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Abstract: With the rapid development and widespread application of wearable inertial sensors
in the field of human motion capture, the low-cost and non-invasive accelerometer (ACC) based
measures have been widely used for working postural stability assessment. This study systematically
investigated the abilities of ACC-based measures to assess the stability of working postures in terms
of the ability to detect the effects of work-related factors and the ability to classify stable and unstable
working postures. Thirty young males participated in this study and performed twenty-four load-
holding tasks (six working postures × two standing surfaces × two holding loads), and forty-three
ACC-based measures were derived from the ACC data obtained by using a 17 inertial sensors-based
motion capture system. ANOVAs, t-tests and machine learning (ML) methods were adopted to study
the factors’ effects detection ability and the postural stability classification ability. The results show
that almost all forty-three ACC-based measures could (p < 0.05) detect the main effects of Working
Posture and Load Carriage, and their interaction effects. However, most of them failed in (p ≥ 0.05)
detecting Standing Surface’s main or interaction effects. Five measures could detect both main and
interaction effects of all the three factors, which are recommended for working postural stability
assessment. The performance in postural stability classification based on ML was also good, and
the feature set exerted a greater influence on the classification accuracy than sensor configuration
(i.e., sensor placement locations). The results show that the pelvis and lower legs are recommended
locations overall, in which the pelvis is the first choice. The findings of this study have proved
that wearable ACC-based measures could assess the stability of working postures, including the
work-related factors’ effects detection ability and stable-unstable working postures classification
ability. However, researchers should pay more attention to the measure selection, sensors placement,
feature selection and extraction in practical applications.

Keywords: working postural stability; balance assessment; wearable accelerometers; inertial mea-
surement units; machine learning

1. Introduction

Maintaining body balance is essential for humans in performing daily activities,
and people with postural instability would be confronted with difficulty in completing
desired actions [1,2]. Postural instability is one of most common factors related to injuries
from falling [3], especially for the people who are likely to be exposed to a high risk of
falls because of their poor health condition or dangerous working environment, such as
Parkinson’s or stroke disease patients, obese people, older adults, construction workers,
etc. [4–6]. For workers, e.g., construction workers, occupational falls are a serious problem,
which leads to substantial injury and economic consequences [7]; it is reported worldwide
that physical injuries caused by falls or related accidents are the leading cause of fatal
injuries [8]. According to the American Bureau of Labor Statistics (2006 a & b), 32% of work-
related deaths and 34% of nonfatal injuries in the construction industry were due to falls.
Maintaining non-erect working postures while completing working tasks requires dynamic
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or static postural stresses [9]. Not only maintaining the static working postures, but also
performing volitional movements, such as those needed transition from one posture to
another, necessitate movement patterns that challenge the stable state of balance control
and increase vulnerability to loss of balance and the risk of falling [10]. Therefore, assessing
the stability of working postures is necessary and important for damage reduction and
occupational fall prevention.

The measures to assess the stability of working postures can be classified into two
groups: subjective and objective measures [11]. Perception of postural stability rated by
using a visual scale is a widely used as the subjective measure, and it has a good reliability
and validity [12–14]. However, the subjective measures are mainly based on the judgment
of the person, and are easily influenced by the observer’s personality or experience, which is
subject to cognitive bias [15]. In contrast, the objective evaluation method qualifies the sub-
ject’s body’s stability level by using the equipment, which is more impartial compared with
the subjective evaluation methods. Center of pressure (COP) trajectory- based measures
are the traditional and most widely-used objective measures [16–20], which are sometimes
used as the gold standard. However, researchers have to rely on force plates (e.g., AMTI
Force Plate, AMTI, Watertown, MA, USA) to obtain the COP data, which is quite expensive,
difficult to set up and cumbersome to transport [21]. Recently, inertial sensor technology
has been widely used in the balance- related research in the fields of biomechanics [22–25],
ergonomics and human factors [26,27], sports science [28–34] and virtual or augmented
reality [35–37], because the miniature inertial sensors are cost effective, wearable, compact
and lightweight. With the rapid development and widespread application of wearable
inertial sensors in the above fields, it is increasingly being used in the assessment of human
body balance or postural stability [38–43].

Many kinds of ACC-based measures have been studied, such as Root-Mean-Square
(RMS) [44–47], range [48–50], mean frequency [48,51], sway velocity [52–54], sway area [48,55],
and mean distance [48,51]. By using the above ACC-based measures, previous studies
have focused more on the effects of some fall-risk related factors, like age [52], health
condition [44], working atmosphere [56], or the parameters referred to above to distinguish
different sample groups, like young and old people [57,58], both healthy and those that
are patients (usually patients with Parkinson’s, concussion, and stroke, etc.) [59,60]. Some
researchers have reviewed the present literature to summarize the application status of
inertial sensors in human balance assessment. For example, Ghislieri et al. summarized
the state-of-the-art literature that focused on evaluating human standing balance using
inertial sensors, they highlighted the main applications in active aging and clinics, and
discussed the best data acquisition protocols [61]. Gordt et al. reviewed current studies
on the effectiveness of wearable sensors-based training for improving of the functional
performance, and they found positive effects of this kind of training [62]. Hasegawa et al.
studied the most sensitive inertial sensors-based measures of balance dysfunction that
differ between Parkinson’s patients and healthy people, and they found four measures that
could be used for clinical trials focused on improving balance dysfunction [59]. Hubble et al.
examined the current research that estimated standing and walking balance in Parkinson’s
patients utilizing wearable inertial sensors, and they summarized the best sensor types,
locations and outcomes [63]. However, limited studies were found that systematically
investigated the ability of ACC-based measures to detect the effects of work-related factors
and the ability to classify stable and unstable working postures. Considering the portable
and wearable inertial sensor technology has significant advantages in human motion
capture and balance assessment, especially for the application in the working environment.
Moreover, to assess the stability of working postures it is necessary and important for
damage reduction and occupational falls prevention, and has sparked intense interest
among researchers. For this reason, this study aims to systematically investigate the abilities
of ACC-based measures to assess the stability of working postures in terms of the ability
to detect the effects of work-related factors and the ability to classify stable and unstable
working postures. The findings could provide some reference for researchers to select
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ACC-based measures, choose optimal sensor placement locations, and determine best test
protocols when using the ACC-based measures for working postural stability assessment.

2. Methods
2.1. Participants

Thirty young males (age 28.20 ± 4.66 years; height 171.62 ± 6.62 cm; weight 68.09 ± 6.89 kg)
without neurological diseases or self-reported musculoskeletal issues (i.e., without any body
balance-related issues) volunteered to participate in this study. Each participant signed
informed consent on this experiment protocol, which was improved by the Institutional
Review Board of Korea’s Advanced Institute of Science and Technology (KAIST, Approval
Number KH2017-38).

