position in relation to
nearby protein-coding genes (i.e., messenger RNAs (mRNAs)). If a lncRNA is located on the same
genomic DNA strand as a nearby protein-coding gene, it is defined as a sense lncRNA. In many
instances, a sense lncRNA may overlap with an adjacent protein-coding gene; these lncRNAs are
referred to as sense-overlapping lncRNAs. If a lncRNA is located on an opposite genomic DNA strand
relative to a neighboring protein-coding gene, it is defined as an antisense lncRNA. Both sense and
antisense lncRNAs are commonly named after their nearest protein-coding genes [34]. A lncRNA can
also arise from intronic sequences of protein-coding genes, which are aptly called intronic lncRNA.
Furthermore, a lncRNA can be distally located far from, but between, two protein-coding genes.
Such types of lncRNAs are defined as long intergenic lncRNAs (lincRNAs). When lincRNAs are
located in the enhancer or promoter region of a protein-coding gene, these lncRNAs are defined
as enhancer- or promoter-associated lincRNAs (eRNAs and pRNAs, respectively). More recently,
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a new type of lncRNA was defined, which are called circular RNAs (circRNAs). These derive from
splicing events and possess stable circular conformations. Although lncRNAs are subdivided based
on their genomic locations and in conjunction with nearby protein-coding genes, the definition of
non-protein-coding genes remains contested, as some lncRNAs encode micropeptides, as in the case of
Myoregulin (MLN) [35]. Furthermore, pseudogenes, whose genomic sequences are similar to functional
protein-coding genes, should be included in the category of lncRNAs, as pseudogenes do not encode
for proteins [36].

4. Mechanism of lncRNA Function

As many lncRNAs are not known to possess any intrinsic catalytic activity themselves, it is
believed that lncRNAs influence biological processes by interacting with macromolecules (e.g., DNA,
RNA, and proteins). Since the number of lncRNAs well-surpasses that of protein-coding genes,
the categorization of lncRNA functions is challenging. Nevertheless, four broad categories of lncRNA
functions were defined. The first category is genomic imprinting, which is an epigenetic phenomenon
whereby genes are expressed in a parent-of-origin-dependent manner [37]. Such imprinting lncRNAs
include the antisense of IGF2R non-protein coding RNA (Airn) [38], H19-imprinted maternally expressed
transcript (H19) [39,40], maternally expressed 3 (MEG3) [41], maternally expressed 8, small nucleolar
RNA host gene (MEG8) [42], and X-inactive specific transcript (XIST) [43]. The second category
of lncRNA functions is transcription regulation. LncRNAs can directly bind to genomic sequences
and form a scaffold for the recruitment of epigenetic and/or transcriptional factors, which influence
transcriptional activity [44]. This functional category has been investigated extensively in recent
years, as many binding partners (i.e., epigenetic and transcription factors) have been studied in
the field of epigenetics. Furthermore, the methods to investigate such mechanisms (i.e., chromatin
immunoprecipitation followed by sequencing (ChIP-seq)) are well-established, which makes it easier
to elucidate the function of lncRNAs in this context. However, several laboratories have reported the
promiscuity of RNA binding of epigenetic factors (especially, enhancer of the zeste homolog 2 (EZH2),
a catalytic component of the polycomb repressive complex 2 (PRC2) [45–48]), suggesting that caution
be taken when interpreting lncRNAs as transcriptional regulators. The third category of lncRNA
functions is that of post-transcriptional regulation, where their complementation with mRNAs may
influence RNA stability. Further, one should note that some lncRNAs encode microRNAs (miRNAs)
themselves in their genomic sequences, and others can bind miRNAs and function as miRNA sponges
(also known as competing endogenous RNA (CeRNA)) [49]. This is an attractive mechanism to control
the availability of miRNAs, as miRNAs bind to the 3’-untranslated regions (3’-UTR) of target mRNAs to
induce mRNA degradation and translational repression. However, some lncRNAs (e.g., tumor protein
p53 pathway corepressor 1 (TRP53COR1, also known as lincRNA-p21), HOX transcript antisense RNA
(HOTAIR), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)) are degraded
by miRNAs rather than functioning as miRNA sponges [50]; thus, a thorough investigation of the
interactions between lncRNAs and miRNAs is necessary. The last category of lncRNA functions is
translation control. Through binding to RNA-binding proteins (RBPs), lncRNAs can influence the
translational efficiency of mRNAs. As more and more RBPs are being identified from high-throughput
screening technologies [51–53], there is a growing number of lncRNAs identified as RBP sponges,
including those of circRNAs [54]. Thus, just as there exist multifunctional proteins, many lncRNAs,
too, exhibit versatility in terms of function—which highlights a likely complex and multidimensional
role for lncRNA signaling in immune cell biology.

