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Visual Abstract

Alzheimer’s disease (AD) starts decades before clinical symptoms appear. Low-glucose utilization in regions of
the cerebral cortex marks early AD. To identify these regions, we conducted a voxel-wise meta-analysis of
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previous studies conducted with positron emission tomography that compared AD patients with healthy con-
trols. The resulting map marks hypometabolism in the posterior cingulate, middle frontal, angular gyrus, and
middle and inferior temporal regions. Using the Allen Human Brain Atlas, we identified genes that show spatial
correlation across the cerebral cortex between their expression and this hypometabolism. Of the six brains in
the Atlas, one demonstrated a strong spatial correlation between gene expression and hypometabolism.
Previous neuropathological assessment of this brain from a 39-year-old male noted a neurofibrillary tangle in
the entorhinal cortex. Using the transcriptomic data, we estimate lower proportions of neurons and more mi-
croglia in the hypometabolic regions when comparing this donor’s brain with the other five donors. Within this
single brain, signal recognition particle (SRP)-dependent cotranslational protein targeting genes, which encode
primarily cytosolic ribosome proteins, are highly expressed in the hypometabolic regions. Analyses of human
and mouse data show that expression of these genes increases progressively across AD-associated states of
microglial activation. In addition, genes involved in cell killing, chronic inflammation, ubiquitination, tRNA ami-
noacylation, and vacuole sorting are associated with the hypometabolism map. These genes suggest disrup-
tion of the protein life cycle and neuroimmune activation. Taken together, our molecular characterization
reveals a link to AD-associated hypometabolism that may be relevant to preclinical stages of AD.

Key words: microglia; neurodegeneration; neuroinflammation; transcriptomics

Introduction
Alzheimer’s disease (AD), one of the most prevalent

neurodegenerative diseases, is thought to affect ;5% of
those aged 60 years and above worldwide (Qiu et al.,
2009). It is the most common form of dementia, which is
clinically characterized by a severe decline in cognitive

functioning and defined neuropathologically by the emer-
gence and topographical progression of amyloid plaques,
neurofibrillary tangles, and neuronal loss (Masters et al.,
2015).
Currently, fluorodeoxyglucose positron emission to-

mography (FDG-PET) is a primary frontline tool for diag-
nosing dementia and its subtypes. FDG-PET uses a
radioactive tracer, [18F] FDG-PET, to measure glucose
metabolism within the brain (Friedland et al., 1983), with
altered cerebral glucose metabolism indicating AD with
high sensitivity and specificity (Mosconi et al., 2008).
Importantly, hypometabolism patterns can be seen in at-
risk individuals decades before the development of symp-
toms (Reiman et al., 2004; Mosconi et al., 2006;
Langbaum et al., 2010; Landau et al., 2011; Chen et al.,
2012). This timing supports the concept that AD exists on
a spectrum or continuum of pathologies that includes
stages of subtle cognitive decline, mild cognitive impair-
ment, and dementia (Albert et al., 2011; McKhann et al.,
2011). Despite the clear link between metabolic changes
measured by FDG-PET and risk for AD, it remains unclear
which etiopathological mechanisms are responsible for
driving these changes.
Using the Allen Human Brain Atlas, we sought to char-

acterize the pattern of regional hypometabolism found in
patients with AD. By integrating this atlas with a meta-an-
alytic map of FDG-PET differences, we identified genes
with spatial expression patterns similar to that of the
lower glucose metabolism in the AD brain. This transcrip-
tomic approach was performed to identify consistent
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Significance Statement

Fluorodeoxyglucose positron emission tomography (FDG-PET) is a frontline tool for the diagnosis of de-
mentia. We sought to determine the molecular underpinnings of the metabolic signatures of Alzheimer’s dis-
ease (AD) revealed by FDG-PET. We found that of the six brains in the Allen Human Brain Atlas, a set of
ribosomal proteins strongly aligned with the hypometabolism map in one of the six Atlased brains. While
this brain was from a 39-year-old, it contained a neurofibrillary tangle in the entorhinal cortex. We observe
changes in estimated neuron and microglia proportions that also suggest this individual had prodromal AD.
In other studies, expression of the ribosomal genes increases across AD-associated microglial activation.
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molecular markers of the FDG-PET pattern. To test the
consistency of these markers, we performed the tran-
scriptomic analysis within each of the six donors, which
revealed a surprisingly strong association in a single
donor. To better understand this signal, we examined
cell-type proportion estimates. To validate this molecular
and cell-type-specific marker of the FDG-PET pattern, we
examined the relevant genes and cell-type in two datasets
that profiled gene expression across AD-associated
states.

