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Objective: To construct and validate prediction models for the risk of diabetic retinopathy
(DR) in patients with type 2 diabetes mellitus.

Methods: Patients with type 2 diabetes mellitus hospitalized over the period between
January 2010 and September 2018 were retrospectively collected. Eighteen baseline
demographic and clinical characteristics were used as predictors to train five machine-
learning models. The model that showed favorable predictive efficacy was evaluated at
annual follow-ups. Multi-point data of the patients in the test set were utilized to further
evaluate the model’s performance. We also assessed the relative prognostic importance
of the selected risk factors for DR outcomes.

Results: Of 7943 collected patients, 1692 (21.30%) developed DR during follow-up.
Among the five models, the XGBoost model achieved the highest predictive performance
with an AUC, accuracy, sensitivity, and specificity of 0.803, 88.9%, 74.0%, and 81.1%,
respectively. The XGBoost model’s AUCs in the different follow-up periods were 0.834 to
0.966. In addition to the classical risk factors of DR, serum uric acid (SUA), low-density
lipoprotein cholesterol (LDL-C), total cholesterol (TC), estimated glomerular filtration rate
(eGFR), and triglyceride (TG) were also identified to be important and strong predictors for
the disease. Compared with the clinical diagnosis method of DR, the XGBoost model
achieved an average of 2.895 years prior to the first diagnosis.

Conclusion: The proposed model achieved high performance in predicting the risk of DR
among patients with type 2 diabetes mellitus at each time point. This study established the
potential of the XGBoost model to facilitate clinicians in identifying high-risk patients and
making type 2 diabetes management-related decisions.
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INTRODUCTION

DR is the most common microvascular complication of diabetes
mellitus. It has been demonstrated to be a leading cause of
preventable blindness in the working-age population in most
countries (1).

The American Academy of Ophthalmology (AAO), in 2019,
stated that the prevalence of DR among diabetic patients
worldwide is about 34.6%. 10.2% (28 million) diabetic patients
suffer from vision-threatening DR (2). Effective management of
DR requires a deep understanding of the predisposing factors,
early diagnosis, and timely therapeutic intervention. Early
identification of patients at risk of developing DR is the key to
effective intervention, which is significant in reducing the
progression of DR and thereby reducing the risk of blindness
(3). Moreover, individual patients can be stratified according to
different risk levels and get optimal treatment. Due to no typical
symptoms in the early stage of the disease, however, most
patients with DR may not seek medical evaluation until
progression to the proliferative stage, resulting in irreversible
visual damage (4). Therefore, methods for accurate prediction of
the risk of DR are in urgent need.

At present, several DR risk prediction models based on cross-
sectional studies have been developed (5–9). Deep learning
algorithms were also applied (10). Although these models can
predict the occurrence of DR at the index date, they cannot
predict DR occurrence and development of the same patient at
designated time points in the future. This will obviously restrict
their clinical application. Similarly, based on the clinical
characteristics related to the occurrence or development of DR,
several models have been developed for optimization of the
screening interval in DR screening (11, 12). However, due to
the small number of cases in the studies, the proposed models
have not been fully validated so far.

On the other hand, several studies investigated the
pathogenesis and risk factors of DR to provide guidance for
DR management. Epidemiological studies have shown that age,
course of diabetes, hemoglobin A1c(HbA1c), fasting blood
glucose (FBG), blood pressure, blood lipids, body mass index
(BMI), smoking, proteinuria, and several others are all risk
factors for DR (13, 14). Among them, duration of diabetes and
hyperglycemia were demonstrated as strong risk factors for the
occurrence and development of DR (15, 16). However, patients
without DR were hardly unusual among those suffering from
diabetes for a long time (17). The influences of other factors in
DR occurrence also need to be proven. Further studies are
required to elucidate the correlation and thus construct
standard procedures for the management of this disease.

In this retrospective cohort study, we collected electronic
health record data from hospitalized patients with type 2 diabetes
and established the prediction model for future risks of DR based
on a machine learning (ML) algorithm. To our knowledge, this is
the first study to predict the occurrence of DR at each follow-up
time point in up to 10 years. We also explore the risk factors that
may affect the occurrence of DR and hope this work can provide
a basis for further studies concerning the prevention and
management of DR.
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MATERIALS AND METHODS

Study Subjects
The study protocol was approved by the Ethics Committee of
Dalian Medical University Affiliated with the Central Hospital of
Dalian. The ethics committee waived the requirement of written
informed consent for all patients. The data did not contain any
direct patient identifiers. The study adhered to the tenets of the
Declaration of Helsinki.

