

Crystal structure of alluaudite-type Na₄Co(MoO₄)₃

Rawia Nasri, Noura Fakhar Bourguiba,* Mohamed Faouzi Zid and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis, Tunisia. *Correspondence e-mail: n.f.bourguiba@live.fr

Received 10 July 2014; accepted 18 July 2014

Edited by I. D. Brown, McMaster University, Canada

The title compound, tetrasodium cobalt(II) tris[molybdate(IV)], was prepared by solid-state reactions. The structure is isotypic with Na₃In₂(AsO₄)₃ and Na₃In₂(PO₄)₃. The main structural feature is the presence of infinite chains of edgesharing X_2O_{10} (X = Co/Na) dimers, which are linked by MoO₄ tetrahedra, forming a three-dimensional framework enclosing two types of hexagonal tunnels in which Na⁺ cations reside. In this alluaudite structure, Co and Na atoms are located at the same general site with occupancies of 0.503 (5) and 0.497 (6), respectively. The other three Na and one of the two Mo atoms lie on special positions (site symmetries 2, $\overline{1}$, 2 and 2, respectively). The structure is compared with similar structures and other members of alluaudite family.

Keywords: crystal structure; X-ray diffraction; molybdate; alluaudite.

CCDC reference: 1015075

1. Related literature

For the bond-valance-sum method, see: Brown & Altermatt (1985). For related structures, see: Chaalia *et al.* (2012); Engel *et al.* (2005); Frigui *et al.* (2012); Hatert (2006); Hidouri *et al.* (2006); Kabbour *et al.* (2011); Kelvtsova *et al.* (1991); Lii & Ye (1997); Marzouki *et al.* (2013); Mikhailova *et al.* (2010); Moore (1971); Namsaraeva *et al.* (2011); Solodovnikov *et al.* (1988); Yakubovich *et al.* (2005).

2. Experimental

2.1. Crystal data

$Na_4Co(MoO_4)_3$	b = 13.4384 (9) Å
$M_r = 630.71$	c = 7.1292 (7) Å
Monoclinic, $C2/c$	$\beta = 112.072 \ (6)^{\circ}$
$a = 12.8770 \ (8) \ \text{\AA}$	V = 1143.27 (15) Å ³
a = 12.87/0 (8) A	V = 1143.27 (15) A ³

OPEN 🗟 ACCESS

Z = 4Mo $K\alpha$ radiation $\mu = 4.85 \text{ mm}^{-1}$

2.2. Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.214$, $T_{max} = 0.344$ 2898 measured reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.065$ S = 1.121242 reflections 1242 independent reflections 1156 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ 2 standard reflections every 120 min

intensity decay: 1.4%

95 parameters $\Delta \rho_{\text{max}} = 1.14 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.81 \text{ e } \text{ Å}^{-3}$

T = 298 K

 $0.84 \times 0.28 \times 0.22 \text{ mm}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

The authors gratefully acknowledge the financial support of Ministry of Higher Education, Scientific Research and Technology of Tunisia.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BR2240).