Materials and Methods
Meta-analysis of Alzheimer’s FDG-PET studies
We performed a meta-analysis of FDG-PET studies that

compared, at rest, Alzheimer’s patients with healthy con-
trols. To compile a list of studies, a literature search was
conducted on studies from January 1985 to January
2012. We used the following search query: [FDG-PET OR
positron emission tomography OR fluorodeoxyglucose
OR glucose metabolism] AND [dementia]. Studies were
examined to fulfill the following criteria: (1) original re-
search papers available in English (no case studies or re-
views); (2) participants examined using [18F] FDG-PET at
rest (no functional tasks); (3) AD patients compared with
age-matched healthy controls; (4) clinical diagnosis of AD
using NINCDS-ADRDA (McKhann et al., 1984) or DSM-IV
(American Psychiatric Association, 1994) criteria; and (5)
whole-brain analyses (no region-of-interest analyses)
conducted in standardized stereotaxic space with avail-
able coordinates. Each article was read twice to deter-
mine whether the study met the inclusion criteria.
Coordinates of regional hypometabolism peaks from

retained articles were used to create ALE maps using
BrainMap’s GingerALE application (www.brainmap.org/
ale; Eickhoff et al., 2009). This software assigns each
voxel an activation likelihood estimate equal to the proba-
bility of at least one of the reported peaks of hypometabo-
lism being located in that voxel (Turkeltaub et al., 2002).
These voxelwise maps were clustered to find distinct ana-
tomic clusters [min cluster extent = 500 mm3; false dis-
covery rate (FDR) q = 0.05]. The identified clusters were
then used to determine a threshold that marks which
samples are inside regions of hypometabolism.

Gene expression data
We used the Allen Human Brain Atlas to identify genes

with spatial expression patterns similar to the FDG-PET
hypometabolism map. This Atlas provides a comprehen-
sive transcriptional landscape of the adult human brain
(Hawrylycz et al., 2012). The Atlas was obtained from six
individuals (five males, one female), with age ranging from
24 to 57 years. Custom 64K Agilent microarrays were
used to assay genome-wide expression in 3702 spatially-
resolved samples (232 named brain regions). We also
used the RNA-sequencing datasets that were generated
on the Illumina HiSeq2000 platform. These RNA-se-
quencing data were quantified with transcripts per million
(TPM) and assayed a subset of anatomic structures from
two of the six brains. The Allen Institute normalized the

data and adjusted for array-specific biases, batch, and
dissection method. Microarray probes were filtered using
quality control data provided by Miller et al. (2014). After
this filtering, 31,452 probes remained of the 58,692 on the
microarray.

Differential expression analyses
The Allen Human Brain Atlas gene expression data

were first used at the sample and donor level to identify
genes that are differentially expressed in the regions of
hypometabolism identified by the ALE-based analysis.
Expression values were mean-averaged for genes with
multiple probes, resulting in 15,143 genes. This analysis
was restricted to samples from the cerebral cortex, as
marked by the Allen Human Brain Atlas annotations (allo-
cortical regions, namely the hippocampal formation and
piriform cortex, were excluded). For each donor and
gene, expression values were compared between sam-
ples inside and outside of the hypometabolic regions
using the Mann–Whitney U test. The Allen Institute pro-
vided MNI coordinates, which were used to map expres-
sion values into the voxel space of the meta-analysis. For
analyses that spanned multiple donors, Fisher’s method
was used to generate a single meta p value for each gene
and direction (Fisher, 1925). We used the Benjamini–
Hochberg FDR procedure for multiple test correction to ad-
just for the many tested genes (Benjamini and Hochberg,
1995).