Datasets
In this retrospective cohort study, we recruited inpatients admitted
to the Department of endocrinology of Dalian Medical University
Affiliated with the Central Hospital of Dalian from January 2010 to
September 2018. Patients who met the following criteria were
included in the current study: 1) Age≥18 years with the diagnosis
of type 2 diabetes; 2) be hospitalized at least once over the follow-up
period; 3) no presence of DR at the time of the first hospitalization.
Patients with other types of diabetes (type 1 diabetes, special type
diabetes, or gestational diabetes) or previous eye diseases (cataract,
glaucoma, or other eye diseases) were excluded. With the criteria
mentioned above, 7943 patients were selected for this study,
including 1692 patients diagnosed with DR in the follow-up
period (DR group) and 6521 control ones without DR (non-DR
group). These patients were randomly divided into a training set
(n=5559) and a test set (n=2384).

Diagnostic Criteria
Diagnostic criteria of type 2 DM are according to 1999 WHO
diagnostic criteria (18). DR was examined by dilated fundus
examination by ophthalmologists and endocrinologists together.
Diagnostic criteria of DR case meet the Diabetic Retinopathy
preferred practice pattern (PPP)-2019 guideline (19). The
grading of DR in this study was based on the International
Clinical Diabetic Retinopathy Severity Scales (20): Grace-1 for no
apparent retinopathy; Grace-2 for mild non-proliferative
diabetic retinopathy (NPDR), which includes microaneurysms
only; Grace-3 for moderate NPDR, which includes more than
just microaneurysms but less than severe nonproliferative DR;
Grace-4 for severe NPDR (any of the following can be diagnosed
as Grace-4: more than 20 intraretinal hemorrhages in each of 4
quadrants, definite venous beading in 2+ quadrants, Prominent
intraretinal microvascular abnormalities in 1+ quadrant); and
Grace-5 for proliferative diabetic retinopathy (PDR). The
individual diagnoses were described according to the diagnosis
and staging of the worse one between the two eyes.

Variable Selection
Patients’ information ondemographics,medical history,medication,
and laboratory datawas extracted from the EHRat baseline and used
as candidate predictor variables for developing DR (Tables S2, S3).
These variables are commonly associated with the risk of DR,
including 11 categorical variables and 20 continuous variables. The
smoking status was defined as: 1) Current smokers: Patients who
smoked more than 100 cigarettes and had not quit smoking at the
index date; 2) Ex-smokers: Patients who smoked more than 100
cigarettes and stopped smoking 30 days before index date; 3) Never
May 2022 | Volume 13 | Article 876559
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smokers: Patients who had never smoked. The drinking status was
defined as: 1) Current drinkers: Patients who have been drinking or
have not abstained from alcohol for more than one year; 2) Ex-
drinkers: Patients who did not drink or had abstained from drinking
for more than one year; 3) Never-drinks: Patients who had never
drunk.Hypertensionwas defined as a systolic blood pressure of≥140
mmHgand/or adiastolic bloodpressure≥90mmHg,measured twice
ormore on different days, whether antihypertensive drugs were used
or not (21). Blood samples were collected the next morning after
hospital admission with at least 12-h fasting. HbA1c was measured
using the glycosylated hemoglobin analyzer (TOSOH company of
Japan, HLC-723G8). Four items of blood lipids (high-density
lipoprotein cholesterol (HDL-C), TC, LDL-C, and TG), alanine
transaminase (ALT), aspartate transaminase (AST), gamma-
glutamyl transpeptidase(g-GT), serum creatinine (Scr), SUA, and
FBG were detected by automatic biochemical analyzer (Siemens,
Germany, ADVIA2400 biochemical system). The eGFR was
calculated according to the CKD-EPI formula (22). BMI was
calculated as weight (kg) divided by the square of height in meters
(m2); Blood pressure was measured on the right arm in sitting
position three times consecutively at 5-min intervals, with the
mean of the three measurements used for analysis.