References

- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chaalia, S., Ayed, I. & Haddad, A. (2012). J. Chem. Crystallogr. 42, 941–946. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
- Engel, J. M., Ehrenberg, H. & Fuess, H. (2005). Acta Cryst. C61, i111-i112.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frigui, W., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, i40-i41.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hatert, F. (2006). Acta Cryst. C62, i1-i2.
- Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Ben Amara, M. (2006). J. Solid State Chem. 179, 1808–1813.
- Kabbour, H., Coillot, D., Colmont, M., Masquelier, C. & Olivier, M. (2011). J. Am. Chem. Soc. 133, 11900–11903.
- Kelvtsova, R. F., Borlsov, S. V., Bliznyuk, N. A., Glinskaya, L. A. & Kelvtsov, P. V. (1991). J. Struct. Chem. 32, 885–893.
- Lii, K.-H. & Ye, J. (1997). J. Solid State Chem. 133, 131-137.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Marzouki, R., Frigui, W., Guesmi, A., Zid, M. F. & Driss, A. (2013). *Acta Cryst.* E69, i65–i66.
- Mikhailova, D., Sarapulova, A., Voss, A., Thomas, A., Oswald, S., Gruner, W., Trots, D. M., Bramnik, N. N. & Ehrenberg, H. (2010). J. Mater. Chem. 22, 3165–3173.
- Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.
- Namsaraeva, T., Bazarov, B., Mikhailova, D., Kuratieva, N., Sarapulova, A., Senyshyn, A. & Ehrenberg, H. (2011). *Eur. J. Inorg. Chem.* pp. 2832–2841. North. A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A24, 351–
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Solodovnikov, S. F., Kelvtsova, R. F., Glinskaya, L. A. & Kelvtsov, P. V. (1988). *Kristallografiya*, 33, 1380–1386.

Yakubovich, O. V., Massa, W., Gavrilenko, P. G. & Dimitrova, O. V. (2005). *Eur. J. Mineral.* **17**, 741–747.

supporting information

Acta Cryst. (2014). E70, i47-i48 [doi:10.1107/S1600536814016729]

Crystal structure of alluaudite-type Na₄Co(MoO₄)₃

Rawia Nasri, Noura Fakhar Bourguiba, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

Ces dernières années, plusieurs équipes de recherche s'intéressent à l'étude des systèmes quaternaires de type A–M–Mo– O (A = cation monovalent et M = métal de transition). En effet, la jonction octaèdres-tétraèdres conduit à des charpentes ouvertes ayant des caractéristiques structurales favorable à la mobilité des ions (Kabbour *et al.*, 2011). De plus, la substitution du métal de transition par un alcalin de petite taille (Li, Na) confère aux matériaux obtenus des propriétés physiques importantes notamment: magnétiques (Namsaraeva *et al.*, 2011; Hidouri *et al.*, 2006), d'insertion et d'extraction (Mikhailova *et al.*, 2010). C'est dans ce cadre, que nous avons choisi l'exploration des systèmes A–Co–Mo–O (A = ion monovalent). Une nouvelle phase de formulation $Na_4Co(MoO_4)_3$ a été synthétisée par réaction à l'état solide.

Un examen bibliographique montre que le matériau étudié est isostructural aux composés: Na₃In₂As₃O₁₂ et Na₃In₂P₃O₁₂ (Lii & Ye, 1997) et membre de la famille alluaudite (Moore, 1971; Hatert, 2006; Yakubovich *et al.*, 2005). L'unité *asym*étrique, dans le composé étudié est construite à partir d'un octaèdre CoO₆ et de deux tétraèdres MoO₄ connectés par ponts mixtes de type Co–O–Mo (Fig. 1). Dans cette unité les atomes Co1 et Na1 sont situés dans le même site (8f: Wyckoff) avec des taux d'occupation respectivement égaux à 0,503 (5) et 0,497 (6). Alors que les trois autres atomes de sodium (Na2(4e), Na3(4a), Na4(4e)) et l'un des deux atomes de molybdène (Mo1(4e)) se trouvent sur des positions particulières.

