
molecules

Article

Search for Partner Proteins of A. thaliana
Immunophilins Involved in the Control of
Plant Immunity

Inna A. Abdeeva 1,* ID , Gennady V. Pogorelko 1,2,*, Liliya G. Maloshenok 1,
Maria V. Mokrykova 1, Oksana V. Fursova 3 and Sergey A. Bruskin 1

1 N.I. Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina Str. 3,
Moscow 119333, Russian; maloshenoklg@mail.ru (L.G.M.); marja-2007@yandex.ru (M.V.M.);
brouskin@vigg.ru (S.A.B.)

2 Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
3 Faculty of Geology, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory,

Moscow 119991, Russian; oksfursova@yandex.ru
* Correspondence: insaz@yandex.ru (I.A.A.); gennady@iastate.edu (G.V.P.); Tel.: +7-499-132-0874 (I.A.A.)

Received: 27 March 2018; Accepted: 16 April 2018; Published: 19 April 2018
����������
�������

Abstract: The involvement of plant immunophilins in multiple essential processes such as
development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already
been established. Previously, research has demonstrated the involvement of three immunophilin
genes (AtCYP19-1/ROC3, AtFKBP65/ROF2, and AtCYP57) in the control of plant response to invasion
by various pathogens. Current research attempts to identify host target proteins for each of the
selected immunophilins. As a result, candidate interactors have been determined and confirmed
using a yeast 2-hybrid (Y2H) system for protein–protein interaction assays. The generation of mutant
isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active
sites became essential to achieving significant binding to its target partners. This data shows that
ROF2 targets calcium-dependent lipid-bonding domain-containing protein (At1g70790; AT1) and
putative protein phosphatase (At2g30020; AT2), whereas ROC3 interacts with GTP-binding protein
(At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to
putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010).
Identified interactors confirm our previous findings that immunophilins ROC3, ROF2, and AtCYP57
are directly involved with stress response control. Further, these findings extend our understanding
of the molecular functional pathways of these immunophilins.

Keywords: plant immunophilins; A. thaliana; plant immunite; yeast 2-hybrid; molecular partners
of PPIases

1. Introduction

In the course of evolution, plants have developed various ways to adapt to and counter many
biotic and abiotic stresses using physiological and molecular mechanisms. The main molecular tools
utilized by plants to resist stress are the activation of specific ion channels; accumulation of reactive
oxygen species (ROS) [1,2]; activation of protective kinase cascades [3]; and changes in the synthesis
of phytohormones such as abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and ethylene
(ET) [4]. Subsequent signal transduction alters the plant’s metabolism to activate defense mechanisms,
regardless of the nature of the stress [5,6].

Quite interesting is the timing of the protective response process in the plant cell. The first reaction,
immediately after the invasion of the pathogen or introduction of abiotic stress, is an alteration in
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the ion exchange fluxes across the cell membrane, primarily an increase in the influx of H+ and
Ca2+ ions and outflow of K+ and anions [7,8]. Almost all abiotic stresses in plant cells temporarily
increase the concentration of free cytosolic Ca2+ in the first seconds of the response [9,10]. A little
later, approximately two minutes after the initial perception of the stress-related signal by the cell,
an oxidative burst begins to develop. ROS have long been known to include compounds with strong
oxidative properties that destroy the cell. However, it has been also shown that if large concentrations
of ROS lead to cell death, lower amounts regulate the cellular response processes under stressful
conditions [11–13]. This is one of the main functions of ROS: to serve as signaling molecules in
cells [14,15].

The next stage of the response begins, on average, about 10 min after the receptors of the
cell recognize the presence of a pathogen. It is then that the induction of MAP kinase cascades
begins, accompanied by significant changes in the phosphorylation of host proteins. This leads to
changes in their activity and ability to form complexes [16]. The culmination of this early response is
associated with the activation of WRKY-type MAP kinase transcription factors through cascades, which
leads to a change in cell metabolism and primary protective processes. Approximately 15 min later,
the fastest transcriptional changes regulated by phytohormones appear, and as a result the expression
of thousands of genes becomes altered. The main stress phytohormone is SA, which has been shown to
be most active an average of one hour after reception of the initial stress signal. In addition, the earliest
changes in the molecular-genetic apparatus of a plant cell in response to stress of any nature are also
associated with post-translational modifications of proteins.