2.2. Experimental Design
2.2.1. Independent Variables

The experiment was a full factorial within-subject repeated measures design. Three
independent variables were considered: (1) Working Posture (WP, six levels): natural
standing upright (P1), standing upright with arms raised to nineteen degrees in the sagittal
plane (P2), squatting (P3), bending forward (P4), bending forward with left-turning (P5),
and overhead carrying (P6); (2) Surface Slope (SS, two levels): flat and inclined (18 degree
slope) standing surfaces; (3) Load Carriage (LC, two levels) in hands without (0 kg) and
with (10 kg) load carriage in hands. The above three independent variables were designed
concerning the real working scenarios of construction workers and masons. For example,
the six different working postures selected in this study are frequently used when a mason
lays stones, cinder blocks, or bricks in the construction of building walls.

2.2.2. Dependent Variables

The dependent variable was postural stability (PS, i.e., stability level of different
working postures) under different experimental conditions. The postural stability was
measured using both subjective and objective measures in this study with references to
previous studies [64,65]. The subjective measure used in this study was the perception of
postural stability (PPS), which reflects the participant’s subjective perception of difficulty
in keeping their balance. This measure (i.e., PPS) has proven to be reliable and valid in
assessing postural stability by many previous studies [12–14].

Two kinds of objective measures utilized in this research were center of pressure- (COP)
based and acceleration- (ACC) based measures. (a) COP-based measures: Only one COP-
based measure, mean velocity of COP in the anterior-posterior direction (COPV_AP) [20],
was derived from COP data. COPV_AP and PPS were considered as the objective and
subjective golden references of the postural stability, respectively. Since both of them
have proven to be reliable and valid, and our previous studies had shown these two
measures could provide adequate discriminating power for detecting the effects, includ-
ing main and interaction effects, of the investigated factors [11,13]. (b) ACC-based mea-
sures: Considering that the objective of this study is to evaluate the ability of ACC-based
measures in assessing the stability of working postures, forty-three ACC-based mea-
sures (see Table 1 and Figure 1a) derived from the acceleration data, were calculated.
Both COP-based and ACC-based measures were calculated with references to previous
studies [18–20,47,48,52,54,60,66,67], and the calculation methods of some parameters de-
scribed by Prieto et al. [20] and Raymakers et al. [67], which were applied to the COP
signals, were applied to the acceleration signals in this research [68].
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Table 1. Acceleration based postural stability measures adopted in this study.

Measures (Abbr.) Explanations

Average (AVG) [66] Average of ACC 1 in AP 2, ML 3, IS 4, 2DR 5, and 3DR 6 directions: AVG_AP,
AVG_ML, AVG_IS, AVG_2DR, and AVG_3DR (m/s2).

Range (RNG) [48,54] Range of ACC in AP, ML, IS, 2DR, and 3DR directions: RNG_AP, RNG_ML,
RNG_IS, RNG_2DR, and RNG_3DR (m/s2).

Root mean squared (RMS) [47,48,52] Root mean squared of ACC in AP, ML, IS, 2DR, and 3DR directions: RMS_AP,
RMS_ML, RMS_IS, RMS_2DR, and RMS_3DR (m/s2).

Sway area (ARE) [48,54,60]

Area of sway (ARE_SW), area spanned from the ACC signals per unit of
time (mm2/s5).

Area of 95% confidence circle (ARE_CC) and 95% confidence ellipse (ARE_CE),
that encapsulates the sway path derived from ACC per unit of time (mm2/s5).

Fractal dimension (FD) [20] Fractal dimension based on 95% confidence circle (FD_CC) and 95% confidence
ellipse (FD_CE).

Length (LEN) [48,54] Total length of ACC trajectory in AP, ML, 2DR, and 3DR directions: LEN_AP,
LEN_ML, LEN_2DR, and LEN_3DR (m/s2).

Mean distance (MD) [48,54] Mean distance from center of ACC trajectory in AP, ML, 2DR, and 3DR directions:
MD_AP, MD_ML, MD_2DR, and MD_3DR (m/s2).

Mean frequency (MF) [48,54] Mean frequency of ACC power spectrum in AP, ML, 2DR, and 3DR directions:
MF_AP, MF_ML, MF_2DR, and MF_3DR (HZ).

Mean velocity (MV) [48,54] First integral of ACC signals in AP, ML, 2DR, and 3DR directions: MV_AP,
MV_ML, MV_2DR, and MV_3DR (m/s).

Planar deviation (PD) [67] Planar deviation in displacement (PD_P) and velocity (PD_V).

Phase plane parameter (PP) [67] Phase plane parameter (square root of the sum of variances of displacement
and velocity).

Root mean squared distance (RMSD) [20] Root mean squared distance from center of ACC trajectory in AP, ML, 2DR, and
3DR directions: RMSD_AP, RMSD_ML, RMSD_2DR, and RMSD_3DR (m/s2).

1 ACC, acceleration; 2 AP, anterior-posterior; 3 ML, medial-lateral; 4 IS, inferior-superior (i.e., vertical); 5 2DR,
two-dimensional resultant (in transverse plane); 6 3DR, three-dimensional resultant.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. (a) Diagram of the ACC-based measures in different directions (such as ACC-based Aver-
age (AVG), for example); (b) Configuration of the eight IMU sensors used in this study. 

2.2.3. Experimental Apparatus 
An 11-point (0–10) Likert difficulty rating scale was used to assess the participant’s 

perception of the difficulty (0 = not at all; 5 = moderately; 10 = extremely) in keeping his 
balance. A Wii Balance Board (Nintendo, Kyoto, Japan) interfaced to a PC using a custom-
written software was used for center of pressure data recording, at a frequency of 40 HZ. 
The inertial sensor-based motion capture system, Xsens MVN Link (Xsens Technologies 
B.V., Enschede, The Netherlands), powered by its matching software Xsens MVN Analyze 
was used for acceleration data recording at a frequency of 240 HZ. This system was com-
posed of 17 IMU sensors which were placed over the full body (17 different body seg-
ments) [69]. Furthermore, a custom-made, 18 degree sloped wooden platform was used 
as the inclined standing surface. A 30 cm × 21 cm × 21 cm plastic foam box, empty (~0 kg) 
or fully filled with paper (10 kg), was used as the load. 