Gene Ontology (GO) enrichment analysis
The GO provides gene-level annotations that span

specific cellular components, biological processes, and
molecular functions (Ashburner et al., 2000). These anno-
tations, defined by GO terms, were required to have anno-
tations for 10–200 tested genes (6333 GO groups
annotating 14,241 unique genes). To test for enrichment,
we sorted the genes from the most overexpressed to
underexpressed in regions of hypometabolism. Within
this ranking, the area under the receiver operating charac-
teristic curve (AUC) was used to test for GO terms that are
enriched in either direction (overexpressed: AUC. 0.5,
underexpressed: AUC, 0.5). The Mann–Whitney U test
was used to determine statistical significance with FDR
correction for the GO groups tested. We used GO annota-
tions from the GO.db and org.Hs.eg.db packages in R,
version 3.8.2, which were dated April 24, 2019 (Carlson,
2016a,b). We used the REVIGO tool to summarize many
terms that were significant after correction (Supek et al.,
2011). We used the default REVIGO parameters with un-
corrected p values for the input GO groups and restricted
this analysis to the biological process branch of the GO.

Estimation of cell-type proportions
The Marker Gene Profile (MGP) tool was used to esti-

mate cell-type proportions from the cerebral cortex ex-
pression profiles (Mancarci et al., 2017). This method
uses the first principal component of the expression of
cell-type-specific genes to estimate the relative abun-
dance of a cell type. We used 21 top marker genes from a
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single cell study of the adult human temporal cortex
(Darmanis et al., 2015; their Supplementary Table S3). This
study used transcriptomic profiles to cluster cells into as-
trocyte, neuron, oligodendrocyte, oligodendrocyte precur-
sor, microglia, and endothelial groups. These marker
genes were used to calculate AUC values and estimate
cell-type proportions with the MGP tool. Proportions were
estimated separately for each donor across the same corti-
cal samples used in the differential expression analysis.

Single-cell RNA sequencing analysis of mouse
microglia
Supplemental data from a single-cell RNA sequencing

study of wild-type and AD transgenic mouse model
(5XFAD) were used to examine gene expression in im-
mune cell types (Keren-Shaul et al., 2017). Keren-Shaul
and colleagues profiled trancriptomically 8016 immune
cells from three wild-type and three 5XFADmice and clus-
tered these cells into 10 distinct subpopulations based on
expression. Of these 10 clusters, three expressed micro-
glia markers. Two of these microglia clusters contained
cells primarily from 5XFAD and not wild-type mice and
named them disease-associated microglia (DAM). For our
analysis, we consider these clusters separately as differ-
ent microglial states: normal, intermediate (Group II DAM),
and AD associated (Group III DAM).

Single-nucleus RNA sequencing analysis
Supplemental data from a single-nucleus RNA se-

quencing study of the human prefrontal cortex were used
to examine differential expression across AD states in mi-
croglia. Specifically, for each gene, we extracted adjusted
p values (IndModel.adj.pvals), mean expression, and fold
changes (IndModel.FC) from Mathys et al. (2019; their
Supplement Table 2). After quality control, Mathys et al.
(2019) clustered the transcriptomes of 70,634 nuclei from
48 individuals into eight broad cell-type clusters. For this
work, we focused on data from the 1920 microglia nuclei.
The 48 participants in this study were classified into no
(24), early (15), and late (9) AD pathology. To test for en-
richment of our genes of interest, we sorted the genes
from the most overexpressed to underexpressed for the
differential expression results for no versus early pathol-
ogy and early versus late pathology analyses. Within this
ranking, the AUC was used to test for significantly en-
riched genes in either direction. We also used the mean
expression to determine which genes increase in expres-
sion across the three pathology groups. For a given set of
genes, the hypergeometric test was used to determine
whether a greater number of genes increase across pa-
thology than expected by chance.

Code accessibility
Scripts for reproducing the analyses are publicly

available online at https://github.com/leonfrench/AD-
Allen-FDG and https://figshare.com/articles/dataset/
Donor_specific_transcriptomic_analysis_of_Alzheimer_s_
disease_associated_hypometabolism_highlights_a_unique_
donor_microglia_and_ribosomal_prot eins/12233552 and
as Extended Data 1.