Dans la charpente anionique les octaèdres CoO₆ et les tétraèdres MoO₄ se lient pour former des chaînes classiques de type CoMoO₈ avec une disposition en *cis* des tétraèdres Mo2O₄ (Fig. 2a). Ces dernières se connectent par mize en commun d'arêtes entre les octaèdres CoO₆ pour donner des rubans de type Co₂Mo₂O₁₄ (Fig. 2b). Ces rubans se lient au moyen de sommets entre les polyèdres de nature différente pour conduire à des couches disposées parallèlement au plan (100) (Fig. 3). La formation de ce type de couches est la conséquence d'une disposition particulière des dimères Co2O₁₀, selon les deux directions [011] et [011]. La jonction entre ces couches est assurée par insertion des tétraèdres Mo1O₄ et formation de ponts mixtes Co–O–Mo. En effet, chaque tétraèdre Mo1O₄ partage deux pairs de ses sommets avec respectivement deux couches adjacentes. Par contre dans une couche, chaque tétraèdre Mo2O₄ partage seulement trois de ses sommets avec les dimères Co2O₁₀, le quatrième sommet restant libre forme un groupement molybdyl (*d*(*M*=O)= 1,750 (2) Å) et d'autre part il se dirige vers les canaux où se situent les cations Na3. Cette association conduit à une charpente tridimensionnelle, possédant deux types de canaux larges, à section hexagonale, parallèles à l'axe *c* où logent les cations Na⁺ (Fig. 4).

L'examen des facteurs géométriques dans la structure révèle qu'ils sont conformes à ceux rencontrés dans la littérature (Engel *et al.*, 2005). De plus, le calcul des différentes valences de liaison (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions suivants: Mo1(5,769), Mo2(5,887), (Co1/Na1) (1,871), Na2(1,116) Na3(0,874), Na4(0,570).

La recherche de structures présentant des aspects communs avec celle de Na₄Co(MoO₄)₃, nous a conduit à la famille des alluaudites de formule générale AA' $M'M_2(XO_4)_3$ (A = ion monovalent ou bivalent et M = métal de transition) (Moore, 1971). Cependant une diffénce nette est observée d'une part, dans l'arrangement des polyédres et d'autre part dans l'occupation des sites cristallographiques. En effet, dans le composé K₂Mn₃(AsO₄)₃ (Chaalia *et al.*, 2012), le site (1/2,*y*,3/4) est occupé par l'octaèdre Mn1O₆ (Fig. 5) par contre dans notre composé, il est occupé par le cation Na2 (Fig. 4).

Une comparaison de la structure avec les formes de type wyllieites et rosemaryites montre qu'ils cristallisent dans le même système cristallin monoclinique, et présentent des paramétres de maille similaires, mais ils possédent des groupes d'espace différents: P21/c, P21/n respectivement. Tandisque pour les alluaudites, le groupe d'espace est C2/c. Pour le composé Ag_{1,09}Mn_{3,46}(AsO₄)₃ de type wyllieite (Frigui *et al.*, 2012), une différence est observée dans la charpente. En effet, les couches sont liées d'une part, par des ponts mixtes Mn—O—As et d'autre part, par partage d'arêtes avec l'octaèdre Mn1O₆ (Fig. 6). Dans la variété β -xenophyllite (Marzouki *et al.*, 2013), le composé Na₄Li_{0.62}Co_{5.67}Al_{0.71}(AsO₄)₆ possède des paramétres de maille, un groupe d'espace (C2/m) et une charpente anionique différente de ceux rencontrés dans notre phase Na₄Co(MoO₄)₃.

Une comparaison de notre structure avec celle des composés ayant une formulation analogue $A_4M(MoO_4)_3$ (A=Cs, Rb, Na) et (M=Fe, Cu, Mn) montre une différence nette d'une part, dans la *sym*étrie cristalline et d'autre part, dans l'arrangement des polyèdres. Les deux composés Cs₄Fe(MoO₄)₃ (Namsaraeva *et al.*, 2011), et Rb₄Mn(MoO₄)₃ (Solodovnikov *et al.*, 1988), sont de *sym*étrie hexagonale P-62*c* et présentent des charpentes bidimensionnelles. En effet, la connection des tétraèdres MoO₄ aux bipyramides trigonales FeO₅ engendre des couches disposées parallèlement au plan (001) (Fig. 7). Pour la variété Na₄Cu(MoO₄)₃ (Kelvtsova *et al.*, 1991), elle cristallise dans le systéme triclinique, groupe d'espace P-1. La jonction des différents polyédres conduit aussi à une structure bidimensionnelle. En conclusion, la phase élaboreée Na₄Co(MoO₄)₃ de formulation générale A₄M(MoO₄)₃ est classée, contrairement à ses homologues précedemment cités, une forme Alluaudite.