2.2.4. Experimental Tasks 
Each participants was instructed to wear the Xsens MVN Link system by following 

the official instructions from Xsens, which were that 17 IMU sensors were attached on the 
pelvis, sternum (eighth thoracic vertebra, T8), back of the head, shoulders, upper arms, 
forearms, hands, upper legs, lower legs and feet [69]. All the participants were tested with-
out wearing shoes, and non-slip socks were provided by the tester to the eliminate poten-
tial effects of different shoes on postural stability. Figure 2 shows the schematic represen-
tation of the experimental tasks (take flat standing surface × 10 kg load carriage × Posture 
5 as an example). Next, each of the participants was instructed to stand naturally on the 
standing surface (flat & inclined) with feet in a comfortable position and to hold the foam 
box (~0 kg & 10 kg) with both hands for ten seconds using six working postures (P1–P6). 
Twenty-four load-holding tasks (six working postures × two standing surfaces × two hold-
ing loads) in total were performed by each participant, and each task was repeated twice. 
During each task, the COP and acceleration data were collected. Right after finishing each 
task, the participant was asked to rate his perception of the difficulty level to keep his 
balance during the load-holding task. The experimental tasks were performed in random 
order. In addition, two research assistants were arranged to stand beside the participants 
to protect them from falling or other accidents. 

Figure 1. (a) Diagram of the ACC-based measures in different directions (such as ACC-based Average
(AVG), for example); (b) Configuration of the eight IMU sensors used in this study.



Int. J. Environ. Res. Public Health 2022, 19, 4695 5 of 20

2.2.3. Experimental Apparatus

An 11-point (0–10) Likert difficulty rating scale was used to assess the participant’s
perception of the difficulty (0 = not at all; 5 = moderately; 10 = extremely) in keeping his
balance. A Wii Balance Board (Nintendo, Kyoto, Japan) interfaced to a PC using a custom-
written software was used for center of pressure data recording, at a frequency of 40 HZ.
The inertial sensor-based motion capture system, Xsens MVN Link (Xsens Technologies B.V.,
Enschede, The Netherlands), powered by its matching software Xsens MVN Analyze was
used for acceleration data recording at a frequency of 240 HZ. This system was composed
of 17 IMU sensors which were placed over the full body (17 different body segments) [69].
Furthermore, a custom-made, 18 degree sloped wooden platform was used as the inclined
standing surface. A 30 cm × 21 cm × 21 cm plastic foam box, empty (~0 kg) or fully filled
with paper (10 kg), was used as the load.

2.2.4. Experimental Tasks

Each participants was instructed to wear the Xsens MVN Link system by following
the official instructions from Xsens, which were that 17 IMU sensors were attached on the
pelvis, sternum (eighth thoracic vertebra, T8), back of the head, shoulders, upper arms,
forearms, hands, upper legs, lower legs and feet [69]. All the participants were tested
without wearing shoes, and non-slip socks were provided by the tester to the eliminate
potential effects of different shoes on postural stability. Figure 2 shows the schematic
representation of the experimental tasks (take flat standing surface × 10 kg load carriage ×
Posture 5 as an example). Next, each of the participants was instructed to stand naturally
on the standing surface (flat & inclined) with feet in a comfortable position and to hold
the foam box (~0 kg & 10 kg) with both hands for ten seconds using six working postures
(P1–P6). Twenty-four load-holding tasks (six working postures × two standing surfaces ×
two holding loads) in total were performed by each participant, and each task was repeated
twice. During each task, the COP and acceleration data were collected. Right after finishing
each task, the participant was asked to rate his perception of the difficulty level to keep his
balance during the load-holding task. The experimental tasks were performed in random
order. In addition, two research assistants were arranged to stand beside the participants to
protect them from falling or other accidents.
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2.3. Data Analysis

The abilities of ACC-based measures to assess the stability of working postures were
investigated from two dimensions: the ability to detect the effects of work-related factors
and the ability to classify stable and unstable working postures using a machine learning
method. The PPS and COPV-AP were used as the golden references of the postural stability.

2.3.1. Data Preprocessing

For body stability assessment, only the acceleration data derived from eight sensors
were extracted, and these were attached to the following eight segments (see Figure 1b):
pelvis, sternum (T8), shoulders, upper legs, and lower legs. The raw two-dimensional COP
and three-dimensional acceleration data were filtered using a fourth order zero-phase low
pass Butterworth filter. The filtered data were used for calculating the above-mentioned
COP-based and ACC-based measures.

2.3.2. Factors’ Effects Detection Based on Statistical Analysis

In order to study the ability of each ACC-based measure to detect the effects of
work-related factors (i.e., WP, SS, and LC in this study) on postural stability, three-way
repeated-measures ANOVAs and paired sample t-tests were performed based on each
measure. The normality test was conducted using the Shapiro-Wilk test. The spherical
assumption was checked using Mauchly’s test of sphericity, and the Greenhouse-Gasser
correction was applied when this assumption was violated [70]. The statistical analysis was
conducted using the SPSS statistical package (v. 26.0, IBM Corp., Armonk, NY, USA), and
the postural stability measures calculations were carried out in MATLAB (v. R2020a, Math
Works Inc., Natick, MA, USA).

2.3.3. Postural Stability Classification Based on Machine Learning

The ability of ACC-based measures to classify stable and unstable working postures
was studied using machine learning methods.

(1) Feature selection and extraction. The following twelve features were selected and
extracted based on the raw acceleration data: mean, range, variance, standard deviation,
root mean squared, skewness, kurtosis, and the first five fast Fourier transformation (FFT)
coefficients. In order to identify and avoid overfitting, and evaluate the performance of
using different combinations of sensors and/or features, the twelve features and eight
sensors were split into three feature sets and three sensor combinations, as shown in
Table 2. After feature extraction, z-score standardization was applied to transform features
to comparable scales.

Table 2. Feature sets and sensor combinations for the training of the machine learning model.

Feature Set (FS) Feature Sensor Configuration (SC) Sensor Location

FS 1

Mean

SC 1

Pelvis

Range Sternum (T8)

Variance Shoulders (left & right)

Standard deviation Upper legs (left & right)

Root mean squared Lower legs (left & right)

Skewness

SC 2

Pelvis

Kurtosis Sternum (T8)

FS 2 First five FFT 1 coefficients Shoulders (left & right)

FS 3 Feature set 1 and Feature set 2 SC 3
Pelvis

Sternum (T8)
1 FFT, fast Fourier transformation.
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(2) Classifier selection. The following classifiers were used for models training, k-
Nearest Neighbor (KNN), Gaussian Naive Bayes (GNB), Kernel Naive Bayes (KNB), Logis-
tic Regression (LR), Discriminant Analysis (DA), Support Vector Machine (SVM), Decision
Tree (DT), Bagged Trees (BT) and Optimizable Ensemble (OE) classifiers, which were
provided in MATLAB Classification Learner toolbox [71]. The machine learning- based
postural stability classification, including all related data processing, was conducted using
MATLAB (v. R2020a, Math Works Inc., Natick, MA, USA), especially the Classification
Learner toolbox of MATLAB, which was used for model training and testing.