Machine Learning Models Construction
Machine learning-based algorithms were selected according to
the criteria below. First, the algorithms should show evaluation
indicators based on mixed data type, including numerical
variables and categorical variables. Second, the algorithms
should have a wide range of applications and a history of
successful usage in related fields. Based on the above criteria,
we selected five machine learning algorithms, Random Forest
(RF) (23), Extreme Gradient Boosting (XGBoost) (24), Logistic
Regression (LR) (25), Support Vector Machine (SVM) (26), and
K-Nearest Neighbor (K-NN) (27), to build the models with all
the variables as predictors in this study. We used the
GridSearchCV method to select the optimal key hyper-
parameters of the five models as shown in Table S3, and other
hyper-parameters were set as default. The models were then
tested and internally validated by fivefold cross-validation.

Statistical Analysis
All statistical analyses were performed by using R statistical and
computing software version 4.0.2 (http://www.r-project.org/).
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Chi-square test was used for categorical variables, and two-
sample t-test for continuous variables to compare the variables
between DR group and non-DR group. Two-tailed hypothesis
testing was used. P<0.05 indicated a statistically significant result.

Performance of the proposed models was assessed mainly in
terms of sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and accuracy. We assessed these
metrics at the optimized prediction threshold identified by the
Youden index. To compare performance across themodels, we also
calculated the area under the receiver operating characteristic curve
(AUC). Significance testing and LASSO penalty were employed to
identify clinical features that are associated with a high risk of DR.
Nomograms were built based on the results of multivariate logistic
regression analysis. The performance of the nomograms was
measured using Harrell’s concordance index (C-index).

RESULTS

Study Population
Baseline characteristics of 7943 patients with type 2 diabetes,
including 1692 patients diagnosed as DR (DR group) and 6521
without DR signs (non-DR group) during the follow-up period, are
presented inTable S4. Themean age of the patientswas 63.54 years,
and 45.7% were women. Mean follow-up time was 3.139 ± 2.243
years, and mean duration of diabetes mellitus was 1.449 ± 2.756
years. To further validate the performance of the model, 829
multipoint data from different follow-up time points were
collected from 508 patients in the test set (supplementary test set).

Prediction Performances of the MLModels
The performances of the prediction models were assessed in
terms of predefined evaluation metrics and ROC (Table 1 and
Figure 1). The XGBoost model outperformed the other models
with the highest AUC (0.913; 95% confidence interval (CI),
0.901-0.925), highest accuracy (79.9%; CI, 76.9%-83.5%),
highest sensitivity (90.2%; CI, 84.8%-94.9%), highest specificity
(77.1&; CI, 72.1%- 82.7%), highest PPV (51.6%; CI, 47.9%-
57.5%) and highest NPV (96.7%; CI, 95.2%-98.1%).

Prediction Performance of the XGBoost
Model in Different Follow-Up Periods
The XGBoost model was further assessed as a potential tool to
predict the occurrence of DR (Table 2). According to follow-up
TABLE 1 | The performance metrics of the cross-validated machine learning algorithms on the test data.

Model AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

RF 0.872
(0.857, 0.887)

0.764
(0.703, 0.785)

0.817
(0.793, 0.925)

0.749
(0.647, 0. 776)

0.469
(0.41, 0.498)

0.938
(0.931, 0.971)

XGBoost 0.913
(0.901, 0.925)

0.799
(0.769, 0.835)

0.902
(0.848, 0.949)

0.771
(0.721, 0. 827)

0.516
(0.479, 0.575)

0.967
(0.952, 0.981)

LR 0.808
(0.787, 0.828)

0.731
(0.659, 0.789)

0.73
(0.636, 0.852)

0.731
(0.61, 0. 828)

0.424
(0.368, 0.504)

0.909
(0.893, 0.94)

SVM 0.802
(0.781, 0.823)

0.742
(0.702, 0.776)

0.74
(0.677, 0.805)

0.742
(0.681, 0.803)

0.437
(0.398, 0.482)

0.913
(0.901, 0.93)

K-NN 0.629
(0.601, 0.656)

0.537
(0.522, 0.752)

0.689
(0.303, 0.73)

0.496
(0.478, 0.868)

0.27
(0.261, 0.399)

0.855
(0.82, 0.872)
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FIGURE 1 | Receiver Operating Characteristics (ROC) curves of the ML models.
TABLE 2 | The performance metrics of the XGBoost model for different follow-up times.