The study focuses on peptidyl-prolyl cis/trans isomerases (PPIase), a group of enzymes providing
cis/trans isomerization of the polypeptide bond preceding the proline residue. So far, the functions
of plant immunophilins and their role in pathogenesis have been poorly studied. In general,
plant immunophilins are involved in basic immunity control, provided by the ability to catalyze
isomerization in the polypeptide chains around proline residues via the action of enzymes with
peptidyl-prolyl cis/trans isomerase (PPIase) activity [17,18].

Previously, three A. thaliana immunophilins were analyzed: ROC3, ROF2, and AtCYP57 [1],
whose expression level increased dramatically during the pathogenesis of the plant. This gave us
the opportunity to assume their essential role in the immunity of plants. After determination of the
localization within the plant cell of these PPIases and establishing their participation in the immune
response against the bacterial phytopathogen P. siryngae, the greatest interest was to identify their
interaction partners within the plant proteome, and as a consequence, shed light on the molecular
pathway functions of these PPIases.

2. Results

2.1. ROF2 Interaction Partners

For the ROF2 immunophilin (encoded by At5g48570), 175 clones were obtained during the Y2H
screening. Of the 175 clones, 42 were able to grow on Quadruple dropout medium (QDO) medium
after replating. The list of clones containing the significant region of plant cDNA within the matching
ORF is presented in Table 1.

Table 1. Selected partner proteins for ROF2.

Number of Clones Partner Protein Cotransformation ID Confirmation

2 Calcium-dependent lipid-binding domain-containing protein At1g70790 (AT1) +
2 Putative protein phosphatase At2g30020 (AT2) +
3 ATPase, F1 complex, OSCP/delta subunit At4g00895 (AT4) −
1 60S ribosomal protein L27a-3 mRNA False positive N/A
1 40S ribosomal protein S20 False positive N/A
1 H2A_12 False positive N/A
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Thus, in the first stage of Y2H, we obtained three potential candidate proteins for interaction
with ROF2. Proteins that are part of the ribosome and the histone protein H2A_12 were shown to
bind to other proteins analyzed previously (data not shown) and were considered to be the false
positive interactors, so for further analysis we selected three other candidates: AT1, AT2, and AT4.
Their physical interaction with ROF2 was confirmed by cotransformation. Figure 1A,B shows the
results of interaction between ROF2 and the two target proteins (AT1 and AT2) in yeast cells.
Confirmation of ROF2 interaction with the protein encoded by AT4 failed.

Figure 1. Cotransformation of ROF2 with AT1 (A) and AT2 (B) yeast cells (AH109 strain), and two
negative controls: the empty “bait” of empty pGBKT7 vector and pGBKT7 carrying the control gene of
the human protein lamin C (Lam). The initial culture of OD600 = 0.2 was used, sequentially diluted
to 10−3.

2.2. Site-Directed Mutagenesis of Immunophilins

When screening for CYP57 using Y2H, none of the interactors were identified and ROC3 resulted
in three clones corresponding to two A. thaliana genes which were not confirmed by cotransformation.

As an explanation, it was proposed that the active enzymatic PPIase function likely leads to
a conformational change in the protein structure of its partner during the interaction, and perhaps
causes interaction complex dissociation. This, in turn, would alter the ability of yeast to grow on the
selective medium. Thus, attempts to inactivate the active sites of the immunophilins were performed.
In this regard, the web-based tool i-Tasser (Iterative Threading ASSEmbly Refinement) [19] was
used to search in silico for possible activity-determining residues in the immunophilin amino acid
sequences. i-Tasser was ranked as the best web-based server for protein structure prediction and
utilizes state-of-the-art algorithms to identify structural templates from the protein databases by the
multiple threading approach LOMETS (Local Meta-Threading Server). i-Tasser comparative results
yielded evidence that His62 and Phe68 in ROC3 and His56 and Phe61 residues in CYP57 likely function
as activity-essential positions. All aforementioned amino acids were replaced with Ala by in vitro
mutagenesis. Two obtained mutant immunophilin forms were assigned as ROC3M and CYP57M.
Due to the lack of well-established activity assays for these particular immunophilins, their actual
functionality change was not validated at the current stage of the study. Similar active sites for ROF2
failed to be identified. However, this immunophilin was able to interact with the selected proteins in
its native form (Table 1).
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2.3. Interaction Partners for ROC3M

Y2H screening for ROC3M target proteins resulted in 112 clones that were selected according
to ability to grow on QDO medium for ROC3M. After sequencing and the elimination of clones
containing short (less than 200 bp) or shifted-ORF fragments, two candidates were selected. The results
are shown in Table 2.