5. Role of Macrophage lncRNA in Foam Cell Formation

The hallmark feature of atherosclerosis is the formation of atherosclerotic plaques in the intimal
layer of the artery [55,56]. At the early stages of atherosclerosis, low-density lipoproteins (LDLs) pass
through arterial endothelial junctions and become retained in the subendothelial space via interactions
with matrix proteoglycans. Trapped LDLs aggregate and become oxidized to form oxidized low-density
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lipoproteins (ox-LDLs), which divert their binding from LDL receptors to scavenger receptors (SRs)
expressed on monocytes and their descendant macrophages. This interaction ultimately results in the
recruitment of monocyte/macrophage populations to the intima of the arterial wall [57]. These SRs
include CTD-associated factor 1 (SCAF1, also known as SR-A1), cluster of differentiation 36 (CD36),
and lectin-like ox-LDL receptor-1 (LOX-1), which are upregulated after stimulation with ox-LDLs
or pro-inflammatory stimuli [58]. After binding to macrophage SRs, ox-LDLs are internalized and
transported to lysosomes. There, lipoprotein cholesteryl esters (CE) are hydrolyzed by lysosomal
acid lipase (LAL) to generate free cholesterol (FC) [59]. FC are then trafficked from lysosomes
through the coordinated action of Niemann-Pick Type C1 and 2 (NPC1 and 2) membrane proteins
and, eventually, transported to endoplasmic reticulum (ER), where they become converted back to
CE by Acyl-CoA cholesterol acyltransferase (ACAT) through a process of re-esterification. FC can
also be transported out of cells by ATP-binding cassette transporters A1 (ABCA1) to form new
high-density lipoprotein (HDL) particles [60]. Excess accumulation of CE in lysosomes and the ER
leads to the formation of lipid droplets in the macrophage with the appearance of foam-like structures,
commonly referred to as macrophage-derived foam cells (Figure 1) [55,56]. Further, CE and FC
accumulation leads to the inhibition of LAL and ABCA1 activity, which is believed to contribute to the
pathogenesis of atherosclerosis. The main cells involved in the process of foam cell formation include
smooth muscle cells, endothelial cells, and macrophages [55,56]. Several methods have been used to
identify lncRNAs involved in the pathogenesis of atherosclerosis. Patient-sourced samples (including
atherosclerotic plaques and blood samples), as well as animal models of atherosclerosis, have facilitated
the identification of numerous candidate lncRNAs (discussed in 5.1-3) [61–63]. Additionally, large
numbers of lncRNAs involved in atherosclerosis were identified during foam cell formations in vitro,
an approach that effectively recapitulates the accumulation of lipid droplets and acquisition of a
macrophage foam cell-like phenotype through the incubation of macrophages with ox-LDL [62,64].Non-coding RNA 2020, 6, 28 6 of 20 
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LncRNAs (blue) have positive (+) and negative (-) impacts on the expressions of scavenger receptor
CD36 and reverse cholesterol transporters ABCA1 and ABCG1 in macrophages (details in text). Ox-LDL:
oxidized low-density lipoproteins, HDL: high-density lipoproteins, FC: free cholesterol, LAL: lysosomal
acid lipase, and CE: cholesteryl esters.
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5.1. Cholesterol Update—Regulation of Scavenger Receptor Expression

