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Abstract

Original Article

IntroductIon

Researchers are digging deeper into fusing multi-modality 
medical images, as the prevailing situation is that maximum 
of the population from all over the world is diagnosed with 
one or the other type of cancer, and to save the precious 
lives, remarkable work needs to be carried out. Integration of 
multi-modality images into a single image, i.e. a fused image, 
should have the capability to represent the best information 
from each modality and hence is the main motive of image 
fusion. Positron emission tomography (PET), computerized 
tomography (CT), magnetic resonance imaging with T1 
weight (MRI-T1), and MRI with T2 weight (MR-T2) are 
the widely used modalities of the medical images. The aim 
is to contribute the relevant information from each modality 
into the resultant image which will aid the radiologist to 
figure out the tumor area for radiotherapy planning as well 
as treatment. Figure 1 shows the delineation of suspected 

volume in which different volumes are marked with different 
colors. These are the regions defined by the International 
Atomic Energy Agency[1] report of ICRU 50/62/83 that with 
the advancements in technology as shift is from plane (XY 
axis) to volume (three-dimension [3D]), the particular volumes 
need to be defined accurately. The treated volume is the tissue 
volume that is planned to receive dose selected by a radiation 
oncologist, and it further consists of planning target volume, 
irradiated treatment volume, clinical tumor volume, and gross 
tumor volume (GTV).

The diverse modalities provide different types of information 
like a CT scan will provide us the tumor information with 
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additional information such as blood vessels, inflammation, 
shell, and edema. The MRI gives the soft-tissue information 
and contrast information. Functional information is 
provided in the PET/single-photon emission computerized 
tomography (SPECT) scan.

The fusion process is a stepwise process in which the first 
step is to acquire the medical images to be fused. Then before 
applying fusion, the images can be directly fed to fusion system 
or decomposed so that the performance of fusion is enhanced. 
Decomposition of images is done to extract information from 
source image into sub-bands for which various techniques are 
implemented. The strategies to embed this useful information 
in the final output are called fusion algorithms. A lot of work 
is present in the literature to give an overview of available 
methods for fusion.[2,3] Cross-bilateral filter (CBF) is used to 
fetch the detail from each input and then weights are assigned 
to formulate the final fused image.[4] The authors have used 
conventional as well as objective measures to validate the 
principle of the proposed method. Du et al. have implemented 
reflectance and illumination-based decomposition.[5] Two 
color based methods i.e. Retinex based and gray world are 
discussed.[5] The former method is used to decompose image 
into reflectance, illumination image whereas later cover-
up the color constancy issue. The human retina-inspired 
model[6] allows to preserve spectral features with minimum 
spatial distortion. The proposed method performed well 
when compared with hue intensity saturation, discrete 
wavelet transform (DWT), wavelet-based sharpening, and 
wavelet-à trous transform. Image fusion based on convolution 
neural network (IFCNN), a CNN-based fusion method, is 
proposed in Zhang et al.’s study[7] with two convolution layers 
to extract image features, followed by relevant fusion rule. The 
method is fully convolution, allowing it to be trained in an 
end-to-end way. The output confirms better performance as the 
proposed method is able to maintain data information and color 
information. Nonsubsampled contourlet transform (NSCT) is 
used with fuzzy entropy[8] to increase the visual inspection of 
tumor area. After decomposing the input, the low-frequency 