Table 2. ROC3M interaction partners.

Number of Clones Partner Protein Cotransformation ID Confirmation

2 ENGD-1, GTP-binding protein At1g30580 +
1 RmlC-like cupin superfamily At5g39120 +
1 At1g72370 40S ribosomal protein Sa-1 False positive N/A
1 At2g36830 GAMMA-TIP, TIP1 False positive N/A

1 At1g12050 putative
fumarylacetoacetase False positive N/A

1 H2A_12 False positive N/A

Using the same guidelines as for nonmodified PPIases, structural and ribosomal proteins
were discarded, as well as the proteins showing nonspecific binding to multiple proteins (Table 2).
Two selected proteins, At1g30580 and At1g12050, were cotransformed together with ROC3M into
AH109 yeast cells to confirm their physical interaction.

The results are shown in Figure 2A,B.

Figure 2. AH109 yeast strain cotransformation of ROC3M with At1g30580 (A) and At5g39120 (B),
and two negative controls: the empty “bait” of empty pGBKT7 vector and pGBKT7 carrying the control
gene of the human protein lamin C. The initial culture of OD600 = 0.2 was used, sequentially diluted
to 10−3.

2.4. CYP57M Protein Partners

As a result of Y2H screening, 67 clones capable of growing on a QDO medium were selected.
After sequencing and removal of samples containing short or shifted-ORF fragments, the following
partner proteins for CYP57M were selected. The results are shown in Table 3.



Molecules 2018, 23, 953 5 of 12

Table 3. Partner proteins of CYP57M selected in the process of Y2H screening. “+” shows
true interaction.

Number of Clones Partner Protein Cotransformation ID Confirmation

1 Putative pyruvate decarboxylase-1 Pdc1 At4g33070 +

1 Clathrin adaptor complex medium subunit
family protein At5g05010 At5g05010 +

1 At4g24280 chloroplast heat shock protein 70-1 False positive N/A
1 At1g70800 ENHANCED BENDING 1 False positive N/A
1 At3g53430 60S ribosomal Protein L12 False positive N/A
1 At4g03520 thioredoxin M2 False positive N/A
1 At1g70850 MLP-like protein 34 False positive N/A
1 At2g36830 GAMMA-TIP, TIP1 False positive N/A

To test physical interaction with the modified PPIase CYP57M, proteins encoded by At5g05010
and At4g33070 were selected. The results are shown in Figure 3A,B.

Figure 3. Cotransformation of CYP57M with At4g33070 (A) and At5g05010 (B) by the yeast two-hybrid
system, and two negative controls: an empty bait vector pGBKT7 and pGBKT7 carrying the
noninteracting human protein gene lamin C with CYP57M. The initial culture of OD600 = 0.2 was used,
sequentially diluted to 10−3.

3. Discussion

The first ROF2 interaction partner is AT1 (At1g70790; also known as C2-domain ABA-related
9 or CAR9), encoding the A. thaliana calcium-dependent lipid-binding domain-containing protein.
According to the literature, AT1 interacts with the membrane receptor of abscisic acid (ABA) and
regulates sensitivity to abscisic acid in Arabidopsis plants. This protein stimulates the activity of
GTPase/ATPase Obg-like ATPases and provides intermediate calcium-dependent interaction of the
abscisic acid receptors PYR/PYL/RCAR with the plasma membrane, and thus regulates the sensitivity
to abscisic acid [20]. Furthermore, AT1 interacts with the ABA receptor PYR1-like 4, which is required
for ABA-mediated responses, such as the closing of stomata and inhibition of seed germination
via regulation of protein phosphatase group A (type 2C (PP2Cs)) activity [21,22]. ROF2 physical
binding to AT1 can affect its function and/or its ability to interact with ABA-related partner proteins,
and therefore, alter stress-response mechanisms.