S2. Experimental

Les cristaux relatifs à Na₄Co(MoO₄)₃ ont été obtenus par réaction à l'état solide à partir des réactifs: Na₂CO₃ (PROLABO, 70128), Co(NO₃)·6H₂O (FLUKA, 60832) et (NH4)₂MoO₄O₁₃ (FLUKA, 69858) pris dans les proportions Na:Co:Mo=3:1:3. Aprés un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l'air à 673 K pendant 24 heures en vue d'éliminer les composés volatils. Il est ensuite porté jusqu'à une température de synthèse proche de celle de la fusion à 953 K. Le mélange est abandonné à cette température pendant une semaine pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu'à 900 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur bleu, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau chaude.

S3. Refinement

L'affinement des taux d'occupation des atomes de cobalt et de sodium séparément conduit à une formule erronée de type Na₃Co_{1,4}Mo₃O₁₂ où la neutralité électrique n'est pas vérifiée. De plus, La distance moyenne Co1–O égale à 2,19 (1) est supérieure à celle rencontrée dans la bibliographie. En effet, c'est une distance moyenne de type Co/Na–O. L'affinement final a été donc, réalisé en placant les atomes Co1 et Na1 dans le même site, il conduit aux taux d'occupation respectifs égaux à 0,503 (5) et 0,497 (6). La formule finale correspond à une alluaudite de type Na₄CoMo₃O₁₂. *L*'utilisation des contraintes EADP et EXYZ, autorisées par le programme *SHELXL*-97 (Sheldrick, 2008), pour le couple Co1/Na1 conduit à des ellipsoïdes bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont

acceptables et sont situées respectivements à 0,88 Å de Mo2 et à 0,51 Å de Na4.

Figure 1

Unité *asym*étrique dans Na₄Co(MoO₄)₃. Les éllipsoïdes ont été définis avec 50% de probabilité. [*Code de symétrie*]: (i) - x, y, -z + 1/2; (ii) x, y + 1, z; (iii) x, -y + 1, z - 1/2; (iv) -x + 1/2, -y + 1/2, -z + 1; (v) x, -y + 1, z + 1/2; (vi) -x + 1/2, -z + 1/2.

Représentation: (a) des chaînes classiques CoMoO₈, (b) des rubans de type Co₂Mo₂O₁₄.

Représentation des couches disposées parallèlement au plan (100).

Projection de la structure de $Na_4Co(MoO_4)_3$ selon *c*.

Projection de la structure de K₂Mn₃(AsO₄)₃, selon *c*, montrant la disposition des octaèdres Mn³⁺O₆.

Projection de la structure de Ag_{1,09}Mn_{3,46}(AsO₄)₃, selon *a*, montrant la jonction des octaèdres par arêtes.

Projection de la structure de Cs₄Fe(MoO₄)₃, selon *b*, mettant en évidence les espaces inter-couches.

Tétrasodium cobalt(II) tris[molybdate(VI)]

Crystal data

Na₄Co(MoO₄)₃ $M_r = 630.71$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.8770 (8) Å b = 13.4384 (9) Å c = 7.1292 (7) Å $\beta = 112.072$ (6)° V = 1143.27 (15) Å³ Z = 4 F(000) = 1172 $D_x = 3.664 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 4.85 \text{ mm}^{-1}$ T = 298 KPrism, blue $0.84 \times 0.28 \times 0.22 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer	1242 independent reflections 1156 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.036$
Graphite monochromator	$\theta_{\text{min}} = 27.0^{\circ}$ $\theta_{\text{min}} = 2.3^{\circ}$
$\omega/2\theta$ scans	$h = -16 \rightarrow 16$
Absorption correction: ψ scan	$k = -2 \rightarrow 17$
(North <i>et al.</i> , 1968)	$l = -9 \rightarrow 9$
$T_{\min} = 0.214, \ T_{\max} = 0.344$	2 standard reflections every 120 min
2898 measured reflections	intensity decay: 1.4%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourie
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	$w = 1/[\sigma^2(F_0^2) + (0.0303P)^2 + 3.9296P]$
$wR(F^2) = 0.065$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$