components are fused by calculating fuzzy entropy value and 
high-frequency components are fused using regional energy. 
The metrics average gradient (AG), standard deviation (SD), 
and edge values are better than other methods. Image local 
features are extracted from input images and combined with 
fuzzy logic.[9] The weights for each pixel are calculated so as 
to combine the source images giving preference to weight 
factor and hence better results are achieved. The basic 
principle of ANFIS is defined and workflow is explained by 
Walia et al.[10] with parameter setting for nonlinear functions. 
An attempt is made[11] to provide decision support system to 
diagnose Alzheimer using neural network. The fuzzified data 
set is used in hybrid neuro-fuzzy system which proved to be 
more precise than old manual system. A new method based 
on Berkeley wavelet transform (BWT) and support vector 
machine (SVM)[12] is proposed to segment the brain MR to 
precisely figure out the tumor cells as well as healthy cells. 
The comparison is made with ANFIS, backpropagation, and 
K-NN classifiers and results indicated that the proposed method 
achieved good results in terms of sensitivity, specificity, and 
accuracy. Fusion algorithm to increase the segment ability 
of echocardiography features using pixel-level principal 
component analysis and DWT techniques is discussed 
in Mazaheri et al.’s study,[13] and the proposed method is 
able to reduce noise and artifacts. Fuzzy-adaptive reduced 
pulse-coupled neural network (RPCNN) is employed[14] with 
multi-scale geometric analysis. The fuzzy membershiP values 
act as linking strength of RPCNN’s neurons. The drawbacks 
of other fusion techniques such as reduced contrast, missing 
details, and the performance are properly managed by the 
proposed method. CT and MRI images are fused using iterative 
neuro-fuzzy approach (INFA)[15] and lifting wavelet transform 
with NFA. The results of INFA are better in terms of metrics 
and visual information. Adaptive neuro-fuzzy inference system 
is employed to fuse PET and MRI images by Kavitha et al.[16] 
The source images are decomposed using shift-invariant 
wavelet and then fused using ANFIS. The metrics entropy, 
AG, average, SD, mean square error, and peak signal-to-noise 
ratio (PSNR) are calculated and results agree to the performance 
on both visual and mathematical results. Two-scale image 
decomposition, sparse representation is done[17] including 
contrast enhancement, spatial gradient-based edge detection, 
and then breaking the image into base and detail layers Jianwen 
Hu et al.[18] used pixel-level multi-scale directional bilateral 
filter with the focus on multi-sensor images. Ability to preserve 
edges and directional information resulted in good performance 
in terms of visual as well as performance metrics. Experimental 
outcomes are compared with conventional methods on 
infrared and medical images. Multi-scale directional bilateral 
filter outperformed DWT, shearlet wavelet transform, 
dual-tree complex wavelet transform (DTCWT), NSCT, and 
multi-scale bilateral filter (MBF) with visual information 
fidelity (VIF) 72.01% in multi-sensor images and also gives 
better values for medical images. VIF 77.05% is achieved 
when applied on CT and MRI images, and for MRI-T1 and 
MRI-T2 images, the highest QE (edge information) is obtained, 

Figure 1: Target volume delineation
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i.e. 50.02%. A pixel-level fuzzy-based fusion scheme with 
minimum-sum-mean of maximum (MIN-SUM-MOM) 
is presented[19] which shows it  is better than the 
minimum-maximum-centroid (MIN-MAX-Centroid) 
algorithm. A hybrid approach integrating the advantages of 
NSCT, RPCNN, and fuzzy logic is depicted,[14] and a naïve 
fusion scheme is proposed which has shown its worth with 
higher spatial resolution and lesser difference with the original 
image. Higher value of entropy and SD is achieved with this 
new algorithm’s implementation.

Wavelet transform has been widely used in the past and as a 
state-of-art is explored by many authors. PET and CT images 
are transformed[20] using two-dimensional DWT followed by 
weighted average of the approximate coefficients. Parul et al.[21] 
used a weighted average of pixels derived from eigenvalues in 
wavelet domain. Sharpened images are obtained in the resultant 
image. Apart from evaluating the performance on conventional 
metrics, Petrovic and Xydeas image fusion metric is used. 
Haribabu et al.[22] decomposed PET images into intensity hue 
and saturation components and then fed to DWT for further 
decomposition into low- and high-frequency components. The 
low-frequency components were fused with average rule, and 
for the high-frequency components, spatial frequency (SF) is 
considered with 8*8 window. The performance is better when 
compared with PCA fusion scheme with outcome 62.2149, 
3.0617, and 3.4886 for PSNR, entropy, and SD, respectively. 
Spatial features are preserved[23] using difference in red and 
blue components by applying YCbCr. DWT is applied for 
image fusion using pulse-coupled neural networks (PCNNs). 
The proposed method shows less spatial distortions when 
compared with contourlet, curvelet, and DWT. Discrepancy 
and AG evaluation using the proposed technique is 3.8931 and 
5.1807, respectively. A cascade combination of stationary wavelet 
transform and nonsubsampled wavelet transform is depicted[24] 
with focus on preserving the spectral and spatial features of source 
images. The entropy, SD, fusion factor (FF), Q (edge strength), 
SSIM (structured similarity), EME (measure of enhancement), 
and PSNR of the proposed method entropy are 6.9414, 74.1232, 
4.2770, 0.8588, 0.8867, 24.7221, and 39.5643, respectively. 
Integer wavelet transform is used to decompose the images[25] 
and then neuro-fuzzy is applied on the wavelet coefficients. 
Metrics were calculated for entropy, fusion symmetry (FS), and 
FF achieving higher values for entropy and FF when compared 
to DWT-based neuro-fuzzy. Rajkumar et al.[15] introduced an 
INFA fusion method. A NFA with lifting wavelet transform 
is also implemented on CT and MRI images. For evaluation, 
comparison with existing methods, i.e. DWT and average 
method on six datasets of brain images, is taken. New methods 
outperformed from the existing ones with values of normalized 
correlation coefficient (CC), entropy, and structure similarity 
index are 0.9526, 6.5104, and 0.6574, respectively, using INFA.