The first step in forming macrophage-derived foam cells involves cholesterol uptake. Three key
scavenger receptors were described in macrophages to bind and internalize ox-LDL. As mentioned
previously, these are CD36, SR-A1, and LOX-1 [55,56]. CD36 belongs to the scavenger receptor class
B family. It consists of an extracellular loop domain with two transmembrane and two cytoplasmic
domains. CD36 is a high-affinity ox-LDL receptor that is highly expressed in macrophages [65,66].
The screening utilizing ox-LDL-stimulated macrophages in vitro has resulted in the identification
of three candidates lncRNAs that regulate CD36 receptor expression via acting as miRNA sponges.
Hu et al. [67] found that the lncRNA urothelial cancer-associated 1 (UCA1) was upregulated in the human
monocytic cell line (THP-1 macrophages) after stimulation with ox-LDLs. UCA1 knockdown inhibited
the expression of CD36 and limited foam cell formation in response to ox-LDL. The overexpression of
miR-206, identified as a predicted target of UCA1, decreased oxidative stress induced by ox-LDL and was
reversed by UCA1 upregulation in vitro, suggesting that UCA1 regulates CD36 expression via miR-206
sequestration (“sponging”) [67]. In an analogous study, Wang et al. [68] found that ox-LDL-stimulated
THP-1 macrophages yielded an increased expression of the lncRNA nuclear paraspeckle assembly
transcript 1 (NEAT1) and a decreased expression of miR342-3p. The inhibition of NEAT1 in THP-1
macrophages stimulated with ox-LDL repressed the expression of CD36 and cholesterol accumulation.
Additionally, a decreased expression of NEAT1 led to repression of the inflammatory gene expression
program (cytochrome c oxidase subunit II (COX2), interleukin 6 (IL6), interleukin 1 beta (IL1B,
also known as IL-1β), and tumor necrosis factor (TNF, also known as TNF-α)) in vitro. Bioinformatics
screening identified miR342-3p as a direct target of NEAT1, indicating its potential sponging activity.
In further studies, the overexpression of miR-342-3p impaired ox-LDL-induced foam cell formation
through the downregulation of CD36 expression [68]. Independently, Chen et al. [69] found that
NEAT1 is upregulated in the mouse RAW264 macrophage cell line stimulated with ox-LDLs, which
coincided with an upregulation of CD36. Mechanistically, NEAT1 was shown to sponge miR-128,
which led to the upregulation of CD36. On the contrary, NEAT1 knockdown restored the expression of
miR-128 and reduced the expression of CD36 in response to ox-LDL stimulation [69]. In a similar study,
Liu et al. [70] found the lncRNA HOTAIR to regulate CD36 expression, cholesterol uptake, reactive
oxygen species (ROS) production, and proinflammatory transcriptional program activation in THP-1
cells stimulated with ox-LDL via the sponging of miR330-5p. These studies show that the expression of
CD36 is subject to significant lncRNA-mediated regulation and further provides evidence that this
mechanism involves the lncRNA-mediated sequestration of numerous downstream miRNA targets;
precisely how those key downstream miRNA targets regulate CD36 expression was not addressed [70].

Differential mechanisms for the lncRNA-mediated regulation of CD36 expression were noted in
a study by Huangfu et al. [71]. There, the lncRNA, MALAT1, was identified as a binding partner of
β-catenin. An increased MALAT1 expression in response to ox-LDL led to an enhanced β-catenin
binding to the CD36 receptor promoter, which was reversed by the inhibition of MALAT1 [71].
In another study, which employed an RNA sequencing-based approach, identified LINC01272 as a
highly expressed lncRNA in patient-derived atherosclerotic plaques [67]. As LINC01272 was markedly
upregulated in unstable plaques, it was aptly named the “plaque-enriched lncRNA in atherosclerotic
and inflammatory bowel macrophage regulation” (PELATON). PELATON was notably enriched
in macrophages and exclusively localized in the nuclear fraction, implicating a likely role in the
regulation of gene transcription. As anticipated, in vitro experiments demonstrated that PELATON
knockdown effectually impaired macrophage phagocytosis, lipid uptake, and reactive oxygen species
production, as well as CD36 expression. Detailed mechanistic studies providing greater insights
into the PELATON-mediated regulation of CD36 were not conducted [72]. Regardless of the many
advancements in RNA biology to date, no known studies are investigating the impact of lncRNAs on
those other receptors (e.g., SR-A1 and LOX-1) in influencing foam cell formation. However, recent
studies have begun to focus on the contributions of endothelial and smooth muscle cells to foam cell
formation from the perspective of SR-A1 and LOX-1-dependent signaling [73–75].
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5.2. Reverse Cholesterol Transport – ABCA1 and ABCG1 Regulation