1242 reflections95 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 3.9296P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.81 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0136 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

_	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mol	0.0000	0.21721 (3)	0.2500	0.01688 (16)	
Mo2	0.26106 (3)	0.89054 (2)	0.37349 (4)	0.01710 (15)	
Col	0.28417 (6)	0.16208 (6)	0.37580 (10)	0.01443 (19)	0.503 (5)
Na1	0.28417 (6)	0.16208 (6)	0.37580 (10)	0.01443 (19)	0.497 (6)
Na2	0.0000	0.23993 (19)	0.7500	0.0245 (5)	
Na3	0.0000	0.0000	0.0000	0.0372 (6)	
Na4	0.5000	0.0060 (3)	0.7500	0.0454 (7)	
01	0.2761 (3)	0.8197 (2)	0.1715 (4)	0.0283 (7)	
02	0.3244 (3)	0.8298 (2)	0.6100 (4)	0.0264 (6)	
03	0.1067 (3)	0.1352 (2)	0.2466 (5)	0.0324 (7)	
04	0.3248 (3)	0.0080 (3)	0.3900 (5)	0.0345 (7)	
05	0.1179 (3)	0.9099 (2)	0.3156 (5)	0.0290 (7)	
O6	0.0439 (2)	0.2916 (2)	0.4718 (4)	0.0238 (6)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0256 (3)	0.0134 (2)	0.0097 (2)	0.000	0.00436 (17)	0.000
Mo2	0.0212 (2)	0.0184 (2)	0.0106 (2)	-0.00135 (12)	0.00467 (13)	0.00017 (11)
Col	0.0183 (4)	0.0159 (4)	0.0092 (3)	0.0006 (3)	0.0054 (3)	-0.0009 (3)
Na1	0.0183 (4)	0.0159 (4)	0.0092 (3)	0.0006 (3)	0.0054 (3)	-0.0009(3)
Na2	0.0248 (11)	0.0317 (12)	0.0208 (11)	0.000	0.0131 (9)	0.000
Na3	0.0506 (16)	0.0234 (12)	0.0239 (13)	0.0014 (12)	-0.0018 (11)	-0.0011 (11)
Na4	0.0233 (12)	0.0505 (18)	0.0527 (19)	0.000	0.0031 (12)	0.000
01	0.0368 (16)	0.0338 (17)	0.0165 (13)	-0.0011 (14)	0.0124 (12)	-0.0011 (12)
O2	0.0339 (15)	0.0267 (15)	0.0142 (13)	0.0072 (13)	0.0041 (11)	0.0009 (11)
O3	0.0363 (16)	0.0248 (15)	0.0289 (16)	0.0052 (13)	0.0042 (13)	-0.0075 (13)
O4	0.0416 (18)	0.0309 (17)	0.0294 (16)	-0.0123 (15)	0.0114 (14)	0.0030 (14)
05	0.0266 (15)	0.0268 (15)	0.0329 (16)	0.0042 (12)	0.0104 (13)	0.0043 (13)