The literature survey implies that the authors have used many 
decomposition and fusion methods such as DWT, IFCNN, 
IHS, NSCT, BWT and SVM, DTCWT, fuzzy-adaptive 
RPCNN, MBF with VIF, PCNN, and CBF. The DWT has the 

drawback of shift variance, and artifacts are also introduced 
causing redundancy. The DWT is also unable to perform 
well at the edges, and the contrast is also reduced. Though 
RDWT technique is translation invariant but it provides 
redundant information. The DTCWT is a shift invariant and 
has a directional sensitivity. The reconstruction property is 
also perfect in the case of DTCWT, but it is computationally 
expensive and demands huge memory. The authors have used 
CBF in the past for fusion. However, to further investigate its 
features, CBF is used in this work for decomposing the images, 
which is a prefusion requirement. On applying CBF, image is 
decomposed into two components, namely CBF component 
and detail component. Subtracting the CBF component from 
original image gives detail component. This detail component 
is used for further processing. The detail component of each 
modality is given as input to ANFIS for fusion. Although many 
researchers have proposed their method to improvise the fusion 
performance in Tang et al.’s study,[26] the authors have made 
a multimodal medical image fusion image database, then the 
fusion algorithms are applied on this database, and then, the 
quality of output is assessed.

In this paper, the edge-preserving capabilities of CBF are 
explored in order to enhance the multi-modality medical 
image fusion results. The proposed work verifies and compares 
devised technique with the techniques available in MATLAB 
Toolbox. The purpose is to enhance the fusion results which 
helps the oncologist to outline the tumor area more precisely 
than the existing techniques.

suBjects and methods

The proposed method considers different modality images 
A and B of the same organ as input. The proposed method is 
different from the other methods, as CBF is able to target the 
edges. Here, using CBF, one image is used to shape the kernel 
weights and is applied on the second image. In parallel to 
these calculations, biorthogonal wavelet (bior2.2) transform is 
applied on the source images A and B which gives approximate 
and detail components. Fuzzy inference system and average 
rule are performed on the decomposed parts for fusion. The 
block diagram of the proposed scheme is shown in Figure 2 
for two input images A and B.

cross‑BIlateral FIlter

Decomposition is performed taking into consideration scale 
as well as orientation. High-pass and low-pass filters give 
the complete representation of the image in the decomposed 
parts, i.e., the source images are decomposed into sub-bands, 
each containing low- and high-frequency components in it. 
Low-frequency components are passed by low-pass filter 
denoting smooth regions whereas high-frequency components 
are smoothened by high-pass filter, denoting edges where 
smoothing is a process of convolution of image with uniform/
Gaussian kernel. The CBF accomplishes edge-preserved 
smoothing by modifying the kernel based on the indigenous 
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contents, which is impossible to achieve using Gaussian kernel. 
Using cross-bilateral filter-based decomposition, detailed 
coefficients are obtained.

The CBF component is calculated, as depicted in Figure 2, 
for each input image (ACBF and BCBF) while adjusting the 
radiometric sigma and geometric sigma. Euclidean distance 
calculation is done to consider the neighboring pixels as 
well. When these CBF components are subtracted from their 
respective original images, detailed components are obtained, 
having equation:

ADETAIL = A − ACBF

BDETAIL = B − BCBF

These obtained details are then further decomposed using 
wavelets and from the various wavelet-based decomposition 
methods in the literature, like Daubechies, which is the 
extremal phase wavelets with a maximum of 15 vanishing 
points to choose from. On the other hand, Haar or db1 is the 
exclusive orthogonal wavelet with linear phase. Biorthogonal 
wavelets with different versions have been implemented 
and finally bior2.2 is used in this paper. The high-frequency 
components calculated by bior2.2 act as input to ANFIS for 
fusion as it contains maximum of information.

Adaptive neuro‑fuzzy inference system‑based fusion
ANFIS is a class of adaptive networks that are functionally 
equivalent to fuzzy inference systems (FISs) where tuning of 
the parameters of Takagi–Sugeno is done using hybrid learning 
method. Least-squares and backpropagation gradient descent 
methods are used in combination for modeling training data 
set. The ANFIS used in this study includes two inputs with five 
membership functions for each input, set of 25 rules, and single 
output, i.e. fused image. Neural networks are used with fuzzy logic 
in which the neurons adjust the membership functions. Apart from 
improving the performance of inference system, neural networks 
decline the development time and are automatically preceded.

The advantage of using ANFIS is that having training and 
testing data, it has the capacity to train. Hence, after the 
selection of membership type and number of membership 
functions, the rules are defined by the ANFIS, and Figure 3 
shows the rule surface viewer where the corresponding output 
is defined for the combination of inputs. The performance of 
the designed system can be checked with the training as well 
as testing data [Figure 4a and b], and graphical depiction 
allows tracing the performance in a user-friendly manner. In 
the proposed work, neuro-fuzzy inference system for fusion 
as shown in Figure 5 is depicting 2 input nodes, 5 membership 
functions for each input node, 25 nodes signifying 25 rules, 
defuzzification nodes, and single output node.