Results
Meta-analysis of FDG-PET studies of AD
Our literature search for FDG-PET studies identified

3229 titles. Screening of the abstracts yielded 230 rele-
vant studies. Upon review of the full articles, 29 relevant
studies remained. When two studies used the same pa-
tient population, one of the overlapping studies was ex-
cluded, resulting in a total of 27 studies yielding 33
independent samples with a total of 915 Alzheimer’s pa-
tients and 715 healthy controls (details in Extended Data
Fig. 1-1). Activation likelihood estimation (ALE) meta-anal-
ysis of these studies identified the following cortical re-
gions as showing (consistently) lower glucose metabolism
in patients versus controls: posterior cingulate gyrus, mid-
dle frontal region, angular gyrus, and middle and inferior
temporal regions. A cluster analysis revealed 23 clusters
(min cluster extent = 500 mm3; FDR q = 0.05). A voxel-
wise threshold of 0.006 was set to mirror this clustering
map (Fig. 1) and was used to determine whether a given
voxel was inside an AD-associated region of hypometab-
olism in subsequent transcriptomic analyses.

Many genes are differentially expressed in cortical
regions with AD-associated hypometabolism
To identify molecular signatures underlying AD hypo-

metabolism, we next performed a transcriptome-wide
analysis to test for genes that correlate with the FDG-PET
derived map. Using all six brains included in the Allen
Atlas, we first identified the genes that were differentially
expressed in the FDG-PET-defined hypometabolic re-
gions of the cerebral cortex (one female and five males,
aged 24–57 years). The number of cerebral cortex sam-
ples profiled by the Allen Institute ranged from 182 to 481
per donor; 5.9–9.9% overlapped with the hypometabolic
regions. Of the 15,143 genes tested, 99 were significantly
expressed at higher levels, and 51 at lower levels in these
hypometabolic regions, after correction, across all do-
nors. Substantial variability across the six brains in the
Allen Human Brain Atlas has been previously noted both
genome-wide and in the context of AD (French and Paus,
2015; Hawrylycz et al., 2015; Grothe et al., 2018; Ritchie
et al., 2018). Given this variability, we then tested each
brain separately. Strikingly, one brain drove the majority
of the above atlas-wide signal for spatial expression over-
lap with the FDG-PET-derived map. In this brain (10 021/
H0351.2002), 647 genes were differentially expressed,
with 74% being expressed at lower levels in the hypome-
tabolic regions. In the remaining five donor brains, differ-
entially expressed genes were only found in the oldest
donor (donor 12 876/H0351.1009, 57-year-old male).
Taken together, our analysis of brain 10 021/H0351.2002
marks it as an outlier with hundreds of genes that align
spatially with the patterns of lower glucose metabolism
observed in patients with AD (vs controls).

Brain-specific analyses point to a unique donor
We examined the demographic information and meta-

data of this donor to help understand the above observa-
tion. Brain 10 021/H0351.2002 was from a 39-year-old
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male African American individual. The postmortem inter-
val was 10 h, the lowest of the six donors. In agreement,
RNA integrity values (RINs) for this brain are higher than
the other donors for all four regions assayed for RIN (fron-
tal pole: 7.5, occipital pole: 7.1, cerebellum: 8.6, and
brainstem: 7.3). As documented by the Allen Institute, this
donor, like the others, had no known history of neuro-
psychiatric or neurologic conditions. The presence of a
broad range of drugs was tested for in postmortem blood
by the Allen Institute. In donor 10 021/H0351.2002, atro-
pine, caffeine, lidocaine, and monoethylglycinexylidide
were detected at levels usually not toxicologically signifi-
cant. We note that monoethylglycinexylidide is a metabo-
lite of lidocaine, an anesthetic and antiarrhythmic agent.
Among the six donors, only 10 021/H0351.2002 tested
positive for lidocaine and monoethylglycinexylidide.
The included brains were also classified as “normal” by
a radiologist or pathologist. While considered neurotyp-
ical, it was noted that 10 021/H0351.2002 contained a
single neurofibrillary tangle in the entorhinal cortex.
Neurofibrillary tangles in the hippocampus and entorhi-
nal cortex are considered early events in AD progres-
sion (Guillozet et al., 2003). Neurofibrillary tangles were
not found in the other five brains (three of which are
older than this donor). The presence of a neurofibrillary
tangle is a unique feature of this individual. The post-
mortem interval and RIN values suggest that tissue
quality is not driving the Alzheimer’s-associated molec-
ular patterns observed.