In addition to cholesterol uptake by scavenger receptors, the balance of FC and CE is also a critical
factor in the regulation of cholesterol content in macrophage-derived foam cells. In homeostasis,
after internalization, lipoproteins are delivered to the late endosome, where CE is hydrolyzed into FC
by lysosomal acid lipase (LAL). Subsequently, FC is transported to the ER, where it is re-esterified by
acetyl-CoA acetyltransferase 1 (ACAT1) and then stored in the form of lipid droplets [55,56]. When the
flux of FC from lysosomes is high, oxysterol levels, including 27-hydroxycholesterol, are increased and
bind to the nuclear liver X receptor (LXR). This interaction leads to the activation of a transcriptional
program that directs the removal of cholesterol from cells via the initiation of reverse cholesterol
transport [76]. One of these includes the ATP-binding cassette transporter ATP-binding cassette
subfamily A member 1 (ABCA1). This promotes the cholesterol efflux to Apolipoprotein A1 (APOA1),
which is the rate-limiting step in the formation of HDL. In addition to ABCA1, two other transporters
are involved in reverse cholesterol transport: ATP-binding cassette subfamily G member 1 (ABCG1)
and scavenger receptor class B member 1 (SCARB1, also known as SR-BI) [60,62,64]. During the initial
steps of atherosclerosis, an increased uptake of cholesterol and defects in cholesterol efflux ultimately
results in the accumulation of lipid droplets and, in turn, foam cell formation [55,56].

ABCA1 is a member of the larger superfamily of ABC transporters. It is well-established that
ABCA1 plays a critical role in the prevention of macrophage foam cell formation. ABCA1 mutants yield
reduced HDL cholesterol levels and heightened atherosclerotic burdens compared with the controls [77].
The expression of ABCA1 is highly regulated at the transcriptional and post-transcriptional levels.
At the transcriptional level, several nuclear receptors, including peroxisome proliferator-activated
receptors (PPARs), liver X-receptor (LXR), and farnesoid X receptor (FXR), influence ABCA1 expression.
Moreover, at the post-transcriptional level, the 3′-UTR of the ABCA1 gene is directly targeted by
multiple miRNAs, including miR-33, miR-758, miR-145, miR-27, miR-144, miR-26, and miR-106, to inhibit
the cholesterol efflux [78,79]. Besides the above microRNAs, recent observations below suggest that
lncRNAs play an active role in the dysregulation of cholesterol efflux from macrophages and foam
cell formation.

Studies from three independent laboratories reported that long intergenic non-protein-coding RNA
1228 (LINC01228, also known as DYNLRB2-2) is upregulated in macrophages in response to ox-LDL.
This lncRNA was associated with an enhanced cholesterol efflux and reduced macrophage-derived foam
cell formation—findings that were ultimately shown to involve three distinct mechanisms [80–82]. In the
study by Li Y et al. [80], THP-1 macrophages stimulated with ox-LDL exhibited elevated expression of
DYNLRB2-2; the lncRNA promoted cholesterol efflux and inhibited foam cell formation through the
activation of autophagy. Mechanistically, DYNLRB2-2 modulated the miR-298/Sirtuin 3 (SIRT3) axis,
which subsequently resulted in the LKB1/AMPK/mTOR signaling pathway-mediated initiation of an
autophagic program in macrophages [80]. This mechanism supports previous observations indicating
that autophagy (in this case, termed “lipophagy”) is a key mechanism of CE reverse transport from
lipid droplets to lysosomes and the eventual ABCA1 transporter-mediated efflux [83]. Consistent with
this idea, Li Y et al. [81] also provided evidence that elevated DYNLRB2-2 in ox-LDL-stimulated THP-1
and RAW264.7 macrophages is associated with alterations in the ABCA1 expression and cholesterol
efflux in vitro. Specifically, DYNLRB2-2 overexpression inhibited the macrophage-derived foam cell
formation, a finding that was accompanied by an enhanced cholesterol efflux and ABCA1 expression.
Further, this study indicated that DYNLRB2-2 negatively regulated the Toll-like receptor 2 (TLR2)
expression. The TLR2 overexpression reversed the effects of DYNLRB2-2 on the cholesterol efflux
and ABCA1 expression levels in THP-1 and RAW264.7 macrophages [81]. These data are consistent
with reports that macrophage TLR-2 is a protagonist of foam cell formation and atherosclerosis [84].
In another study [82], Hu et al. revealed that the DYNLRB2-2-mediated upregulation of ABCA1 in
ox-LDL-stimulated THP-1 macrophages requires G protein-coupled receptor 119 (GPR119). Supporting
this, the in vitro overexpression of GRP119 increased the cholesterol efflux, inhibited foam cell formation,
and activated a proinflammatory genetic program. Furthermore, the in vivo viral overexpression in
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high-fat fed ApoE-/- mice (a murine model of atherosclerosis) showed that GRP119 has a protective
effect against atherosclerosis via increasing the cholesterol efflux and reducing the proinflammatory
cytokine expression. These studies ultimately suggest that DYNLRB2-2 is a promising therapeutically
exploitable target to increase cholesterol homeostasis and reduce atherosclerotic plaque formation.