*Follow-up
period

Patient
number

DR patient number AUC(95%
CI)

Accuracy (95%CI) Sensitivity (95%
CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

(1, 2) 1025 93 0.966
(0.955, 0.977)

0.877
(0.855, 0.933)

0.978
(0.925, 1)

0.867
(0.841,
0.931)

0.423
(0.382,
0.578)

0.998
(0.992, 1)

(2, 3) 352 92 0.834
(0.788, 0.879)

0.733
(0.668, 0.801)

0.848
(0.739, 0.957)

0.692
(0.577,
0.812)

0.494
(0.435,
0.592)

0.928
(0.894,
0.977)

(3, 4) 283 78 0.867
(0.817, 0.918)

0.77
(0.728, 0.873)

0.859
(0.654, 0.949)

0.737
(0.659,
0.932)

0.554
(0.503,
0.797)

0.932
(0.873,
0.972)

(4, 5) 242 70 0.86
(0.809, 0.911)

0.785
(0.707, 0.851)

0.8
(0.686, 0.957)

0.779
(0.628,
0.901)

0.596
(0.496,
0.742)

0.905
(0.872,
0.977)

(5, 6) 153 49 0.835
(0.765, 0.905)

0.765
(0.719, 0.869)

0.776
(0.531, 0.898)

0.76
(0.654,
0.962)

0.603
(0.538,
0.879)

0.878
(0.809,
0.943)

(6, 7) 129 38 0.876
(0.814, 0.938)

0.837
(0.705, 0.899)

0.711
(0.605, 0.974)

0.89
(0.604,
0.967)

0.73
(0.5, 0.897)

0.88
(0.85, 0.983)

(7, 8) 116 45 0.917
(0.867, 0.966)

0.845
(0.759, 0.897)

0.822
(0.733, 0.933)

0.859
(0.732,
0.901)

0.787
(0.655,
0.841)

0.884
(0.825,
0.955)

(8, 11) 84 43 0.858
(0.779, 0.936)

0.798
(0.738, 0.881)

0.791
(0.698, 1)

0.805
(0.561,
0.927)

0.81
(0.691, 0.92)

0.786
(0.72, 1)
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intervals, the test set was divided into eight categories, respectively,
each year of 1 to 8 years and more than 8 years. The highest AUC of
0.966 (95% CI, 0.955-0.977) and highest accuracy of 87.7% (95% CI,
85.5%-93.3%) were achieved in patients who were followed up
within the timeframe of 1 to 2 years.

Information Contributions of the Features
The importance scores calculated by XGBoost are shown in
Figure 2. Among all the features, the top five ones (HbA1c,
duration, follow-up time, FBG, and age) contributed the most to
identifying cases with DR risk in type 2 diabetes patients. In
addition, the importance scores calculated by RF, which is the
next-best performing model, are shown in Figure S1.
Subgroups Analysis Based on Follow-Up
Period and DR Severity Level
The XGBoost model was further evaluated on the supplementary
test set. Multipoint data of the same patient were used as new
cases. The model showed an improved performance with an
AUC, accuracy, sensitivity, specificity, PPV, and NPV of 0.922
(95%CI, 0.912-0.932), 81.5% (95% CI, 80.4%-84.2%), 92.6% (95%
CI, 87.1%-94.2%), 76.6% (95% CI, 74.9%-82.4%), 63.6% (95% CI,
62.1%-68.8%), and 95.9% (95% CI, 93.5%-96.8%) respectively.
Detailed attributes are presented in Table S5. Age, diuretic,
fibrates, eGFR, HbA1c, duration, and follow-up time were
significantly different between the cases with correct
predictions and those with incorrect predictions. We then
measured the time to diagnosis. The XGBoost model achieved
an average of 2.895 ± 2.104 years prior to the first diagnosis by
the clinical diagnosis method.
Frontiers in Endocrinology | www.frontiersin.org 5
Subgroups analyses based on follow-up period and DR severity
level were respectively conducted to assess the potential application
of the model in clinical scenarios (Supplementary Figure S4). With
the increase in follow-up time, the true positive prediction rate of
the XGBoost model increases (Supplementary Figure S4A). The
subgroup of patients followed up within the time frame of 7 to 8
years exhibited the highest positive prediction rate (100.0%). Data of
all the others were higher than 87%. As for different DR severity
subgroups, the model performed better for grade 3, reaching the
highest positive prediction rate of 97.56% (Supplementary
Figure S4B).
Nomograms for Predicting DR Risk of
Patients With Type 2 Diabetes
Nomograms were developed to depict the association between the
clinical variables and the occurrence of DR. After feature selection,
we obtained 16 features including gGT, AST, SBP, eGFR, age,
HbA1c, FBG, duration, follow-up time, insulin, diuretic, statins,
fibrates, hypertension, smoking status, and drinking status. A classic
LR model and an LR model integrated with the machine learning
output were constructed (Supplementary Figure S2, S3). The C-
index of the integrated LR model was 0.921, whereas that of the
classic LR model was 0.836.
DISCUSSION