ER translocation genes are enriched for
overexpression in areas of Alzheimer’s-associated
hypometabolism
To distil the molecular results, we performed GO en-

richment analysis on the transcriptome-wide results
from donor brain 10 021/H0351.2002. In total, 215 GO

groups were significantly enriched. Table 1 shows the top
10 GO terms enriched for genes upregulated in hypome-
tabolic regions and Extended Data Table 1-1 contains
complete enrichment results for all donors separately.
Because of the high degree of overlap in gene member-
ship among our top GO terms, we used REVIGO tool
to summarize them (Supek et al., 2011). This tool re-
moves redundant GO terms based on semantic similar-
ity, providing a dispensability metric. Of the 98 biological
process terms enriched for overexpression, three were
assigned the lowest possible dispensability score of
zero: SRP-dependent cotranslational protein targeting to
membrane (GO:0006614, 87 genes, AUC=0.874, pFDR,
10�28), chronic inflammatory response (GO:0002544,
15 genes, AUC = 0.78, pFDR , 0.05), and cell killing
(GO:0001906, 94 genes, AUC = 0.60, pFDR , 0.05). The
strongest signal is from genes involved in SRP-de-
pendent cotranslational protein targeting to membrane
(Fig. 2). This process targets protein translocation to
the endoplasmic reticulum via the signal-recognition
particle (SRP). These genes are primarily components
of the cytosolic ribosome and henceforth referred to as
“ER translocation” genes. Six of these genes are found
within the top 20 genes with higher expression in hy-
pometabolic regions (RPL34, RPL32, RPS27, RPS27A,
RPL37A, and RPS15A). In contrast, genes that are
underexpressed in regions of hypometabolism are less
significantly enriched for specific GO terms (lowest
pFDR = 7.3� 10�8). However, these top terms contain
more diverse themes (Table 1, bottom half), some of which
have been previously implicated in AD. The most signifi-
cant GO terms representing these themes are: “ubiquitin li-
gase complex”, “tRNA aminoacylation,” “ATPase activity,
coupled,” “HOPS complex” (involved in endosomal vesicle
tethering), and “microtubule organizing center part.” The
ubiquitin-proteasome system has been linked to AD
(Oddo, 2008). Of the four genes that encode ubiquitin,
three with available data are strongly overexpressed in

Figure 1. Cortical surface views of the ALE meta-analysis results. Regions where hypometabolism was not detected are transpar-
ent (ALE value of 0.006 or less). Lower glucose utilization (AD vs controls) ranges from low (yellow) to high (black).
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Figure 2. SRP-dependent cotranslational genes ranked based on differential expression in hypometabolic regions associated with
AD. Genes are marked with dots, with the y-axis representing the genome-wide differential expression rank and ranges from over-
expression (top) to underexpression (bottom). The black line marks the median expression rank of the SRP-dependent cotransla-
tional genes. The dashed gray line marks the gene with the most stable expression between inside and outside of each donor’s
hypometabolic regions. Red highlights genes that pass correction for multiple testing.

Table 1: Top GO groups enriched for differential expression in areas of AD-associated hypometabolism in brain 10 021/
H0351.2002

Name Genes ID AUC p valueFDR
SRP-dependent cotranslational protein targeting to membrane 87 GO:0006614 0.874 1.35E-29
Cotranslational protein targeting to membrane 90 GO:0006613 0.865 2.07E-29
Protein targeting to ER 92 GO:0045047 0.847 2.86E-27
Cytosolic ribosome 87 GO:0022626 0.856 3.45E-27
Establishment of protein localization to endoplasmic reticulum 96 GO:0072599 0.828 1.66E-25
Structural constituent of ribosome 107 GO:0003735 0.794 1.05E-22
Ribosomal subunit 158 GO:0044391 0.737 1.01E-21
Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 104 GO:0000184 0.783 2.07E-20
Protein localization to endoplasmic reticulum 109 GO:0070972 0.765 9.44E-19
Cytosolic large ribosomal subunit 47 GO:0022625 0.894 6.73E-18