(3) Classification performance. K-fold cross validation (k = 5 in this study) was
performed to evaluate the machine learning models and that the dataset was divided into
k subsets, one of which was kept as the validation set while the other k − 1 subsets were
used as the training set. Such a process was repeated for each subset (i.e., k times in total),
and then the average error across all trials was calculated, which was used for computing
the classification accuracy according to the following equation [72,73].

Accuracy = (TP + TN)/(P + N) ∗ 100% (1)

where TP and TN are true positive and true negative, respectively; P and N are the counts
of positive and negative, respectively.

(4) Data labeling. The raw data set was labeled as ‘stable’ or ‘unstable’ with reference
to the PPS and COPV_AP values, which were considered as the subjective and objective
gold standard references of postural stability, respectively, as shown in Table 3.

Table 3. Data labeling criteria based on PPS 1 and COPV_AP 2 values.

Measure Stable Unstable

PPS [0, 5.0) [5.0, 10.0]

COPV_AP [minimum, median) [median, maximum]
1 PPS, perception of postural stability; 2 COPV_AP, mean velocity of center of pressure in anterior-posterior
direction.

3. Results
3.1. Ability to Detect the Effects of Work-Related Factors

As mentioned above, the ability to detect the effects of work-related factors on postural
stability was studied by conducting several ANOVAs and t-tests using each of forty-
three different measures, which were calculated based on the ACC data derived from
the accelerometers attached on eight different segments. The statistical results using the
ACC data of accelerometers attached on the pelvis and T8 are shown in Table A1 in the
Appendix A. In addition, the results based on the other six segments’ ACC data (shoulders,
upper legs, and lower legs) are summarized in Tables A2–A4 in the Appendix A.

The t-test and ANOVA results (Tables A1–A4) show that all the ACC-based measures
could (p < 0.05) detect the main effects of working posture (WP); almost all the measures
(except for part of mean velocity (MV) related measures) were able to (p < 0.05) detect the
main effect of load carriage (LC), and most of the measures failed (p > 0.05) in detecting the
main effect of surface slope (SS). In particular, twenty-seven measures were based on pelvis
ACC data, nineteen measures were based on left lower leg data, and ten measures were
based on right lower leg data that successfully detected the SS’s main effects; this quantity
was much larger than the quantity (three to five) of the measures based on the other five
segments’ data. In contrast, there was no big difference in the numbers (thirty-nine to
forty-three) of ACC-based measures, which could detect the main effects of WP and/or
LC among the eight different segments. For the interaction effects’ detection ability, the
results show that all of the ACC-based measures (except for part of mean velocity (MV)
related measures) successfully detected (p < 0.05) the interaction effect between WP and LC,
but most of the measures failed (p > 0.05) in detecting the SS’s interaction effects with the
other two factors (i.e., SS × LC, SS × WP, and SS × LC × WP interactions). Besides, five
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measures (RMS_AP based on pelvis ACC data, FD_CC, MF_AP, MF_2DR, and MF_3DR
based on left lower leg data, as shown in Tables A1–A4) successfully detected both the
main and interaction effects of all three work-related factors.

Table 4 shows the numbers of ACC-based measures which successfully detected the
factors’ effects. All of the forty-three measures were capable (p < 0.05) of detecting the main
effects of WP, almost all of them (≥39) were capable (p < 0.05) of detecting the main effects
of WP and the interaction effects LC × WP, which indicated an excellent performance in
detecting the above effects. Conversely, most of the measures failed (p > 0.05) in detecting
SS’s main or interaction effects.

Table 4. The numbers of ACC-based measures with the abilities of factors’ effects detection.

Segment

Effect Main Effect
Sum

Interaction Effect
Sum

SS LC WP SS × LC SS × WP LC × WP SS × LC
× WP

Pelvis 27 40 43 108 2 20 40 13 75

Sternum (T8) 3 41 43 87 1 15 41 0 57

Left shoulder 4 39 43 86 1 11 43 2 57

Right shoulder 4 39 43 86 0 8 42 1 51

Left upper leg 3 41 43 87 0 12 41 9 62

Right upper leg 5 40 43 88 0 13 40 11 64

Left lower leg 19 39 43 101 17 20 39 5 81

Right lower leg 10 39 43 92 4 14 39 10 67

3.2. Ability to Classify Stable and Unstable Working Postures

The classification results, i.e., the overall average classification accuracy for different
sensor configurations and different feature sets using different classifiers, are presented in
Table 5 (data labeling based on COPV_AP) and Table 6 (data labeling based on PPS).

Table 5. Classification accuracies for different sensor configurations and different feature sets using
different classifiers (data labeling based on COPV_AP).

Classifier

SC & FS 1 SC1 SC2 SC3
Average

FS1 FS2 FS3 FS1 FS2 FS3 FS1 FS2 FS3

KNN-City Block 90.5% 69.0% 90.7% 90.3% 70.3% 90.4% 90.6% 70.8% 90.1% 83.6%

KNN-Euclidean 90.5% 70.3% 89.8% 88.3% 69.4% 89.0% 88.7% 70.5% 88.7% 82.8%

GNB 87.8% 77.8% 88.3% 87.2% 77.5% 87.6% 87.2% 72.3% 87.5% 83.7%

KNB 86.7% 78.2% 87.0% 86.9% 79.3% 87.6% 86.7% 73.2% 86.2% 83.5%

LR 86.6% 75.8% 84.2% 89.4% 71.7% 87.9% 90.0% 71.1% 89.4% 82.9%

DA 90.3% 86.4% 90.0% 89.4% 84.1% 89.8% 90.3% 78.4% 90.1% 87.6%

SVM-Linear 89.7% 72.2% 90.6% 90.0% 71.9% 90.2% 89.9% 70.4% 89.3% 83.8%

SVM-Cubic 90.0% 82.4% 91.1% 88.3% 79.5% 89.0% 89.1% 77.8% 89.4% 86.3%

DT 87.4% 74.9% 86.0% 86.8% 71.8% 86.2% 85.3% 69.3% 85.6% 81.5%

OBT 90.3% 84.7% 90.1% 91.1% 82.1% 90.8% 89.9% 81.0% 90.3% 87.8%

OE 91.6% 86.0% 90.6% 91.5% 83.6% 91.0% 91.5% 81.8% 90.8% 88.7%

Maximum 91.6% 86.4% 91.1% 91.5% 84.1% 91.0% 91.5% 81.8% 90.8% -

Average 89.4% 78.7% 89.1% 89.2% 77.1% 89.2% 89.2% 74.9% 89.0% -

1 SC & FS, sensor configuration and feature set, the details can be found in Table 2.
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Table 6. Classification accuracies for different sensor configurations and different feature sets using
different classifiers (data labeling based on PPS).