Evaluation parameters
To verify the output obtained after fusion, evaluation is done 
using metric calculation and comparing the values. On the other 
hand, as the image has to be finally presented to the radiation 
oncologist for planning and treatment, he/she should also be 
satisfied with the output image visually. Hence, the evaluation 
is categorized as[4] evaluation using conventional metrics, 
evaluation using objective metrics, and subjective evaluation.

Evaluation using conventional metrics
Various conventional metrics are available in the literature 
for evaluation of fusion results.[4,26-29] The brief discussion of 
various metrics used in the literature which are frequently used 
to verify results using the objective evaluation is as follows:

• Average pixel intensity (API) calculates the mean of the 
pixel values to give the index of contrast.

API =
m n
i=1 j=1 f(i

n
F

, j)

m
Σ Σ

where
f (i, j) =pixel size of the image
• AG is calculated to find out clarity and sharpness in the 

fused image

Figure 2: Proposed image fusion framework
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• Entropy: It gives the probability-based amount of information 
present in the image and is calculated by the formula:

255

k 2 k
k=0

pH = ‑ log (p )Σ
where pk is the probability if intensity value k.

• Mutual information (MIF), also called cross entropy, 
gives the overall MIF between source images and fused 
image, and to calculate it, we first calculate MIAF and MIBF 
and then addition of both will give the final MIF, i.e.,

MI = MIAF + MIBF

( ) A,F
A,F 2

k l A,F
AF

F

p (k,l)
MI = )p k,l log (

p (k)p (l)ΣΣ

( ) B,F
B,F 2

k l B,F
BF

F

p (k,l)
MI = )p k,l log (

p (k)p (l)ΣΣ

• FS: The symmetry of the final fused image is compared 
with the input images using the formula.

AFFS = MI
M

 2‑ | |
I

‑0.5

• CC: To measure the correlation between the output and 
the input images, rAF and rBF signifies the relevance of A 
and B with respect to F. The CC is then calculated as:

AF BF(r +C rC = ) / 2

( ) ( )

( ) ( )
i j

2 2
i j i j

(a i, j ‑ A)(f i, j ‑F)
AF=

( (a i, j ‑ A) ( (f i, j ‑F) )

r Σ Σ
Σ Σ Σ Σ

( ) ( )

( ) ( )
i j

2 2
i j i j

(b i, j ‑B)(f i, j ‑F)
BF=

( (b i, j ‑B) ( (f i, j ‑F) )

r Σ Σ
Σ Σ Σ Σ

• SF is calculated to find out the region-wise information levels.
2 2S RFF +CF=

The row and column frequencies (RF and CF) are calculated as:

( ) ( )( )2

i j f i, j ‑ f i, j ‑

mn
R =

1
F ΣΣ

( ) ( ) 2
i j(f i, j ‑ f i ‑ 1, j

n
C =

)

m
F ΣΣ

Root-mean-square error (RMSE) is calculated to find the error 
as percentage between reconstructed image and original image 
and is given as:

( ) ( ) 2
source fusedRMS 1 ( x y(I x, y ‑ I x,E y )

*
=

M N
  Σ 
  Σ

where M and N is the dimension of images and Isource is the 
original image and Ifused is the output image.

• PSNR is based on the RMSE and is calculated as
PSNR = 10 × log10 (M × N/[RMSE]^2)

Evaluation using objective metrics
Gradient information-based performance measuring is done 
in objective evaluation with factors:
1. Total fusion performance, QAB/ F, measures the 

information transferred from original image to fused 
imageFigure 3: Surface viewer of the rules

Figure 4: (a) The performance of adaptive neuro‑fuzzy inference system with testing data and (b) The performance of adaptive neuro‑fuzzy inference 
system with training data, respectively

ba



Kaur, et al.: Fusing medical images using ANFIS

Journal of Medical Physics ¦ Volume 46 ¦ Issue 4 ¦ October-December 2021268

2. Fusion loss, LAB/F, measures the loss of information due 
to fusion

3. Fusion artifact, NAB/F, tells about the undesired artifacts 
added in the image due to fusion.

The sum of the above three factors should be one, i.e.,

QAB/F + LAB/F + NAB/F = 1

Subjective evaluation
The subjective evaluation is done on the treatment planning 
system (TPS) by the oncologist, in which the fused image 
is verified with input images to confirm for availability of 
information from both the modalities in the output image. 
Comparison of tumor volume is done by contouring the tumor 
area in the input modalities and then in the fused image. The 
good fusion output should be able to present the precise tumor 
volume with the capability to save the organ at risk.

results

The open-source images from Harvard database[30] were taken 
to perform fusion, as the proposed method is a naive technique 
and its viability is defined in this paper which comes out to be 
better than the existing methods. The proposed method can be 
extended on real-time images as well. However, to perform on 
the real images, the registration phase needs to be performed at 
first. Diagnostically 1-cm cuts are required, but for image fusion 
for treatment planning in radiation oncology, 1-mm cuts are 
required, and keeping these details in view, the five cases were 
recommended by the radiation oncologist and medical physicist.