In this study, we constructed five ML-based models for the risk of
developing DR among patients with type 2 diabetes using EHR data,
the XGboost model of which demonstrated the best performance.
FIGURE 2 | The importance scores of the features calculated by XGBoost.
May 2022 | Volume 13 | Article 876559
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We further evaluated the predictive value of this model and found
that it can accurately predict the occurrence of DR at each time
point over 10 years. According to feature importance analysis, five
risk factors, SUA, LDL-C, TC, eGFR, and TG, were recognized as
important indicators of DR for the first time. Moreover, analysis of
data frommultiple time points revealed that predicting DR risk with
the XGBoost model would obviously reduce the amount of time
needed for the diagnosis of DR.

XGBoost algorithm is known for its good scalability and high
running speed, which is thus commonly used and developed in
recent years (28–30). Specifically, the XGBoost model provides
the following advantages. First, the XGBoost algorithm reduces
the order of magnitude of features while retaining all the features
by introducing regularization terms into the objective function to
avoid over-fitting. Secondly, the algorithm also used the random
forest algorithm for reference, which can not only reduce the
over-fitting problem but also reduce the computational
complexity. We hypothesized that these reasons would be
responsible for the XGBoost algorithm ’s outstanding
prediction ability for DR risk compared with the other four
methods adopted in this study.

There were several studies gaining insights into DR risk
prediction, some of which developed ML-based models.
However, most of them were cross-sectional studies. In a study
in Iran (31), 3734 diabetic patients were included to build a
logistic regression model with an AUC of 0.704. The input
variables included sex, age, diabetes duration, BMI, blood
pressure (BP), HbA1c, FPS, cholesterol, and triglycerides. In
the cross-sectional study by Ein hoh et al. (7) in South Korea, a
LASSO prediction model was constructed for predicting the risk
of DR, reaching an AUC of 0.82 and an accuracy of 75.2%. 490
diabetic patients were selected for the study, and several variables
(age, sex, smoking history, drinking history, waist circumference,
BMI, physical exercise status, medication history, blood pressure,
and relevant laboratory results) were used as input. In another
cross-sectional study in Taiwan Province of China (6), 536
patients with type 2 diabetes were selected and 10 predictors,
including systolic blood pressure, diastolic blood pressure, BMI,
age, gender, duration of diabetes, family history of diabetes,
whether there was a blood glucose test, whether there was
exercise, and whether there was insulin treatment, were
included. Then, four prediction models (SVM, DT, artificial
neural network, and LR) were constructed, respectively. The
model based on SVM showed the best performance with an
accuracy of 79.5% and an AUC of 0.839. Mo et al. (5). included
4170 diabetic patients in a cross-sectional study to predict the
risk of DR. Seven input variables, including age, diabetes
duration, postprandial blood glucose, HbA1c, urine creatinine,
urine microalbumin, and systolic blood pressure were used to
construct a multivariate logistic regression model. The model
showed moderate predictive ability with an AUC of 0.715 in the
validation set. The predictive models mentioned above were
developed to identify patients with DR rather than predict the
occurrence of DR in the future. Therefore, they can hardly be
adapted to the scenarios that require pre-diagnosis screening and
prompt intervention. To our knowledge, only one follow-up
Frontiers in Endocrinology | www.frontiersin.org 6
study was performed for predicting the occurrence of DR (32).
The study was conducted with 5034 type 2 diabetes patients not
affected by retinopathy at the time of the recruitment and a
median follow-up time of 1.2 years. A Cox risk prediction model
was constructed with seven predictors including diabetes
duration, HbA1c, systolic blood pressure, diastolic blood
pressure, proteinuria, creatinine clearance, and diabetes drug
treatment, and showed a helpful predictive ability (C-
index=0.746). However, this model cannot meet all the clinical
requirements of long-term management of type 2 diabetes and
associated complications considering that it can only predict the
occurrence of DR in the next 1 to 4 years.