Classifier

SC & FS 1 SC1 SC2 SC3
Average

FS1 FS2 FS3 FS1 FS2 FS3 FS1 FS2 FS3

KNN-City Block 87.4% 76.6% 86.0% 83.5% 74.9% 83.5% 85.3% 75.2% 85.6% 82.0%

KNN-Euclidean 84.2% 76.3% 85.1% 83.2% 74.8% 82.4% 84.3% 75.1% 84.0% 81.0%

GNB 83.3% 73.8% 82.0% 82.1% 73.8% 81.6% 81.3% 72.2% 80.3% 78.9%

KNB 81.3% 71.2% 80.8% 81.5% 74.5% 81.7% 81.9% 71.1% 81.2% 78.4%

LR 83.1% 77.5% 80.3% 83.8% 75.4% 82.4% 82.3% 76.0% 82.3% 80.3%

DA 84.8% 79.5% 83.8% 84.9% 78.3% 83.6% 83.2% 76.0% 83.1% 81.9%

SVM-Linear 84.7% 75.1% 84.6% 84.2% 74.8% 83.4% 83.4% 73.5% 84.2% 80.9%

SVM-Cubic 84.7% 79.7% 84.7% 82.6% 78.1% 82.2% 84.0% 75.0% 82.6% 81.5%

DT 80.2% 71.3% 78.5% 79.9% 70.4% 77.4% 80.2% 68.8% 80.9% 76.4%

OBT 84.2% 78.1% 84.5% 84.7% 78.7% 84.6% 86.1% 78.6% 85.1% 82.7%

OE 83.9% 79.3% 86.0% 85.3% 80.9% 84.4% 85.4% 78.5% 85.6% 83.3%

Maximum 87.4% 79.7% 86.0% 85.3% 80.9% 84.6% 86.1% 78.6% 85.6% -

Average 84.1% 76.5% 83.5% 83.4% 76.3% 82.7% 83.6% 74.9% 83.4% -

1 SC and FS, sensor configuration and feature set, the details of which can be found in Table 2.

(1) Data labeling with reference to COPV_AP.
In this part, the data sets were labeled using the average COPV_AP values. As shown

in Table 3, the experimental task (i.e., data set) was labeled as Stable if its COP_AP value
was smaller than the median of all COP_AP values, otherwise, it would be labeled as
Unstable. The results (Table 5) show that the classification accuracy range for different SCs
and FSs using different classifiers, was between 69.0% and 91.6%. The maximum accuracy
was 91.6% by using the OE classifier based on the SC1 + FS1 data set, and the minimum was
69.0% by using the KNN (City Block) classifier based on the SC1 + FS2 data set. For each SC
and each classifier, there was no major difference (within 2.4%) in the classification accuracy
between using FS1 and FS3. However, compared to using FS1 or FS3, the classification
performance using FS2 was much poorer (3.6%–21.7% lower in classification accuracy for
different classifiers). No significant difference was found in the average (within 3.8%) or
maximum (within 4.6%) classification accuracy between different SCs for each FS. Four
classifiers (OE, OBT, DA, and SVM-Cubic) performed a bit better (2.5%–7.2% higher in the
average accuracy) than the others in classifying stable and unstable working postures.

(2) Data labeling with reference to PPS.
Similarly, the experimental task (i.e., data set) was labeled as Stable if the PPS value

was smaller than 5.0, and was labeled as Unstable if the PPS value was greater than or
equal to 5.0. As shown in Table 6, the classification accuracy range, for different SCs + FSs
using different classifiers, was between 68.8% and 87.4%. The maximum and minimum
accuracy were 87.4% using KNN (City Block) based on the SC1 + FS1 data set, and 68.8% by
using the DT classifier based on the SC3 + FS2 data set, respectively. For each SC and each
classifier, there was no major difference (within 2.8%) in the classification accuracy between
using FS1 and FS3. However, compared to using FS1 or FS3, the classification performance
using FS2 was poorer (2.8%–12.1% lower in classification accuracy for different classifiers).
No significant difference was found in the average (within 1.6%) or maximum (within 2.1%)
classification accuracy between different SCs for each FS.

(3) Classification performance based only on Pelvis ACC data.
To further investigate the classification performance by only using one sensor, we

repeated the above machine learning procedure based only on pelvis ACC data. Table 7
shows the results of the classification accuracies for different feature sets using different
classifiers based only on Pelvis acceleration data. The result shows that the maximum
classification accuracy was 90.5% (FS1 + OE) and 84.1% (FS1 + OE) using different labeling
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criteria, which were a little lower (1.0% and 2.0% respectively) than using SC3 (pelvis + T8,
as shown in Table 6).

Table 7. Classification accuracies for different feature sets using different classifiers based on Pelvis
acceleration data.

Classifier

SC & FS 1 COPV_AP 2 PPS 3

FS1 FS2 FS3 FS1 FS2 FS3

KNN-City Block 89.0% 73.2% 88.5% 82.2% 75.3% 82.6%

KNN-Euclidean 88.3% 73.5% 86.3% 81.5% 75.6% 82.8%

GNB 77.9% 64.3% 76.0% 77.8% 70.0% 76.5%

KNB 85.0% 64.4% 83.4% 77.6% 68.8% 76.6%

LR 88.0% 67.9% 88.5% 80.9% 74.0% 81.9%

DA 88.7% 73.9% 88.4% 83.3% 73.9% 82.5%

SVM-Linear 88.0% 67.0% 88.4% 82.6% 73.6% 82.2%

SVM-Cubic 89.4% 73.5% 88.2% 81.5% 74.3% 79.9%

DT 85.1% 69.1% 85.5% 79.0% 69.5% 79.4%

OBT 89.2% 77.1% 89.3% 84.0% 76.0% 83.8%

OE 90.5% 79.2% 90.2% 84.1% 76.3% 84.0%

Maximum 90.5% 79.2% 90.2% 84.1% 76.3% 84.0%

Average 87.2% 71.2% 86.6% 81.3% 73.4% 81.1%
1 FS, feature set, the details can be found in Table 2; 2 COPV_AP, data set was labeled based on the COPV_AP
value; 3 PPS, data set was labeled based on the PPS value.