Case 1: Sarcoma with fusion of CT modality with MRI 
modality

Case 2: Metastatic adenocarcinoma with fusion of MR with 
gadolinium contrast medium (MR-GAD) modality with 
MR-T2 modality

Case 3: Meningioma with fusion of CT modality with MR-T2 
modality

Case 4: Meningioma with fusion of CT modality with 
MR-GAD modality

Case 5: Astrocytoma with fusion of MR-GAD with 
PET-fluorodeoxyglucose (FDG) modality.

In Case 1, the patient was a 22-year-old man who was 
admitted for resection of Ewing’s sarcoma. On examination, 
he was inattentive, confused, and had a right homonymous 
hemianopia, a left inferior quadrantanopia, right lower 
extremity hyperreflexia, and right extensor plantar response. 
CT and MRI modalities are available in this case. 

Case 2 is metastatic carcinoma of the colon of a 62-year-old 
man suffering a first seizure, a tonic-clonic convulsion with 
focal onset. There was a history of carcinoma of the colon, 

Figure 5: Structure of adaptive neuro‑fuzzy inference system model 
depicting 2 input nodes, 5 membership functions for each input node, 25 
nodes signifying 25 rules, defuzzification nodes, and single output node

Figure 6: Case 1 source images (a and b), Fused output (c‑h)
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with recent metastasis to the liver and lung. MR images show 
a lesion involving the right second frontal convolution and 
another in the cerebellum, near the fourth ventricle, also visible 
on the sagittal image map. The low signal on T2-weighted 
images of the frontal lesion is remarkable, since metastases 
are often associated with high signal. MR-GAD and MR-t2 
images are available for fusing.

Case 3 is a meningioma case with CT and MR-T2 modalities 
available of a 75-year-old man. The CT is fused with MR-T2.

Case 4 is a meningioma case with CT and MR-GAD modalities 
available of a 75-year-old man with fusion of CT with 
MR-GAD to add precision to the treatment and planning.

Case 5 is a grand mal seizure in a 53-year-old case and brain 
biopsy revealed Grade IV astrocytoma. The MR-GAD and 
PET with FDG radiotracer images are available and are fused 
to figure out the tumor volume.

Fused image by the proposed method is compared with 
different methods which are available in MATLAB. The 
comparison of fusion algorithms based on conventional 
metrics for Case 1–Case 5 is given in Table 1.The comparison 
of fusion algorithms based on objective metrics for Case 1–
Case 5 is given in Table 2. The initial decomposition wavelet 
used is bior2.2 in each method at level 1. The linear image 
fusion is used with parameter value = 0.4. The proposed 

Figure 7: Case 2 source images (a and b), Fused output (c‑h)
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Figure 8: Case 3 source images (a and b), Fused output (c‑h)
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method used CBF with the following parameters: spatial 
sigma = 1.8, radiometric sigma = 25, kernel size = 5, and 
covariance window size = 11.

A higher value of the metrics except for RMSE, LAB/F, and 
NAB/F is desired to be called a better fusion outcome. The 
higher values are bolded, and for RMSE, LAB/F, and NAB/F, 
lower values obtained are bolded.

The quantitative comparison shows that for Case 1, proposed 
method has achieved better API, entropy, MIF, FS, and CC, 
and for AG and SF, CBF method has performed well. This 
implies that the fused output has better pixel intensity, and 
entropy of the fused output is also better. The MIF has also 

increased and the symmetry of the information is also higher 
than the other methods. The proposed method is also capable 
of improving the correlation among input and output images. 
Moreover, in terms of objective measures, more information 
is transferred from input images to output image, loss of 
information is lowered, and addition of artifacts is also lesser 
when compared with the performance of other methods as 
shown in Figure 6a-h. It is clear from Figure 6h that the image 
obtained from the proposed method is more informative in 
terms of MIF, correlation, entropy, and symmetry with respect 
to source. This case achieved the highest PSNR with value 
38.4048.