As is known, the expression of large groups of genes is regulated by phytohormones. The main
biotic stress-related plant hormone is salicylic acid (SA), whereas ABA regulates abiotic stress defense
mechanisms. Traditionally, at the level of phytohormonal regulation, ABA functions as a complex
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together with antagonists SA, jasmonic acid (JA), and ethylene. Recent evidence suggests that ABA
acts both as an activator and the suppressor of these protective ways [23–25]. The function of ABA is
dependent on the time of infection and the nature of the pathogen [26]. In the early stages of defense
against microbial invasion, ABA acts through the SA signaling pathway, stimulating stomatal closure
and thereby reducing the possibility of infection [27]. After the penetration of pathogens, ABA is
essential for callose accumulation induction, which has been shown to function as protection from
fungal pathogens [26], while bacterial infection can block ABA-mediated production of callose [28].

Further evidence indicating the participation of AT1 in callose deposition is its interaction with
CALS5 (callose synthase 5, At2g13680.1), which is required for the formation of a callose wall separating
tetraspores (interstitial wall) and surrounding the pollen mother cells, and was shown to be directly
involved in the synthesis of callose during the growth of pollen [29].

It is also known that a violation of the ABA signaling pathway may improve the protection of
plants against pathogens. One of the first works on molecular mechanisms of increased susceptibility
to the fungal pathogen Fusarium oxysporum controlled by ABA was published by Anderson et al. [30].

As established earlier [1], ROF2 is localized predominantly in the nucleus of plant cells; although,
according to the domain organization, it must also possess cytoplasmic localization. In addition,
Arabidopsis transgenic plants with ROF2 overexpression showed an increased accumulation of callose.
This allowed the proposal of the relocation of this protein into the nucleus as a part of the protein
complex, thus preventing AT1 interaction with membrane-bound ABA receptors modulating the
response to pathogen invasion.

The second ROF2 interaction partner is At2g30020 (AT2; AP2C1), a putative protein phosphatase
2C 25, that negatively regulates defense responses via inactivation of MPK4 and MPK6 MAP kinases
involved in stress signaling [31].

The ANPs–MPK6–MPK4 protein module is involved in the regulation of plant cytokinesis
during meiosis and mitosis. In addition, MPK4 kinase controls the organization and stabilization of
cortical microtubules as well as the development of root hair, and also negatively regulates SAR and
SA-dependent defense signaling pathways. MPK6 kinase is involved in the oxidative stress signaling
as well as in the innate immune MAR kinase-mediated response cascade (MEKK1, MKK4/MKK5,
and MPK3/MPK6) launched by the flagellum bacterial receptor FLS2 [32,33]. MPK6 phosphorylates
WRKY group transcription factors, and presumably is involved in hypersensitive response
development control by phosphorylation of LIP5. Interestingly, transgenic Arabidopsis plants expressing
ROF2 (FKBP65) were characterized by increased expression of the WRKY33 gene [1]. Therefore, there is
a possibility that AT2 phosphatase can act as a MAPK phosphatase, negatively regulating MPK4 and
MPK6 kinases. This fact allows the proposal that ROF2 participates in the MAPK cascade, but is a part
of the SA-independent pathway.

The ROC3M protein partner ENGD1 (encoded by the At1g30580 gene) belongs to the family of
GTPase/GTP-binding proteins. Proteins of this family in plants negatively regulate the response
to bacterial infection [34]. Overexpression of OsYchF1 GTPase in A. thaliana plants resulted in
a reduction of antioxidant enzymatic activity and increased lipid peroxidation, accompanied by
accumulation of ROS. Representatives of this protein class in mammals are also involved in the
control of stress responses. In particular, OBL1 (Obg-like ATPase) negatively regulates the response
to oxidative stress [35]. The OLA1 gene inactivation leads to significant positive effects in protecting
cells from peroxidation. In addition, OLA1 is not a part of signaling cascades and other known
antioxidant mechanisms.