Another lncRNA, termed the “cholesterol-induced regulator of metabolism RNA” (CHROME),
was demonstrated to be an imperative component of proper cholesterol homeostasis. Hennessy et al. [85]
identified CHROME as elevated in the plasma and atherosclerotic plaques of individuals with
coronary artery disease. CHROME expression is influenced by dietary and cellular cholesterol via
the sterol-activated liver X receptor transcription factors, which control gene-mediating responses to
cholesterol overloads. Using gain- and loss-of-function approaches, the authors show that CHROME
promotes cholesterol efflux and foam cell formation, most likely through the regulation of miRNA
expression. CHROME knockdown in human macrophages increases the levels of miR-27b, miR-33a,
miR-33b, and miR-128, thereby reducing the expressions of their overlapping target gene networks,
including ABCA1. Since CHROME is also expressed in hepatocytes, it can play an important role in
systemic cholesterol homeostasis in atherosclerosis [85].

Macrophage-expressed lncRNAs can also have detrimental effects on foam cell formation through
the inhibition of ABCA1. In the study by Meng et al. [86], the lncRNA growth arrest-specific
5 (GAS5) was highly expressed in the THP-1 macrophage-derived foam cells and localized primarily
to the nucleus. The overexpression of GAS5 facilitated lipid accumulation and foam cell formation.
Further studies showed that GAS5 inhibits ABCA1 by binding to the histone methyltransferase EZH2.
The in vitro overexpression of EZH2 reduced the cholesterol efflux and facilitated lipid accumulation.
ApoE-/- mice with overexpression of GAS5 or EZH2 showed increased total cholesterol, free cholesterol,
cholesterol ester, low-density lipoprotein levels, aortic plaque, and lipid accumulation, accompanied
by reduced HDL levels and cholesterol outflow. These data suggest GAS5 as a promising target to
restore cholesterol homeostasis and inhibit atherosclerotic plaque formation in patients [86].

Numerous studies show that ABCG1 and SR-BI are also key components of cholesterol homeostasis
in macrophages. In a recent study by Xu et al. [87], authors show that THP-1 macrophages and
vascular smooth muscle cells (VSMC) stimulated with ox-LDL express a novel lncRNA, AC096664.3.
Further studies in VSMC demonstrated that AC096664.3 regulates the expression of ABCA1 via the
inhibition of PPAR-γ expression. However, these findings were not confirmed in macrophages. As of
late, no lncRNAs have been found to regulate scavenger receptor class B type 1 (SCARB1, also known
as SR-BI).

6. Role of lncRNA in the Regulation of Macrophage Polarization

In addition to foam cell formation, macrophages may also contribute to atherosclerosis
pathophysiology via the secretion of a broad spectrum of pro- and anti-inflammatory cytokines.
Monocytes recruited to the sites of inflammation (e.g., atherosclerotic plaque or infarcted heart)
differentiate to macrophages, which engage in shaping the inflammatory response through
the secretion of cytokines, chemokines, and reactive oxygen species (ROS) [19,20]. Depending
on the inflammatory milieu, tissue-resident macrophages can acquire a pro-inflammatory
(M1) or anti-inflammatory/pro-resolving phenotype (M2) [4,10]. Naïve macrophage exposure to
danger-associated molecular patterns (DMAPs), oxidized low-density lipoproteins (ox-LDLs),
or interferon-gamma (IFN-γ) initiate the activation of an M1 phenotype, which leads to the secretion
of proinflammatory cytokines IL-1, IL-6, tumor necrosis factor-alpha (TNF-α), IL-6, and interleukin
12 (IL-12) [57,88]. These cytokines perpetuate non-resolving inflammation and contribute to the
pathogenesis of CVD, including atherosclerosis and heart failure. Toll-like receptor (TLR) stimulation
leads to the activation of signaling pathways, culminating in proinflammatory gene activation—a chief
characteristic of the M1 phenotype (Figure 2) [57,89]. Alternatively, stimulation with interleukin 4 (IL-4)
and interleukin 13 (IL-13), as well as exposure to apoptotic cells and the activation of engulfment
through TAM receptors (i.e., Tyro3, Axl, and Mer), can activate an anti-inflammatory and pro-resolving
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M2 phenotype in macrophages [57,89]. This results in the secretion of anti-inflammatory cytokines
(IL-10 and TGFβ) but, also, pro-resolving lipid mediators (e.g., resolvins, maresins, and lipoxins),
which are associated with the pro-reparative and anti-inflammatory actions of macrophages [90–92].
Recent literature suggests that lncRNAs are involved in the modulation of the macrophage phenotype,
hence their likely involvement in the pathogenesis of CVD.
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6.1. The Role of TLR Signaling in Macrophage Polarization