Figure 10: Case 5 source images (a and b), Fused output (c‑h)
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Figure 9: Case 4 source images (a and b), Fused output (c‑h)
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Table 1: Comparison of fusion algorithms based on conventional metrics for Case 1–Case 5

Metric Algorithm Case 1 Case 2 Case 3 Case 4 Case 5
API Minimum 31.7701 32.3255 56.2222 66.4826 68.7989

Maximum 50.4359 45.3094 57.7877 69.0020 43.2125
Mean 51.18 48.7977 58.4642 68.2222 44.3698
Linear 47.9926 46.7783 60.4822 67.4848 45.5555
CBF 47.201 48.7263 62.3688 68.7225 45.5937
Proposed 51.1811 48.8051 63.5565 69.9999 71.1181

AG Minimum 5.2174 7.5641 6.3285 14.2828 15.3636
Maximum 7.9516 11.3446 8.8627 15.1111 10.4458
Mean 5.5458 8.0288 9.4646 14.7872 12.4589
Linear 5.6403 7.7646 9.9892 15.0082 14.8245
CBF 10.6827 11.4944 14.1252 15.4072 10.8227
Proposed 5.7216 8.3132 15.0822 16.0045 18.2626

Entropy Minimum 0.9768 0.993 0.9755 0.9555 0.9745
Maximum 0.9887 0.9973 0.9889 0.9422 0.9327
Mean 0.9881 0.9967 0.9988 0.9767 0.9282
Linear 0.988 0.9965 0.9872 0.9822 0.9677
CBF 0.9836 0.9971 0.9989 0.9964 0.9758
Proposed 1.5118 1.6241 1.4227 1.4828 1.2826

MIF Minimum 0.7794 0.8344 0.8823 0.9099 0.9011
Maximum 0.8001 0.8565 0.7765 0.9222 0.9122
Mean 0.8013 0.8614 0.8623 0.9010 0.9101
Linear 0.8015 0.8619 0.7623 0.9122 0.9211
CBF 0.7906 0.8583 0.9297 0.9357 0.8782
Proposed 0.8019 0.8414 0.9586 0.9599 0.9893

FS Minimum 1.99 1.9985 1.9905 1.9765 1.9655
Maximum 1.9832 1.9982 1.9289 1.9886 1.9786
Mean 1.9856 1.9983 1.9432 1.9825 1.9552
Linear 1.9872 1.9987 1.9865 1.9905 1.9509
CBF 1.978 1.9985 1.9730 1.9985 1.9569
Proposed 1.9933 1.9955 1.9956 1.9999 1.9999

CC Minimum 0.5911 0.5248 0.5426 0.6111 0.6212
Maximum 0.644 0.5151 0.5622 0.6012 0.6001
Mean 0.68 0.5338 0.5422 0.6211 0.6298
Linear 0.6842 0.543 0.6667 0.6322 0.6232
CBF 0.6118 0.6804 0.5519 0.6372 0.6620
Proposed 0.8744 0.9176 0.6892 0.7977 0.7930

SF Minimum 10.7719 15.8149 32.1111 30.4626 30.2654
Maximum 25.1033 21.6806 31.2828 31.1111 29.9874
Mean 14.6407 20.1828 30.4646 30.6262 28.8794
Linear 13.3011 18.8143 31.4824 33.2682 29.2564
CBF 29.0158 26.7267 32.0812 34.4033 31.9889
Proposed 26.5606 20.3273 33.6623 35.4682 32.7876

RMSE Minimum 36.6262 36.7876 34.1212 33.3333 33.4646
Maximum 35.6166 35.6667 33.4848 34.4682 33.8282
Mean 34.9982 34.7822 33.7826 32.9999 33.4646
Linear 34.4826 34.4646 32.4682 33.4646 32.8888
CBF 33.5646 33.5827 32.1111 32.0062 32.4646
Proposed 32.4046 33.4648 31.0082 31.0606 31.1818

PSNR Minimum 35.4674 34.8888 35.2826 33.2826 35.6868
Maximum 36.4476 34.6262 36.5555 36.1111 34.8283
Mean 36.4545 35.9999 36.8282 35.9999 33.4649
Linear 37.4467 35.7877 35.8282 35.8852 36.2828
CBF 38.0072 36.4842 36.9999 36.9999 37.4444
Proposed 38.4048 37.4464 37.6868 37.6862 37.4863

API: Average pixel intensity, PSNR: Peak signal-to-noise ratio, RMSE: Root-mean-square error, SF: Spatial frequency, CC: Correlation coefficient, FS: 
Fusion symmetry, MIF: Mutual information, AG: Average gradient, CBF: Cross-bilateral filter
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i.e. NAB/F = 0.0021, are also negligible. In this case, the highest 
FS with value 1.9999 and SF with value 35.4682 are achieved.