This evidence provided the opportunity to suggest that OLA1 may be an appropriate target to
improve the protection of cells from peroxidation [35]. Together with earlier data [1], ROC3–ENGD1
interaction could alter the hydrogen peroxide level, resulting in a stronger defensive response of
the plant. At5g39120, a RmlC-like cupin superfamily protein, represents another protein partner
for ROC3M. RmlC (dTDP (deoxythymidine diphosphate)-4-dehydrorhamnose 3,5-epimerase) is a
dTDP-sugar isomerase enzyme involved in the synthesis of L-rhamnose, a saccharide required for
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the virulence of some pathogenic bacteria [36]. RmlC is a dimer, each monomer being formed from
two beta-sheets arranged in a beta-sandwich, where the substrate-binding site is located between
the two sheets of both monomers. In Gram-negative bacteria, L-rhamnose is an important residue
in the O-antigen of lipopolysaccharides, which are essential for resistance to serum killing and for
colonization [36]. In Gram-positive bacteria, for example, L-rhamnose is known to be present in
the capsule of Streptococcus, a causative agent of meningitis in humans. In Streptococcus mutants,
L-rhamnose-containing polysaccharides have been implicated in tooth surface colonization and
adherence to kidney, muscle, and heart tissues. In mycobacteria, L-rhamnose is fundamental
to the structural integrity of the cell wall since it connects the inner peptidoglycan layer to the
arabinogalactan polysaccharides.

Proteins of the RmlC-like family in rice are involved in antioxidant defense and detoxification
during Cu-induced oxidative stress [37]. To overcome oxidative stress, plants often recruit enzymatic
components such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and so forth.
Protective responses against abiotic stress often go through the formation of active oxygen forms,
and therefore, the ROC3 interaction with At5g39120 can regulate ROS accumulation in plant tissues to
generate defensive response.

Next, CYP57M interacts with a protein encoded by At4g33070: pyruvate decarboxylase 1
(PDC1). This protein is involved in plant protective reactions during hypoxia. Under hypoxia,
produced pyruvates are converted to acetaldehyde by PDC1, followed by reduction to ethanol and
concomitant oxidation of NADH to NAD+. Thus, PDC1 plays a key role in alcohol fermentation.
Overexpression of this gene in Arabidopsis plants improved the resistance of roots to hypoxia.
Interestingly, transgenic plants constitutively expressing PDCI were shown to increase levels of
soluble sugars, in conjunction with increased callose deposition and expression of PR genes resulting
in impaired Pseudomonas infection [38]. This evidence of CYP57 involvement in the plant immune
response to pathogen attack fully correspond to previous data on CYP57 [1].

The second interaction partner of CYP57M is a protein product of At5g05010: a coatomer subunit
delta. The coatomer is a cytosolic protein complex that binds to dilysine motifs and irreversibly
associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport
from the ER via the Golgi up to the trans-Golgi network. The coatomer complex is required for budding
from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged
proteins [39]. As is known, the sorting and transmembrane transport of proteins are important cellular
mechanisms, especially under stress responses [40]. Indeed, coatomer proteins are involved in the
control of PCD and maintenance of the ER [41,42]. Here, it is speculated that the CYP57 immunophilin
can actively participate in these processes via interaction with PDC1.

4. Materials and Methods

4.1. Amplification and Cloning of Immunophilin cDNA Sequences and Identification of Interaction Partners

In the first phase of the study, to identify molecular partners with which ROC3, ROF2,
and AtCYP57 interact in the plant cell, we utilized a yeast two-hybrid analysis (Y2H) for each target
PPIase. Three “bait” vectors—plasmids pGBKT7 carrying the ROC3, ROF2, or AtCYP57 gene—were
mobilized into the yeast strain Y187. A total cDNA library of A. thaliana was cloned into the “prey”
vector of pGADT7 and transferred to the yeast strain AH109. For this purpose, RNA was extracted from
plants pretreated with flagellin (flg22), an integral modulator of biotic stress consisting of a 22-amino
acid sequence and derived from the N-terminus of Pseudomonas aeruginosa flagellin, which causes the
activation of the innate immune response in plants and animals specific to bacterial infection.
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The following primers pairs were used to amplify:

• ROF2 sequence (5′–3′): FKB-For (EcoRI) CATACgaattcGAAGACGATTTCGACACGCA and
FKB-Rev (SalI) CATACgtcgacTCATGCCTTGGTGTCAATAC;

• ROC3 cDNA (5′–3′): ROC3-For (NdeI) CATACcatatgGCAACAAACCCTAAAGTCTA and
ROC3-Rev (BamHI) CATACggatccgAACCTCCACCTGTACATGTG;

• AtCYP57 (5′–3′): CYP-For (EcoRI) CATACgaattcTCGACGGTGTACGTGCTAGA and CYP-Rev
(PstI) CATACctgcagTCAGGCAAGAGATTTTCCAG.