The XGBoost model we constructed performed well in
different follow-up periods (AUC=0.834-0.966), which
indicates that it could predict whether and when a patient with
type 2 diabetes will develop DR in the next 1 to 8 years or even
over 8 years. Results also show the proposed model is effective to
demonstrate in patients who had DR of different severity levels
during follow-up. For the individuals with moderate NPDR, the
model exhibited the highest performance. As a transitional stage,
moderate NPDR can progress and advance to vision-threatening
retinopathies. Intervention methods such as intravitreous anti-
VEGF treatment can be applied to secure moderate NPDR
patients. As the patient progresses to severe NPDR and PDR, it
is hard to get the same treatment effect. Moreover, the method
requires no extra laboratory tests since the model input was
drawn from demographic and clinical characteristics and routine
test results. Therefore, the model will facilitate clinicians risk-
stratifying patients with type 2 diabetes. For patients at risk of
DR, clinicians can provide adequate follow-up management and
effective therapeutic intervention. While for the low-risk
population, visit frequency will be appropriately reduced, and
thus personal and societal healthcare burdens will be reduced
accordingly. We further developed nomograms to depict the
association between the clinical variables and the probabilities of
DR. The nomogram integrating the XGBoost-based machine
learning output achieved a higher predictive performance, which
provides an intuitive way to interpret the model and shows its
potential to be a clinical decision support tool.

To identify the key features contributing to the pre-diagnosis of
DR, the importance scores of the risk factors were calculated by
XGBoost. According to the feature importance analysis, HbA1c,
diabetes duration, age, and FBG were highly ranked, which
corresponds to the current clinical perceptions. In addition, we
found that SUA, LDL-C, TC, eGFR, and TGmay have the potential
to be strong predictors for DR. Moreover, we further calculated the
importance scores of the risk factors by RF, and found that the
results were similar to and complementary to those from XGBoost.
In previous studies, Krizova et al. found that an elevated level of
vitreous uric acid was closely related to the development of DR, and
uric acid concentration was closely related to the degree of DR
progression (33). Zhu et al. found that SUA in the vitreous activates
the expression of retinal inflammatory factors through the Notch
signaling pathway, which will induce oxidative stress and
inflammatory response and thus promote the occurrence and
development of DR (34). Obesity is a metabolic disease that is
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associated with insulin resistance and diabetes mellitus (35). In the
Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR),
it was found that high TC levels could increase the risk of retinal
hard exudation in patients with type 2 diabetes (36). High LDL-C
and high TC/LDL-C levels were associated with retinal macular
edema in SN-DREAMS studies (37). Besides, statin lipid-lowering
drugs could significantly reduce the risk of DR (38). Since DR is a
microvascular complication of diabetes, eGFR can be used as an
important biochemical indicator reflecting DR. Chen et al. found
that higher eGFR was positively correlated with the risk of DR (39).
Therefore, the results presented in our study indicated that these
risk factors could be used as early and effective predictors of DR for
type 2 diabetes patients before recognizable symptoms appear.

There are still several limitations to this study. First, the
prediction models were constructed with the risk factors extracted
from EHR, except for those with excessive missing data including
the ones that might be related to the occurrence of DR (e.g., hip
circumference and neck circumference). Secondly, individualized
management approaches for type 2 diabetes and associated
complications were not fully described. The monitoring and
tracking features were also not collected during the follow-up
period. The above information will be recorded and used to
optimize the XGBoost model in the future. In addition, this is a
single-center retrospective study. We are planning to collect cases
from several institutions and conduct a prospective study to validate
the generalization ability of the proposed model.

In summary, we developed and evaluated an ML-based model
for predicting the risk of DR. The results suggest that it is possible
to pre-diagnose DRwithout fundus images. We also demonstrated
the potential of applying XGBoost models to facilitate clinicians in
accurately identifying the high-risk population for DR and
formulating patient-specific management strategies, thereby
reducing the occurrence and development of DR.
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