TLRs are the most extensively studied and characterized pattern-recognition receptors involved
in CVD. To date, 13 TLRs have been discovered and characterized. They can be broadly divided into
two categories: cell membrane TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11) and cytoplasmic
TLRs residing in ER, endosomes, and lysosomes, which are nucleic acid-sensing receptors (TLR3,
TLR7, TLR8, TLR9, and TLR13). Recognition of the ligands results in TLR dimerization that activates
intracellular Toll/interleukin-1 receptor/resistance protein (TIR) domains to enable the recruitment of
adapter proteins like myeloid differentiation primary response 88 (MyD88), TIR-domain-containing
adapter-inducing interferon-β (TRIF), transforming growth factor-β-activated kinase 1 (TAK1; official
gene name, mitogen-activated protein kinase kinase kinase 7 (MAP3K7)), and mal T cell differentiation
protein (MAL) [93–96]. All TLRs, except for TLR3, signal via the adapter protein MyD88, which recruits
interleukin-1 receptor-associated kinases (IRAKs) to activate nuclear factor-κB (NF-κB)-dependent
proinflammatory cytokines (all TLRs) and IRF7-dependent type I IFN (TLR7-9). TLR4 activates
the MyD88-dependent pathway through the activation of the endosomal TIR domain-containing
adapter-inducing interferon-β (TRIF)-dependent pathway to activate the expression of type 1 IFNs.
TLR3 exclusively uses the TRIF-dependent pathway for downstream signaling. The activation of
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TLR signaling is associated with M1 macrophage phenotype and pro-inflammatory cytokine profiles
(Figure 2) [93–96]. Thus, it will have a detrimental effect on the progression of CVD.

The participation of the TLR signaling pathways in the pathogenesis of CVD is well-studied
in both CVD patients and small animal models [94]. It has been recognized that the pattern of TLR
expression changes in CVD patients [97]. Studies in knockout animals have established that TLR
signaling plays an active role in the pathogenesis of both atherosclerosis and heart failure [94,97]. Mice
with a deficiency of TLR2 and TLR4 or downstream signaling proteins (i.e., IRAK4, TRAF6, TRIF,
or MYD88) shows protection from atherosclerosis and various models of heart failure [94,96,98,99].
Therefore, understanding the molecular mechanisms regulating TLR signaling could lead to the
discovery of new therapeutic targets. Since TLR signaling is regulated at multiple levels (including TLR
expression) and epigenetic and post-translational mechanisms, it is possibly influenced by lncRNAs.

6.2. LncRNA Involved in the Macrophage TLR Activation and Signaling

The growing interest in lncRNAs has prompted the identification of lncRNAs that are involved
in TLR signaling. For example, the lncRNA AS-IL1a, encoded within the IL-1α locus, is required for
the recruitment of RNA polymerase II to the IL-1α promoter for its transcription in mouse primary
bone marrow-derived macrophages [100]. Another example is lnc-MARCKS/ROCKI (Regulator
of Cytokines and Inflammation), which interacts with the multifunctional DNA repair enzyme,
apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), to form a ribonucleoprotein complex and
recruit histone deacetylase 1 (HDAC1) to remove the active enhancer mark, histone H3 acetylated at
lysine 27 (H3K27ac). The removal of the H3K27ac mark results in the reduced expression of the most
prominent cellular substrate for protein kinase C, myristoylated alanine-rich protein kinase C substrate
(MARCKS), thereby regulating the expression of proinflammatory cytokines in macrophages [101].