Figure 11: Case 1 showing computerized tomography image, magnetic 
resonance imaging image, and the fused output, respectively

Figure 12: Case 2 showing magnetic resonance imaging‑gadolinium 
contrast medium image, magnetic resonance‑T2 image, and the fused 
output, respectively

Figure 13: Case 3 showing computerized tomography image, magnetic 
resonance ‑T2 image, and the fused output, respectively

Figure 14: Case 4 showing computerized tomography image, magnetic 
resonance imaging‑gadolinium contrast medium image, and the fused 
output, respectively

For Case 2, the proposed method is able to improve only the 
pixel intensity, entropy of the fused output, and correlation 
between inputs and output. The linear fusion method has 
performed better in terms of MIF and FS. The CBF is able 
to perform well in terms of AG and SF. While looking at 
objective metrics, the proposed method is able to perform well 
in terms of minimum addition of artifacts. In this case, CBF 
has performed well in terms of transfer of information, which 
has increased with minimum loss of information. Figure 7a-h 
presents input as well as output from different methods, and 
Figure 7h shows that intensity, entropy, and correlation are 
better but are unable to perform better in terms of MIF and 
symmetry, for which linear fusion method has performed better. 
The image also verifies that negligible amount of artifact is 
transferred in the fused image. The highest entropy with value 
1.6241, CC with value 0.9176, and the lowest NAB/F with value 
0.0001 are attained.

For Case 3, the proposed method is able to achieve better 
API, AG, entropy, MIF, symmetry of fused image, cross 
correlation, SF, PSNR, and a minimum of RMSE and is 
shown in Figure 8a-h. The fused image is informative as it 
has more transfer of information with less loss of information 
and addition of artifacts. For this case, the lowest RMSE with 
value 31.0082, LAB/F with value 0.0969, and the highest QAB/F 
with value 0.8826 are obtained.

For Case 4, the values of metrics API, AG, entropy, MIF, FS, 
CC, SF, and PSNR are highest for the proposed method among 
the values obtained from all other methods. The new method 
was also capable to transfer maximum information from source 
images to fused image (QAB/F = 0.869) as shown in Figure 9a-h. 
The information loss, LAB/F = 0.1410, and addition of artifacts, 

Table 2: Comparison of fusion algorithms based on 
objective metrics for Case 1–Case 5

Metric Algorithm Case 1 Case 
2

Case 
3

Case 
4

Case 
5

QAB/F Minimum 0.398 0.2322 0.2522 0.2466 0.2911
Maximum 0.7257 0.3483 0.3595 0.3466 0.3777
Mean 0.6423 0.2762 0.3711 0.2989 0.3131
Linear 0.5932 0.2726 0.2929 0.3899 0.5165
CBF 0.7219 0.7488 0.8418 0.8488 0.8312
Proposed 0.7543 0.6648 0.8826 0.8569 0.8426

LAB/F Minimum 0.5936 0.7236 0.7076 0.6983 0.6490
Maximum 0.2599 0.5667 0.5628 0.5644 0.5263
Mean 0.3571 0.6883 0.5990 0.6678 0.6500
Linear 0.4060 0.6923 0.6728 0.5654 0.3500
CBF 0.2462 0.2388 0.1317 0.1411 0.1225
Proposed 0.2455 0.3351 0.0969 0.1410 0.1221

NAB/F Minimum 0.0084 0.0442 0.0402 0.0551 0.0599
Maximum 0.0144 0.0850 0.0770 0.0890 0.0960
Mean 0.0632 0.0355 0.0299 0.0333 0.0369
Linear 0.0079 0.0352 0.0343 0.0447 0.1335
CBF 0.0319 0.0124 0.0265 0.0101 0.0464
Proposed 0.0002 0.0001 0.0205 0.0021 0.0353

Sum Minimum 1 1 1 1 1
Maximum 1 1 1 1 1
Mean 1.000032 1 1 1 1
Linear 0.99999 1.0001 1 1 1
CBF 1 1 1 1 1
Proposed 1 1 1 1 1

CBF: Cross-bilateral filter
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Similarly for Case 5, Figure 10a-h shows input images as 
well as fused output. PET-FDG gives the functional activity 

Figure 15:  Case 5 showing magnetic resonance imaging‑
gadolinium contrast medium image, positron emission tomography‑
fluorodeoxyglucose image with missed tumor areas, and the fused 
output, respectively

of the tissues under study. Using the radioactive material, 
the radioactivity inside the body is captured to study the 
abnormalities. The conventional metrics have shown acceptable 
values and the objective metrics also showed values as expected 
by a good fusion algorithm. In this case, the highest API with 
value 7.1181, AG with value 18.2626, MIF with value 0.9893, 
and FS with value 1.9999 are achieved. For the subjective 
evaluation, the output images were visually inspected by the 
oncologist. All the cases were presented to the expert, as shown 
in Figures 11-15, and the following remarks were obtained:

For Case 1, CT image shows a particular length of the tumor (red 
arrow) and MRI image shows a lot of artifacts and is less sensitive 
than CT and shows a longer tumor (yellow arrow). Once the 
modalities are fused, one is actually able to see what is the actual 
site of the tumor and what will be the planned target volume and 
this precision in turn will be able to save a lot of normal tissues 

Figure 16: Graph 1 – Average pixel intensity calculation

Figure 17: Graph 2 – Average gradient calculation

Figure 18: Graph 3 – Entropy calculation
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which otherwise may get over-radiated. Thus, the fused output 
is able to reduce the size of the planned target volume and finally 
the entire dose to the normal organs is also reduced.