microtubule organizing center part 145 GO:0044450 0.395 0.00244
DNA-dependent ATPase activity 59 GO:0008094 0.33 0.00145
HOPS complex 13 GO:0030897 0.137 0.00135
ATPase activity, coupled 186 GO:0042623 0.396 0.00026
tRNA aminoacylation for protein translation 40 GO:0006418 0.268 9.84E-05
Amino acid activation 43 GO:0043038 0.275 8.24E-05
Aminoacyl-tRNA ligase activity 33 GO:0004812 0.243 8.24E-05
Cullin-RING ubiquitin ligase complex 111 GO:0031461 0.355 3.84E-05
tRNA aminoacylation 42 GO:0043039 0.259 1.91E-05
Ubiquitin ligase complex 195 GO:0000151 0.368 7.35E-08
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regions of hypometabolism in this brain. In summary,
this enrichment analysis points to spatial differences
in vesicle fusion, protein translation, targeting, and
degradation.

Validation of ER translocation gene enrichment with
RNA sequencing data
Focusing on donor 10021/H0351.2002, the top-ranked

GO group, “SRP-dependent cotranslational protein target-
ing to membrane”/“ER translocation,” contains genes that
are involved in the targeting of proteins to the endoplasmic
reticulum. Given the high and ubiquitous expression of ri-
bosomal protein genes, the ER translocation signal may be
because of ceiling effects induced by the dynamic range of
microarray gene expression profiling. We tested for the as-
sociation using RNA sequencing data to address this con-
cern, which has a broader dynamic range. We again
observe that the ER translocation genes are enriched (100
cerebral cortex samples, AUC=0.733, pFDR, 10�9). While
limited in sample coverage for donor 10021/H0351.2002,
the RNA sequencing data validates the finding of differen-
tial expression of ER translocation genes.

Estimates of cell-type proportions are disrupted in
hypometabolic regions in brain 10 021/H0351.2002
To test whether regional transcriptomic differences might

be because of cell-type proportions, we performed enrich-
ment analyses of cell-type-specific marker genes based
on the differential expression results. In the five brains, mi-
croglia marker genes were expressed at low levels in the
hypometabolic regions (underexpressed; AUC=0.1, pFDR
, 10–8) while astrocyte and neuron markers were ex-
pressed at high levels (overexpressed; AUC. 0.66, pFDR ,
0.05). In contrast, brain 10021/H0351.2002 showed an op-
posite pattern of enrichment. Using the MGP (Mancarci et
al., 2017) tool, which uses a more complex parametric
method, we also observe an interaction between hypo-
metabolic regions and brain 10021/H0351.2002, whereby
estimates of microglia proportions are higher inside hypo-
metabolic regions in brain 10021/H0351.2002 (five genes,
t=2.1, p=0.033) and estimated proportions of neurons are
lower (21 genes, t =�4.0, p,0.0001).

ER translocation gene expression is high in AD-
associatedmicroglia (DAM)
Based on the differential expression of microglia

markers in donor 10 021/H0351.2002, we examined the

Figure 3. Heatmap of the ER translocation gene expression
across three microglia cell clusters from the AD mouse model
(left half) and AD pathology subgroups (right half). Expression
for each gene is z-scored with high expression in red and low in

continued
blue. Genes are ordered based on hierarchical clustering using
complete linkage (genes with similar expression across the mouse
and human data are clustered together). Three human genes are
duplicated because they have two homologous mouse genes
(RPL6, RPL13, and SRP54). Human genes without homologous
mouse genes are not displayed. Complete results spanning all GO
groups are available as Extended Data Figure 3-1 (AD mouse
model) and Extended Data Figure 3-2 (AD pathology subgroups).
Data from other cell types in the AD pathology subgroups for the
ER translocation genes are available in Extended Data Figure 3-3.
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ER translocation genes in microglia from an AD mouse
model (Keren-Shaul et al., 2017). We tested whether
the ER translocation genes increase in a stepwise pat-
tern across the normal, intermediate, and full DAM
clusters. For the 12,712 genes with data available,
6.5% monotonically increase in expression across
these cell-type clusters that represent distinct states
of AD-associated microglial activation. Of the 80
mouse homologs of the ER translocation genes, 75%
increase in a stepwise fashion (Fig. 3, hypergeometric
p, 10–52). Compared with all GO groups, this is the
most significant enrichment (Extended Data Fig. 3-1).
In this single-cell dataset, ER translocation genes are
expressed in AD-associated microglia in a progressive
pattern that suggests these genes increase with AD-
associated microglial activation.