To date, most loss-of-function experiments employed to elucidate the functions of lncRNAs are
based on the usage of knockdown methods (e.g., antisense oligos (ASO), shRNAs, and siRNAs). As it
is well-known that such acute silencing is associated with technical limitations, including off-target
effects [102], the gold standard in developmental biology is to use knockout mice [103–105]. To address
this point, Atianand et al. genetically deleted the entire 4-kb genomic locus harboring the lncRNA
Ttc39a opposite strand RNA 1 (Ttc39aos1, also known as lincRNA-EPS) to generate lincRNA-EPS−/−

mice [106]. Using macrophages isolated from lincRNA-EPS-deficient mice, the authors uncovered that
lincRNA-EPS interacts with heterogeneous nuclear ribonucleoprotein L (hnRNPL) to suppress the
transcription of immune response genes (i.e., interferon-induced protein with tetratricopeptide repeats
2 (Ifit2) and radical S-adenosyl methionine domain containing 2 (Rsad2)).

Besides the transcriptional control above, the post-transcriptional regulation of TLR signaling via
lncRNAs are reported. The most prominent ones are those investigating ceRNAs/miRNA sponges
to sequester miRNAs to interfere with mRNA degradation. For example, the imprinting lncRNA,
Maternally Expressed Gene 3 (Meg3; more specifically, MEG3-4 transcript), binds to miR-138, which
targets the proinflammatory cytokine IL-1β. Another example is NEAT1, which binds to miR-15a [107]
and miR-17-5p [108] to control the translation of TLR4. Taken together, lncRNAs play active roles in
regulating TLR signaling in macrophages.

NF-κB signaling is one of the most studied immune pathways since its discovery in 1986 [109].
It consists of five subunits (NF-κB1 p50, NF-κB2 p52, RelA/p65, RelB, and cREel) that can dimerize to
form unique transcription factors that can either interact with other gene promoters via κB consensus
motifs or with five inhibitory proteins that comprise the IκB family [110]. IκB binding to NF-κB dimers
inhibits translocation to the nucleus by occluding DNA-binding Rel proteins and masking the nuclear
localization signal region of the NF-κB subunit. The diversity of NF-κB activation is vast, and canonical
and noncanonical signaling pathways have been reviewed extensively elsewhere [110–112]. NF-κB
signaling in macrophages largely follows the same pattern of regulation, albeit mostly on the activation
of pattern recognition receptors like TLRs and a heavier reliance on c-Rel as a vital component for the
activity of NF-κB dimers [110,112]. NF-κB dimers are henceforth uninhibited by their release from the
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inhibitory IκB subunit and can be translocated into the nucleus, where they function as a transcription
factor for a plethora of inflammatory genes, such as those that make up the well-known NOD-, LRR-
and pyrin domain-containing protein 3 (NLRP3) inflammasome, a hallmark of the M1 phenotype [113].

LncRNAs have been found to both upregulate and suppress immune-responsive genes. Several
of these lncRNAs have now substantiated roles in the regulation of NF-κB signaling in many human
disease models in mice, including CVD [111,114–124]. The crosstalk between lncRNAs and NF-κB
signaling is complex, involving both direct and indirect mechanisms and spanning from epigenetic
control and even to post-translational modifications. The expression of long intergenic non-coding
RNA (lincRNA) prostaglandin-endoperoxide synthase 2, opposite strand 2 (Ptgs2os2, also known as
lncRNA-Cox2), is known to be highly induced in macrophages upon TLR activation. Hu et al. [125] found
that lncRNA-Cox2 is directly involved in modulating the assembly of NF-κB subunits to the SWI/SNF
complex, thereby acting as an epigenetic coactivator of the NF-κB-mediated late-primary response
gene transcription in murine macrophage (microglia and RAW264.7) cells [125]. Further evidence
for chromatin remodeling via lncRNAs was shown in a study where lincRNA-Tnfaip3 was found in
the LPS-stimulated macrophages to regulate high-mobility group box 1 (Hmgb1)-associated histone
modification and the subsequent NF-κB-mediated transactivation of pro-inflammatory genes [126].
Other studies in murine bone marrow-derived macrophages demonstrated that the expression of
the lncRNA cardiac and apoptosis-related lncRNA (Carlr) is not only directly increased by NF-κB
activation but, more importantly, its knockdown results in significantly reduced expression levels of
several NF-κB-regulated genes, such as the nuclear factor of the kappa light polypeptide gene enhancer
in B cells 2, p49/p100 (Nfkb2), prostaglandin-endoperoxide synthase 2 (Ptgs2), interleukin 1 alpha (Il1a),
and interleukin 1 beta (Il1b) [127].