4. Discussion

This study investigated the abilities of ACC-based measures to assess the stability of
working postures in terms of the ability to detect the effects of work-related factors and the
ability to classify stable and unstable working postures using a machine learning method.
The results show a good performance of these ACC-based measures.

4.1. Ability in Factor Effects Detection

As shown in Table 4, all, or almost all, of the forty-three measures were capable to
detect the main effects of WP and LC, and their interaction effects, which indicated an
excellent performance in detecting the above effects. Conversely, most of the measures
failed in detecting SS’s main or interaction effects. Our previous studies [11,13] had shown
that there were statistically significant (p < 0.05) main effects of all the three factors, and
statistically significant (p < 0.05) three-way and two-way interaction effects among them,
which were based on both PPS- and COP-related (e.g., COPV_AP) measures. However,
the 10-kg load carriage had a larger main effect on the body’s stability than the 18-degree
inclined standing surface, so that the increase (3.05 in average PPS, p < 0.05; and 13.84 mm/s
in average COPV_AP, p < 0.05) in the body’s instability caused by the 10-kg load in
hands was larger than that (0.47 in average PPS, p < 0.05; and 3.36 mm/s in average
COPV_AP, p < 0.05) caused by the 18-degree inclined surface. The above might explain
why many ACC-based measures failed in detecting the SS’s effects since its effect size was
relatively smaller.

Among the forty-three measures, five of them (RMS_AP based on Pelvis ACC data,
FD_CC, MF_AP, MF_2DR and MF_3DR based on left lower leg data, see Tables A1 and A4)
could detect both the main and the interaction effects of all the factors, which are recom-
mended ACC-based measures for working postural stability assessment. This finding was
partly in line with the previous studies [45,54,74–76]. The results show that mean frequency
measures (MF_AP, MF_ML, MF_2DR or MF_3DR), especially MF measures based on pelvis,
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upper or lower legs data, had a better overall performance than the other ACC-based
measures (except for the SS*LC interaction effect detection based on T8 and shoulders data;
see Tables A1–A4).

For the placement of the accelerometer sensors, the pelvis and lower legs are recom-
mended locations overall. The pelvis is a particularly a prime location for sensor placement,
because the numbers of the measures based on pelvis ACC data, which were able to detect
the factors’ effects, were larger than those based on the other segments’ data (except for
SS*LC effect detection). That is because the pelvis is close to the body’s center of mass,
especially during standing postures, and its kinestate could accurately reflect the body
sway. Therefore, the pelvis was adopted by many previous studies for IMU sensor attach-
ment in postural stability assessment [77–79]. There was also good performance of ACC
measures in effects detection if the sensors were attached on the lower legs, especially on
the left lower leg. As Ghislieri et al. [61] found, among the reviewed 47 articles that focused
on standing balance assessment using wearable inertial sensors, 38 articles (80.9%) and
12 articles (25.5%) placed the sensors on the lower back (pelvis or closed to pelvis) and
lower legs (shank), respectively. The lower legs were chosen [66,80,81] because the ankle
control strategy was one of the most important balance control strategies [43,78] which
might result in relatively larger changes in lower leg movement during standing [82,83].
In addition, the performance using T8, shoulders, or upper legs data was not good. There
was no big significant difference among the eight different sensor placements in terms of
LC, WP, and LC*WP effect detection (see Table 4).

4.2. Ability in the Classification of Stable and Unstable Postures Based on Machine Learning

In this study, the subjective perception of postural stability (PPS) and objective mean
velocity of COP in anterior-posterior direction (COPV_AP) were taken as the gold standard
of postural stability. Both of them had proven to be reliable and valid in assessing postural
stability by previous studies [12,14,17,64,65,84], and could provide adequate discriminating
power for detecting the main and interaction effects of all the factors investigated in this
study [11,13]. In addition, the Nintendo Wii Balance Board and not a force plate was
taken as the COP signal recording apparatus due to its advantages of low cost, portability,
and easy setup. More importantly, it was reliable and valid in recording COP trajectory,
which has been demonstrated in many previous studies [85–87]. For all of the above
reasons, it should be reasonable that the raw data set (i.e., each experimental task) was
labeled as ‘stable’ or ‘unstable’ with reference to PPS and COPV_AP values (see Table 3). If
the data set was labeled based on the COPV_AP criterion, results (Tables 5 and 6) show
that the classification accuracies were higher, on the whole, than those based on the PPS
criterion. It’s probably because the stability classification using the machine learning
method was based on objective data, i.e., the features were extracted from the objective
ACC signals, which caused the classification results to be more consistent with the objective
COPV_AP measure.

The maximum classification accuracy reached 91.6% and 87.4%, respectively, using
different labeling criteria. This performance was acceptable, which suggested the potential
of the acceleration data in postural stability classification using the machine learning
method. Our results show that the feature sets exerted a great influence on the classification
performance. For each SC and most classifiers, the classification performance using FS2
was much poorer (2.8–21.7% lower in accuracy than using FS1 or FS3). There was a slight
difference (within 2.8%) in the accuracy between using FS1 and FS3, which could be ignored.
And consequently, Feature Set 1 (FS1, mean, range, variance, standard deviation, root
mean squared, skewness and kurtosis) with less computation cost and better classification
performance could be an ideal choice for postural stability classification among the three
feature sets.

Different from the feature set, there was no major difference in the average and
maximum classification accuracy between different SCs for each FS and most classifiers. It
indicated that the impact of sensor configuration turned out to be small. In this case, the
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third sensor configuration in this study (i.e., SC 3, pelvis + T8), with the minimum number
of sensors, could be recommended as a first choice when the number of sensors needs
to be reduced. As mentioned above, to further investigate the classification performance
of only using one sensor, we repeated the above machine learning procedure based only
on pelvis ACC data. The result (Table 7) shows that the maximum classification accuracy
was 90.5% and 84.1% using different labeling criteria, which were a little lower (1.0% and
2.0% respectively) than using SC3 (pelvis + T8). This suggested that removing T8 sensor
data would result in an overall decrease in the classification accuracy, but the decrease was
relatively small. This is reasonable because the kinestate of the pelvis sufficiently reflected
the motions of the whole body and, as mentioned above, it was frequently adopted by
studies for IMU sensor attachment in balance assessment [77–79]. Therefore, the features
extracted from pelvis ACC data used for classification models training should be more
representative than those extracted from the other segments’ data.