Expression of ER translocation genes is correlated
with AD pathology
We next examined cell-type-specific transcriptomic

data from postmortem human brain samples to reconnect
the molecular markers with AD pathology. Specifically,
using data from a single-nucleus study of the human pre-
frontal cortex, we next tested whether the ER translocation
genes are differentially expressed across stages of AD pa-
thology (Mathys et al., 2019). Guided by our findings in
mice, we restricted our analyses to microglia. When com-
paring expression between no-pathology and early-pathol-
ogy subgroups, we find that the ER translocation genes are
enriched for higher expression in microglia from the early
pathology individuals (79 genes, AUC=0.716, p, 10–10).
For the comparison between early-pathology and late-pa-
thology subgroups, the ER translocation genes are also en-
riched for higher expression in the late-pathology microglia
(77 genes, AUC=0.627, p, 0.0005). Beyond these pair-
wise tests, we counted how many genes increase with dis-
ease progression. Broadly, for the 7319 genes with data
available, the average microglial expression of 17.9% pro-
gressively increases across the pathologic groups. For
the ER translocation genes, this proportion triples to
55.8% (Fig. 3, 43 of 77 genes progressively increase, hy-
pergeometric p,10–13). Compared with all GO groups,
this is the second most significant group with the mostly
overlapping set of cytosolic ribosome genes ranked first
(Extended Data Fig. 3-2). While this relationship is strong-
est in microglia, astrocytes, oligodendrocytes, and their
progenitor cells also have progressive increases of the ER
translocation genes (proportion increased.36%, all
p, 0.0002; Extended Data Fig. 3-3). In contrast, neither
inhibitory nor excitatory neurons had progressively in-
creased ER translocation gene expression across the
pathologic groups. In this single-nucleus dataset, micro-
glial expression of the ER translocation genes is corre-
lated with AD progression.

Discussion
In this study, we projected the cerebral cortex’s tran-

scriptome onto the spatial pattern of glucose hypometab-
olism found in AD cases. Our goal was to identify the
molecular and cellular markers of this map. Of the six

normal brains tested, only one demonstrated a robust
spatial association between gene expression and the
hypometabolism pattern. In support of this association,
prior neuropathological examination of this individual
found a neurofibrillary tangle. It is plausible that brain at-
lases seeking to assay the normal brain may contain sam-
ples from donors in the hypothetical stage of preclinical
AD (Sperling et al., 2014). Our findings suggest that donor
10 021/H0351.2002 may have been on this path.
ER translocation genes, which encode proteins of the

cytosolic ribosome and target protein translation to the
endoplasmic reticulum, best align with the hypometabolic
pattern in brain 10 021/H0351.2002. Using the transcrip-
tomic data for this individual, we estimate a lower propor-
tion of neurons and more microglia in hypometabolic
regions. Beyond this single brain, we validate the associa-
tions between ER translocation genes and AD in microglia.
Specifically, these genes have a staged expression pattern
that increases across cellular and pathologic AD-associ-
ated states in human and mouse microglia. Together,
these results that connect neuroimaging markers of AD
with single-cell signals of neuroinflammation identify ER
translocation machinery as an early dysregulated process
in AD.
It is striking that the ER translocation GO group was the

most significantly enriched set in our analysis of the
10 021/H0351.2002 donor brain and AD-associated mi-
croglia. It is known that cytosolic ribosome genes are
strongly co-expressed (Lee et al., 2004). While we did not
perform co-expression analysis, a change across this
gene set will be easily detected with a pathway or GO
analyses because of their high co-expression. This coher-
ence is partly why it ranks above all other gene sets
tested. Nonetheless, we note that a RPL34 is a top-
ranked gene, providing a strong signal at the level of sin-
gle genes. To gauge the chance of this GO group being
top-ranked in multiple studies, we checked whether the
group is multifunctional or contains commonly differen-
tially expressed genes. We found that this group ranked
average in terms of multifunctional genes, relative to other
groups (ranked 6848th of 11,404 GO groups; Gillis and
Pavlidis, 2011). This group was also not top-ranked in any
of the 635 studies systematically examined in a broad
study of differential gene expression predictability (Crow
et al., 2019). More directly, the ER translocation genes are
stable, with a below-average prior probability of differen-
tial expression (ER translocation genes median= 0.246,
remaining genes= 0.562, Mann–Whitney U test p, 10–9).
Therefore, while ER translocation genes are strongly co-
expressed, the prior likelihood of the ER translocation
genes being differentially expressed is low.
The ribosome and protein synthesis have been previ-