The lncRNA Firre intergenic repeating RNA element (FIRRE) is a species-conserved lncRNA
(between humans and mice) that is upregulated by NF-κB signaling. Lu et al. [128] showed an
interesting post-transcriptional mechanism whereby FIRRE directly interacts with heterogeneous
nuclear ribonucleoproteins (hnRNPs) to stabilize the mRNAs of inflammatory genes (TNF-a, IL1b,
and IL6) following LPS stimulation. Similarly, the post-translational modulation of inflammatory
cytokines was shown in microglial cells whereby the lncRNA-predicted gene 4419 (Gm4419) was found
to be upregulated and promoted the phosphorylation of the inhibitor of nuclear factor kappa B
(IκBα) by direct physical association, ultimately leading to the increased transcriptional activation of
TNF-α, Il1b, and Il6 [129]. The aforementioned FIRRE has also been shown to form a positive feedback
loop to promote the NLR family pyrin domain containing 3 (NLRP3) inflammasome formation in
microglial cells [130]. Adding to the complexity of lncRNAs’ roles in inflammatory diseases, the lncRNA
HIX003209 was shown to promote macrophage activation in THP-1 cells by acting as a ceRNA for
miR-6089 through a TLR4/IκB/NF-κB signaling pathway [131]. The lncRNA Lethe also appears to be
important in metabolic diseases, such as diabetes, by regulating the ROS production in RAW264.7
macrophages via NF-κB signaling [132].

The indirect regulation of macrophage functions by lncRNAs and NF-κB crosstalk has also been
shown in mice peritoneal macrophages whereby the lncRNA myocardial infarction-associated transcript
2 (Mirt2) acts as a molecular checkpoint to prevent the aberrant activation of a proinflammatory
program that potently regulates the macrophage phenotype. Mirt2 is induced in the LPS-stimulated
macrophages and inhibits the K-63 ubiquitination of TNF receptor-associated factor 6 (TRAF6) and, thus,
attenuates NF-κB signaling via negative feedback. Mirt2 knockdown suppressed the proinflammatory
program in LPS-stimulated macrophages [133]. Together, lncRNAs are involved in the regulation
of NF-kB functions in macrophages. Increasing our understanding of how the complex lncRNA
network interplays with NF-kB signaling would provide new potential molecular targets to limit the
proinflammatory activation of macrophages in the pathophysiology of CVD.
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7. Conclusions

Recent studies suggest that lncRNAs play a crucial role in the regulation of myeloid recruitment
and lineage determination (e.g., the polarization of macrophages to proinflammatory M1 and reparative
M2 macrophages), as well as innate and adaptive immune functions. Although significant progress
has been made in macrophage biology, little is known regarding lncRNAs in the relationship between
macrophages and failing hearts. Furthermore, due to the lack of species conservation of lncRNAs
(e.g., between humans and mice), the studies of lncRNAs in model organisms are not well-received in
human diseases, including CVD. Adding to this lack of species conservation, most of the recent lncRNA
studies fail to provide the detailed characteristics of lncRNAs, including the presence of isoforms
and other non-coding RNAs (ncRNAs). For example, one of the most well-studied lncRNA, MEG3,
owns 50 human isoforms (Ensemble database accession ENSG00000214548). Within its locus, several
other ncRNAs are encoded (i.e., AL117190.1-201, AL117190.3-201, AL117190.7-201, and MIR770-201),
which raises a significant caution in interpreting the loss-of-function experimental results. In the case
of MEG3, gain-of-function experiments will be difficult to conduct if all 50 MEG3 isoforms are to be
cloned and overexpressed in experimental settings. However, it is imperative to conduct more careful
studies of the lncRNA locus itself, as well as the validation of isoforms via the rapid amplification
of cDNA ends (RACE) and Northern blotting assays to move the lncRNA field forward to avoid the
misinterpretation of experimental results due to ambiguity surrounding the functionalities of lncRNAs.
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