For Case 2, as displayed in Figures 7 and 12, contouring on 
MR-GAD displays more treatment volume (in red color) 
as compared to MR-T2 (in yellow color). After fusion, we 

Figure 19: Graph 4 – Mutual information of fused image calculation

Figure 20: Graph 5 – Fusion symmetry calculation

Figure 21: Graph 6 – Cross correlation calculation

Figure 22: Graph 7 – Spatial frequency calculation
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Figure 23: Graph 8 – Root‑mean‑square error calculation

can observe that there is a significant difference in treatment 
volume. Radiotherapy treatment should be executed as per the 

MR-T2 image which is actually the size of the tumor. It has 
increased the precision while executing radiotherapy treatment.

For Case 3, as shown in Figures 8 and 13, MR-T2 shows good 
middle line shift and demarcation of the tumor (in yellow color) 
but without differentiation from the edema. Whereas CT does 
not shows the middle line shift but is able to present the basic 
tumor outline (in yellow color) and tumor area (in red color). 
On fusing the two modalities, the resultant image is able to 
precisely define tumor volume (in red) with the presence of 
middle line shift also. This also signifies that the CT-based 
treatment may not be able to perform well and hence fusing it 
with other modalities for more information is needed.

Similarly, for Case 4, as visible in Figures 9 and 14, CT does 
not views the middle line shift but is able to present the outline 
of tumor area (in yellow color). MR-GAD is able to display 
the middle line shift and the tumor volume, but variation from 
edema is unclear. The tumor is going along the perisylvian 
fissure anteriorly in the MR-GAD image. On fusing the two 
modalities, the resultant image carry the desirable properties 
of both the modalities i.e. middle line shift as well as tumor 
volume.

For Case 5, as displayed in Figures 10 and 15, the CT modality 
is able to capture the tumor present in the particular organ. In 
PET, the metabolic information shows that the cancerous area 
is visible but is not completely being figured out and hence 
a part of the tumor volume is missed. However, in the fused 
image, the tumor volume is precisely delineated and the healthy 
tissues are saved from radiations.

Figure 24: Graph 9 – Peak signal‑to‑noise ratio calculation

Figure 25: Graph 10 – Total fusion performance, QAB/F calculation

Figure 26: Graph 11 – Fusion loss, LAB/F calculation
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Figure 27: Graph 12 – Fusion artifacts, NAB/F calculation

On the other hand, if the radiologist witnesses some additional 
information in the volume lying between the two contours, 
then the radiotherapy can be executed on the bigger volume. 
The patient’s position uncertainty in the treatment room 
will advocate the use of outer contouring volume for the 
radiotherapy treatment. The radiation oncologist may suggest 
to treat the bigger volume if the involvement of lymph nodes 
is seen which could be the volume lying between the two 
contours. The statistical analysis of the metrics is also done 
using graphs to envision the performance of fusion methods 
in each case [Figures 16-27].

dIscussIon

A new technique to perform multi-modality medical image 
fusion is proposed using CBF and ANFIS. The proposed fusion 
method gives precise tumor area with preservation of edges and 
negligible loss in information. The output is more informative 
in terms of edge information, information transfer, and PSNR 
too and is quantified using different metrics as discussed in 
the result. The doctors also confirmed that the abnormality is 
more clearly viewed as well as addition of artifacts is minimal 
in the proposed algorithm’s output when compared with the 
mentioned state-of-the-art methods.

Fusion output can play a vital role to execute an optimum dose 
to the tumor so that the condition of underdose or overdose is 
overlooked. In the radiotherapy practices, a dose above 107% 
of the recommended dose is called hot spot or overdose, and 
if the dose remains <95% of the suggested amount, then it is 
called cold spot or underdose. The dose quantity will directly 
affect the surrounding organs because a cold spot may lead to 
relapse/recurrence of the tumor whereas hot spot may disturb 
the functioning of the targeted organ.

The proposed method is skilled to perform fusion in a better as 
well as qualified way as only by adjusting the two parameters 
which allows tracking the size of the feature and contrast of the 
feature to be preserved. The noniterative nature of CBF allows 
ignoring the cumulative effect over several iterations, which 
may mislead the fusion process. To conclude, the proposed 
method is efficient than the mentioned fusion methods. The 
fusion method devised can be integrated with the TPS. The 
integration of fusion technique with the radiation output 

parameters will improvise the treatment planning. The present 
study has applied fusion on slices. In future, the work can be 
used to evolve over a surface in 3D domain instead of a single 
slice. Thus, proposed method can be applied on the voxels 
to create 3D volumes. The database used is open source and 
retrieved from Harvard University.[30] 
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