It is important to point out that the factors that could influence human body balance
are numerous and can be broadly classified into intrinsic and extrinsic factors [88]. Intrinsic
factors are related to the functions of physiological or psychological systems, including fear
of falling, visual, vestibular, cognitive, and musculoskeletal systems [17,89–92]. Extrinsic
factors are various, such as the lifting load [93], standing surface slope [78,94], foot wear [95],
etc. Body posture has proven to be an important extrinsic factor which could influence the
stability of the body [13,96,97]. Therefore, the body stability status is the comprehensive
outcome of multiple factors, and future studies are expected to investigate the potential of
ACC-based measures in detecting the effects of other factors.

The limitations of the research need to be acknowledged. Firstly, only three work-
related factors (WP, SS and LC) were considered in this study, and caution should be taken
when applying the findings if more other factors are considered, since various factors could
lead to the imbalance of the body. Secondly, a machine learning method was used for
studying the ability to classify stable and unstable working postures, and this study did not
focus on hyperparameter optimization even though applying hyperparameter optimization
might improve performance. Thirdly, the experimental tasks were selected based on our
field studies, which are simulations of the working tasks of construction workers. All of
the experimental data were collected in a laboratory setting, not on a construction site.

5. Conclusions

This study investigated the abilities of ACC-based measures to assess the stability of
working posture in terms of the ability to detect the effects of work-related factors and the
ability to classify stable and unstable working postures. The research achieved the following
findings. Firstly, this study has proved that ACC-based measures have the abilities to assess
the stability of working postures, including the work-related factors’ effects of detection
ability and stable-unstable working postures classification ability. Secondly, five measures
(RMS_AP based on Pelvis ACC data, FD_CC, MF_AP, MF_2DR and MF_3DR based on
left lower leg data) are recommended for working postural stability assessment, and the
pelvis and lower legs are recommended locations for sensor placement overall, with the
pelvis being the first choice. Thirdly, compared with SC (Sensor Configuration, i.e., sensor
placement locations), FS (Feature Set) exerted a greater influence on the classification
accuracy when the machine learning method was used. In addition, researchers should pay
more attention to the measure selection, sensor placement, feature selection and extraction
when using ACC-based measures for working on postural stability assessment.
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Appendix A

Table A1. Results 1 of t-tests and Analysis of variance using the acceleration data of Pelvis and T8.

ACC-Based
Measures

Pelvis Sternum (T8)

Main Effects Interaction Effects Main Effects Interaction Effects

SS LC WP SS ×
LC

SS ×
WP

LC ×
WP

SS × LC
× WP SS LC WP SS ×

LC
SS ×
WP

LC ×
WP

SS × LC
× WP

AVG_AP * * * * + * * + * * + * * +
AVG_ML + * * + + * + + * * + + * +
AVG_IS * * * + * * + + * * + + * +

AVG_2DR * * * + * * * + * * + * * +
AVG_3DR * * * + * * * + * * + + * +
RNG_AP + * * + * * * + * * + + * +
RNG_ML + * * + * * + + * * + + * +
RNG_IS * * * + + * + + * * * + * +

RNG_2DR + * * + + * + + * * + + * +
RNG_3DR * * * + + * + + * * + + * +
RMS_AP * * * * * * * + * * + * * +
RMS_ML + * * + + * + + * * + + * +
RMS_IS * * * + + * + + * * + + * +

RMS_2DR * * * + + * + + * * + * * +
RMS_3DR * * * + + * + + * * + + * +
ARE_SW + * * + + * + + * * + + * +
ARE_CC + * * + + * + + * * + + * +
ARE_CE * * * + * * + + * * + + * +
FD_CC * * * + * * * + * * + * * +
FD_CE + * * + * * + + * * + + * +

LEN_AP + * * + * * + + * * + * * +
LEN_ML + * * + + * + + * * + + * +
LEN_2DR + * * + * * + + * * + + * +
LEN_3DR + * * + + * + + * * + + * +
MD_AP * * * + * * * + * * + * * +
MD_ML + * * + + * + + * * + + * +
MD_2DR + * * + * * * + * * + * * +
MD_3DR + * * + + * * + * * + + * +
MF_AP * * * + * * * * * * + * * +
MF_ML * * * + * * + + * * + + * +
MF_2DR * * * + * * * + * * + * * +
MF_3DR * * * + * * * + * * + * * +
MV_AP * * * + + * + * * * + * * +
MV_ML * + * + + + + + + * + + + +
MV_2DR * + * + + + + + + * + + + +
MV_3DR * + * + + + + * * * + + * +

PD_P * * * + + * + + * * + + * +
PD_V * + * + * + + * + * + + * +

PP * * * + * * + * * * + + * +
RMSD_AP * * * + * * * + * * + * * +
RMSD_ML + * * + + * + + * * + + * +
RMSD_2DR * * * + + * + + * * + * * +
RMSD_3DR * * * + + * + + * * + + * +

1 Statistical significance (i.e., p values), * with background color: p < 0.05, +: p ≥ 0.05.
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Table A2. Results 1 of t-tests and Analysis of variance using the acceleration data of Shoulders.

ACC-Based
Measures

Left Shoulder Right Shoulder

Main Effects Interaction Effects Main Effects Interaction Effects

SS LC WP SS ×
LC

SS ×
WP

LC ×
WP

SS × LC
× WP SS LC WP SS ×

LC
SS ×
WP

LC ×
WP

SS × LC
× WP

AVG_AP + * * + + * + + * * + + * +
AVG_ML + * * + + * + + * * + + * +
AVG_IS + * * + * * + + * * + + * +

AVG_2DR + * * + + * + + * * + + * +
AVG_3DR + * * + + * + + * * + + * +
RNG_AP + * * + + * + + * * + + * +
RNG_ML + * * + * * + + * * + + * +
RNG_IS + * * + * * + + * * + + * +

RNG_2DR + * * + + * + + * * + + * +
RNG_3DR + * * + + * * + * * + + * +
RMS_AP + * * + + * + + * * + + * +
RMS_ML + * * + + * + + * * + + * +
RMS_IS + * * + * * + + * * + + * +

RMS_2DR + * * + + * + + * * + + * +
RMS_3DR + * * + + * + + * * + + * +
ARE_SW + * * + + * + + * * + + * +
ARE_CC + * * + + * + + * * + + * +
ARE_CE + * * + + * + + * * + + * +
FD_CC + * * + * * * + * * + * * *
FD_CE + + * * + * + + + * + * * +