As a template for PCR, the total cDNA obtained from the reverse transcription of the total A.
thaliana RNA was used. Total RNA was extracted using an SV Total RNA Isolation System (Promega,
Madison, WI, USA) and first-strand cDNA synthesis was done using the SuperScript III First-Strand
Synthesis System (Invitrogen, Carlsbad, CA, USA), following the manufacturer’s recommendations.
The indicated restriction sites were used for the cloning of PCR fragments into the bait vector
pGBKT7 treated with corresponding nucleases. Sequencing of the obtained recombinant vectors
was performed in order to verify the absence of ORF-shift mutations. Next, plasmids were transferred
into Saccharomyces cerevisiae strain Y187 cells using an electroporation procedure according to the
protocol for Matchmaker® Gold Yeast Two-Hybrid System (Clonetech, Mountain View, CA, USA).

Prey vector pGADT7 containing an A. thaliana cDNA library was created using Matchmaker®

Gold Yeast Two-Hybrid System (Clonetech, Mountain View, CA, USA). To enrich the library of gene
transcripts involved in defense responses, RNA was extracted from plant cells subjected to biotic
stress: 3-h treatment of the 5-day-old A. thaliana seedlings and protoplast suspension with flagellin-22,
and also of plants infected with Pseudomonas syringae DC3000 (3 days post-infection). Protoplasts
were isolated from two hundred 10-day-old A. thaliana seedlings, harvested and incubated in 20 mL
of solution containing 0.25% (w/v) macerozyme, 1.0% cellulase, 0.4 mm mannitol, 8 mm CaCl2, 5
mm MES-KOH (pH 5.6), and 0.1% bovine serum albumin for 14 h in the dark with gentle agitation
at 40 rpm. Afterward, suspended protoplasts were filtered through a 100-µm cell filter, placed onto
20 mL of 21% (w/v) sucrose solution, and centrifuged at 300× g for 5 min resulting in clear fraction of
protoplasts in the supernatant.

For infection, cultures of P. syringae DC3000 were grown overnight in LB medium at 25 ◦C up
to OD600 = 1. Cells were centrifuged at 4500× g for 10 min and resuspended in infiltration buffer:
10 mM MES, 10 mM MgCl2, pH 5.8 at a concentration of 104 cells/mL. The resuspended cells were
pressure-infiltrated into the abaxial side of leaves.

Y2H analysis including all material preparation and growth conditions was conducted in
accordance with the manufacturer’s recommendations for the Matchmaker Gold Yeast Two-Hybrid
System (Clonetech, Mountain View, CA, USA).

4.2. Site-Directed Mutagenesis

Coding sequences of each ROC3 and AtCYP57 were amplified using two pairs of corresponding
primers. One primer from each pair contained a substituted nucleotide resulting in amino acid
transition to a neutral alanine in the final protein product:

CYP-F (EcoRI) CATACgaattcTCGACGGTGTACGTGCTAGA and C57-iR AAGATGGTG
TTGTCAAAGTAACC; and also C57m-F TTACTTTGACAACACCATCTTCGCTGCTGTCATT
CCCGGTGCTCTCG and CYP-R (PstI) CATACctgcagTCAGGCAAG AGATTTTCCAG; ROC3-F (NdeI)
CATACcatatgGCAACAAACCCTAAAGTCTA and CY19-iR GCAAAGCTTGATCCTTTGTAGTG,
and also CY19m-F ACTACAAAGGATCAAGCTTTGCCGCAGTGATTCCGAAAGCCATGTG and
ROC3-R (BamHI) CATACggatccgAACCTCCACCTGTACATGTG.

The obtained two PCR fragments for each gene were self-annealed by slow chilling from 95 ◦C
to 50 ◦C with the rate of 1 ◦C per minute, followed by complete fragment extension with the use of
Encyclo DNA polymerase (Evrogen.com) at 72 ◦C for 10 min in the presence of PCR buffer and the
manufacturer-required concentration of dNTPs. Obtained DNA fragments were subjected to a second
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regular PCR round using one pair of terminal primers: CYP-F (EcoRI) and CYP-R (PstI); ROC3-F (NdeI)
and ROC3-R (BamHI) in the following reaction conditions: denaturation at 95 ◦C for 10 s, annealing at
56 ◦C for 30 s, and extension at 72 ◦C for 60 s.