O6	0.0306 (15)	0.0293 (15)	0.0127 (12)	-0.0020(12)	0.0094 (11)	-0.0047(11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Mo1-O3 ⁱ	1.769 (3)	Na2—O6	2.361 (3)
Mo1—O3	1.769 (3)	Na2—O2 ^{viiii}	2.424 (3)
Mo1—O6	1.774 (3)	Na2—O2 ^{ix}	2.424 (3)
Mo1—O6 ⁱ	1.774 (3)	Na2—O5 ^x	2.458 (4)
Mo2—O5	1.750 (3)	Na2—O5 ^v	2.458 (4)
Mo2—O4 ⁱⁱ	1.762 (3)	Na3—O5 ^{xi}	2.503 (3)
Mo2—O2	1.772 (3)	Na3—O5 ^{xii}	2.503 (3)
Mo2—O1	1.796 (3)	Na3—O3 ^{xiii}	2.543 (3)
Co1—O4	2.129 (4)	Na3—O3	2.543 (3)
Co1—O2 ⁱⁱⁱ	2.146 (3)	Na3—O5 ⁱⁱⁱ	2.646 (3)
Co1—O3	2.149 (3)	Na3—O5 ^{xiv}	2.646 (3)
Co1—O6 ^{iv}	2.159 (3)	Na4—O4 ^{xv}	2.706 (3)
Co101 ^v	2.164 (3)	Na4—O4	2.706 (3)
Co1—O1 ^{vi}	2.237 (3)	Na4—O4 ^{xvi}	2.795 (4)
Na2—O6 ^{vii}	2.361 (3)	Na4—O4 ^{xvii}	2.795 (4)
03 ⁱ —Mo1—O3	102.9 (2)	$O2^{iii}$ —Co1—O3	101.57 (12)
$O3^{i}$ —Mo1—O6	109.14 (14)	$O4$ — $Co1$ — $O6^{iv}$	93.97 (13)
O3—Mo1—O6	111.98 (14)	O2 ⁱⁱⁱ —Co1—O6 ^{iv}	83.55 (11)
O3 ⁱ —Mo1—O6 ⁱ	111.98 (14)	O3-Co1-O6 ^{iv}	171.19 (12)
O3—Mo1—O6 ⁱ	109.14 (14)	O4—Co1—O1 ^v	99.48 (13)
O6-Mo1-O6 ⁱ	111.42 (19)	O2 ⁱⁱⁱ —Co1—O1 ^v	166.02 (13)
O5—Mo2—O4 ⁱⁱ	107.81 (16)	O3—Co1—O1 ^v	90.22 (12)
O5—Mo2—O2	111.10 (15)	O6 ^{iv} —Co1—O1 ^v	83.85 (11)
O4 ⁱⁱ —Mo2—O2	108.20 (15)	O4Co1O1 ^{vi}	173.29 (12)
O5—Mo2—O1	108.10 (15)	O2 ⁱⁱⁱ —Co1—O1 ^{vi}	90.23 (11)
O4 ⁱⁱ —Mo2—O1	109.90 (15)	O3-Co1-O1 ^{vi}	80.90 (12)
O2—Mo2—O1	111.66 (14)	O6 ^{iv} —Co1—O1 ^{vi}	92.00 (12)

O4—Co1—O2 ⁱⁱⁱ	87.41 (13)	01 ^v —Co1—O1 ^{vi}	84.19 (12)
O4—Co1—O3	93.43 (13)		

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, -*y*+1, *z*-1/2; (iv) -*x*+1/2, -*y*+1/2, -*z*+1; (v) *x*, -*y*+1, *z*+1/2; (vi) -*x*+1/2, *y*-1/2, -*z*+1/2; (vii) -*x*, *y*, -*z*+3/2; (viii) -*x*+1/2, *y*-1/2, -*z*+3/2; (ix) *x*-1/2, *y*-1/2, *z*; (x) -*x*, -*y*+1, -*z*+1; (xi) -*x*, -*y*+1, -*z*; (xii) *x*, *y*-1, *z*; (xiii) -*x*, -*y*, -*z*; (xiv) -*x*, *y*-1, -*z*+1/2; (xv) -*x*+1, *y*, -*z*+3/2; (xvi) -*x*+1, -*y*, -*z*+1; (xvii) *x*, -*y*, *z*+1/2.