LEN_AP + * * + + * + + * * + + * +
LEN_ML + * * + + * + + * * + + * +
LEN_2DR + * * + + * + + * * + + * +
LEN_3DR + * * + + * + + * * + + * +
MD_AP + * * + + * + + * * + + * +
MD_ML + * * + + * + + * * + + * +
MD_2DR + * * + + * + + * * + + * +
MD_3DR + * * + + * + + * * + + * +
MF_AP * * * + + * + * * * + * * +
MF_ML + * * + * * + + * * + * * +
MF_2DR + * * + * * + + * * + * * +
MF_3DR + * * + * * + + * * + * * +
MV_AP + * * + * * + + * * + + + +
MV_ML * + * + * * + * + * + * * +
MV_2DR * + * + * * + * + * + * * +
MV_3DR * + * + + * + * + * + + * +

PD_P + * * + + * + + * * + + * +
PD_V + * * + + * + + * * + + * +

PP + * * + + * + + * * + + * +
RMSD_AP + * * + + * + + * * + + * +
RMSD_ML + * * + + * + + * * + + * +
RMSD_2DR + * * + + * + + * * + + * +
RMSD_3DR + * * + + * + + * * + + * +

1 Statistical significance (i.e., p values), * with background color: p < 0.05, +: p ≥ 0.05.
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Table A3. Results 1 of t-tests and Analysis of variance using the acceleration data of Upper Legs.

ACC-Based
Measures

Left Upper Leg Right Upper Leg

Main Effects Interaction Effects Main Effects Interaction Effects

SS LC WP SS ×
LC

SS ×
WP

LC ×
WP

SS × LC
× WP SS LC WP SS ×

LC
SS ×
WP

LC ×
WP

SS × LC
× WP

AVG_AP + * * + + * + + * * + + * +
AVG_ML + * * + * * * * * * + * * *
AVG_IS + * * + + * + + * * + + * +

AVG_2DR + * * + + * + + * * + + * +
AVG_3DR + * * + + * + + * * + + * +
RNG_AP + * * + + * + + * * + + * +
RNG_ML + * * + + * + + * * + * * *
RNG_IS + * * + + * + + * * + + * +

RNG_2DR + * * + + * + + * * + + * +
RNG_3DR + * * + + * + + * * + + * +
RMS_AP + * * + + * + + * * + + * +
RMS_ML + * * + * * * * * * + * * *
RMS_IS + * * + + * + + * * + + * +

RMS_2DR + * * + + * + + * * + + * +
RMS_3DR + * * + + * + + * * + + * +
ARE_SW + * * + + * + + * * + + * +
ARE_CC + * * + + * + + * * + + * +
ARE_CE + * * + + * + + * * + + * +
FD_CC + * * + * * * + * * + * * *
FD_CE + * * + * * + + * * + + * +

LEN_AP + * * + + * + + * * + + * +
LEN_ML + * * + + * + + * * + * * *
LEN_2DR + * * + + * + + * * + + * +
LEN_3DR + * * + + * + + * * + + * +
MD_AP + * * + + * + + * * + + * +
MD_ML + * * + * * * + * * + * * *
MD_2DR + * * + + * + + * * + + * +
MD_3DR + * * + + * + + * * + + * +
MF_AP + * * + * * * + * * + * * *
MF_ML * * * + * * * * * * + * * *
MF_2DR + * * + * * * * * * + * * *
MF_3DR + * * + * * * + * * + * * *
MV_AP + * * + * + + + + * + + + +
MV_ML * * * + + * + * * * + + * +
MV_2DR + + * + * + + + + * + + + +
MV_3DR * + * + + * + + + * + + + +

PD_P + * * + + * + + * * + + * +
PD_V + * * + + * + + * * + * * +

PP + * * + + * + + * * + * * +
RMSD_AP + * * + + * + + * * + + * +
RMSD_ML + * * + * * * + * * + * * *
RMSD_2DR + * * + + * + + * * + + * +
RMSD_3DR + * * + + * + + * * + + * +

1 Statistical significance (i.e., p values), * with background color: p < 0.05, +: p ≥ 0.05.
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Table A4. Results 1 of t-tests and Analysis of variance using the acceleration data of Lower legs.

ACC-Based
Measures

Left Lower Leg Right Lower Leg

Main Effects Interaction Effects Main Effects Interaction Effects

SS LC WP SS ×
LC

SS ×
WP

LC ×
WP

SS × LC
× WP SS LC WP SS ×

LC
SS ×
WP

LC ×
WP

SS × LC
× WP

AVG_AP + * * * * * + + * * + + * +
AVG_ML + * * * * * + + * * + + * +
AVG_IS * * * + + * + * * * * + * +

AVG_2DR + * * * * * + + * * + + * +
AVG_3DR * * * * + * + + * * * + * +
RNG_AP + * * + * * + + * * + + * +
RNG_ML + * * + + * + + * * + + * *
RNG_IS * * * + + * + * * * + + * +

RNG_2DR + * * + + * + + * * + + * +
RNG_3DR + * * + + * + + * * + + * +
RMS_AP + * * * * * + + * * + + * +
RMS_ML + * * * * * + + * * + + * +
RMS_IS * * * + + * + * * * + + * +

RMS_2DR + * * * * * + + * * + + * +
RMS_3DR * * * * + * + + * * * + * +
ARE_SW + * * + + * + + * * + + * +
ARE_CC + * * + + * + + * * + + * +
ARE_CE + * * * + * + + * * + + * +
FD_CC * * * * * * * + * * + * * *
FD_CE * * * + + * + + * * * + * +

LEN_AP * * * + * * + + * * + * * +
LEN_ML + * * + + * + + * * + * * +
LEN_2DR * * * + * * + + * * + * * +
LEN_3DR * * * + + * + * * * + + * +
MD_AP + * * * * * + + * * + + * +
MD_ML + * * + + * + + * * + + * *
MD_2DR + * * + * * + + * * + + * *
MD_3DR * * * + + * + * * * + + * +
MF_AP * * * * * * * * * * + * * *
MF_ML * * * + * * * * * * + * * *
MF_2DR * * * * * * * * * * + * * *
MF_3DR * * * * * * * * * * + * * *
MV_AP * + * + + + + + + * + * + +
MV_ML * + * + + + + + + * + * + +
MV_2DR * + * + + + + + + * + * + +
MV_3DR + + * + + + + + + * + * + +

PD_P + * * * * * + + * * + + * +
PD_V + * * + * * + + * * + * * *

PP + * * + * * + + * * + * * *
RMSD_AP + * * * * * + + * * + + * +
RMSD_ML + * * + + * + + * * + + * +
RMSD_2DR + * * + + * + + * * + + * +
RMSD_3DR * * * * + * + * * * + + * +

1 Statistical significance (i.e., p values), * with background color: p < 0.05, +: p ≥ 0.05.
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