Incorporated restriction enzyme recognition sites were used to clone these PCR fragments into the
bait vector pGBKT7 treated with the same corresponding enzymes, followed by transformation
of recombinant plasmids into the Y187 yeast strain in accordance with the manufacturer’s
recommendations for the Matchmaker Gold Yeast Two-Hybrid System (Clonetech, Mountain View,
CA, USA).

4.3. Cotransformation of Yeast Cells

According to the Y2H screening data, full-length sequences of selected interactors were amplified
for interaction verification with the use of the following primers presented in Table 4.

Table 4. Partner proteins of CYP57M selected in the process of Y2H screening.

Gene ID Forward Primer, 5′–3′ Reverse Primer, 5′–3′

TOP1/At5g TOP-For (NdeI)
NNcatatgTTAATGGCGACTCCAACG

TOP-Rev (BamHI)
NNggatccTTAAGCAGAAGCAGAGGCAGC

AT1/At1g70790 AT1-For (NdeI)
NNcatatgGAAGATAAACCATTAGGGAT

AT1-Rev (XhoI)
NNctcgagTTAGTCCAATCGTTTTGTCGGCA

AT2/At2g300020 AT2-For (NdeI)
NNcatatgTCTTGCTCCGTCGCCGTA

AT2-Rev (BamHI)
NNggatccCTATATGAACTGGCGTAAAGG

At4/At4g00895 AT4-For (NdeI)
NNcatatgGATACTCTCTCAGCATCC

AT4-Rev (BamHI)
NNggatccTCATCAAGAAACCCAGACAAG

At1g30580 At1g30580-For(EcoRI)
gaatccATGCCTCCGAAAGCCAAAG

At1g30580-Rev(XhoI)
ctcgagTCATTTCTTCCCACCACCGGA

At4g33070 At4g33070-For(EcoRI)
gaattcATGGACACCAAAATCGGATC

At4g33070-Rev(XhoI)
ctcgagCTACTGAGGATTGGGAGGAC

At5g05010 At5g05010- For(EcoRI)
gaattcATGGTTGTGCTTGCTGCTG

At5g05010-Rev(BamHI)
ggatccTCATATGACTTGATAGTTCTGG

At5g39120 At5g39120-For(EcoRI)
gaattcATGAAGGTGTCCATGTCTC

At5g39120-Rev(XhoI)
ctcgagTTAGTTTTTAAACTTGGCCTC

Restriction enzyme sites indicated in the primer sequences were used for PCR fragment treatment
and cloning into the pGADT7 vector with compatible pretreated ends. Obtained recombinant pGADT7
vectors were mixed with bait plasmid pGBKT7 harboring one of the immunophilins and cotransformed
simultaneously into the AH109 yeast strain, followed by the selection of transformants on DDO
(SD/Leu/Trp) medium and interaction validation on QDO (Ade/His/Leu/Trp) medium. For both
transformation and selection, protocols presented in the Matchmaker Gold Yeast Two-Hybrid System
manual (Clonetech, Mountain View, CA, USA) were used. Bait vector pGADT7 expressing the negative
control human lamin C protein was also provided by the manufacturer.

5. Conclusions

For all three immunophilins studied, protein partners were determined. The found molecular
partners of PPIases were largely selected not chaotically, but by either direct relation to biotic and/or
abiotic stress processes, or their direct or indirect interaction with known proteins and/or components
of the plant defense mechanisms. At the same time, the results of previous work on the study of
transgenic plants expressing immunophilins provided insight for this work, starting with the selection
of candidate proteins and ending with the interpretation of results for the current obtained data in
terms of PPIase partner protein participation in the control of plant immunity.
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It is known that the protein expression and expression level depend on the stage of the response.
Therefore, great benefits would be found by carrying out future research that refines and extends
this work; namely, to make cDNA libraries at certain intervals after induction by flagellin, in order
to identify PPIase partner proteins which are more specific to certain phases of the developing
defense response.
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