ously associated with mild cognitive impairment and AD
(Sajdel-Sulkowska and Marotta, 1984; Langstrom et al.,
1989; Ding et al., 2005; Hernández-Ortega et al., 2016).
Pathologic tau has also been shown to determine transla-
tional selectivity and co-localize with ribosomes (Meier et
al., 2016; Koren et al., 2019). Beyond the ER translocation
genes, we note other GO groups with functional rele-
vance. For example, “chronic inflammatory response”
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and “cell killing” genes were enriched for overexpression
in the hypometabolic regions in brain 10 021/H0351.2002.
In the other direction, the genes in the homotypic fusion
and protein sorting (HOPS) complex are underexpressed
in hypometabolic regions in brain 10 021/H0351.2002.
This complex contains vacuole sorting genes and regu-
lates autophagosome-lysosome fusion (Balderhaar and
Ungermann, 2013). The top two most underexpressed
gene sets in the hypometabolic regions are “ubiquitin li-
gase complex” and “tRNA aminoacylation.” While ubiqui-
tin ligase complex genes are underexpressed, genes
encoding ubiquitin are overexpressed in the hypometa-
bolic regions in brain 10 021/H0351.2002. In summary,
analysis of this single brain identifies genes that function
in the protein life cycle and neuroinflammation, which are
known to be disrupted in AD (Heneka et al., 2015;
Gadhave et al., 2016; Cheng et al., 2018).
Intriguingly, other studies have associated the ER trans-

location genes with neurodegeneration. In a recent post-
mortem study of two cohorts, the ER translocation genes
were strongly downregulated in brain samples from
Parkinson’s disease cases when compared with controls
(Nido et al., 2020). While this contrasts our findings of up-
regulation, in the context of AD, two recent studies have
also highlighted the ER translocation genes. First, an anal-
ysis of the Alzheimer’s brain transcriptome found that
these genes are upregulated in Caribbean-Hispanic AD
cases but not non-Hispanic whites (Felsky et al., 2020).
The authors of this study speculate that the SRP-depend-
ent protein targeting genes relate the gingipain hypothesis
of AD causation that implicates Porphyromonas gingivalis
(Dominy et al., 2019). A second study supports this con-
nection by showing that the ER translocation genes are
upregulated in cortical samples with detected P. gingivalis
sequences and are enriched for the arginine and lysine
residues that the gingipain proteases cleave at (Patel et
al., 2020). By performing neuroanatomical analyses, this
study also discovered that the ER translocation genes are
highly expressed in hypothalamus, cholinergic neurons,
and the basal forebrain. This spatial signature may explain
early cholinergic degeneration and sleep disruptions in
AD. Together, our findings and these studies that impli-
cate the same genes promote ER translocation as an
underlying disease mechanism that connects the cholin-
ergic and gingipain hypotheses of AD causation.
In conclusion, the hypometabolism pattern that marks

AD was correlated with the expression of genes encoding
ribosomal ER translocation proteins. This association was
observed in the brain of a 39-year-old that contained a
neurofibrillary tangle in the entorhinal cortex. In this brain,
the estimated proportion of microglia was higher in the
hypometabolic regions. We speculate that this individual
may have been in the hypothesized preclinical stage of
AD that may last decades (Sperling et al., 2011). In AD-as-
sociated microglia obtained from the cortex of 48 individ-
uals with a broad range of AD pathology, we extend these
findings at the cellular level to show expression of the ER
translocation genes progressively increases with AD pa-
thology. This is most pronounced in microglia from indi-
viduals with early pathology. Our transcriptomic analysis

of AD-associated hypometabolism warrants further study
of ribosomes, the protein life cycle, and neuroimmune ac-
tivation in models of early AD.
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