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In this article, a novel method for continuous blood pressure (BP) estimation based on
multi-scale feature extraction by the neural network with multi-task learning (MST-net)
has been proposed and evaluated. First, we preprocess the target (Electrocardiograph;
Photoplethysmography) and label signals (arterial blood pressure), especially using
peak-to-peak time limits of signals to eliminate the interference of the false peak. Then,
we design a MST-net to extract multi-scale features related to BP, fully excavate and
learn the relationship between multi-scale features and BP, and then estimate three
BP values simultaneously. Finally, the performance of the developed neural network is
verified by using a public multi-parameter intelligent monitoring waveform database.
The results show that the mean absolute error ± standard deviation for systolic blood
pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP)
with the proposed method against reference are 4.04 ± 5.81, 2.29 ± 3.55, and
2.46 ± 3.58 mmHg, respectively; the correlation coefficients of SBP, DBP, and MAP are
0.96, 0.92, and 0.94, respectively, which meet the Association for the Advancement of
Medical Instrumentation standard and reach A level of the British Hypertension Society
standard. This study provides insights into the improvement of accuracy and efficiency of
a continuous BP estimation method with a simple structure and without calibration. The
proposed algorithm for BP estimation could potentially enable continuous BP monitoring
by mobile health devices.

Keywords: continuous blood pressure estimation, multi-scale features, neural networks, multi-task learning,
photoplethysmography and electrocardiograph

INTRODUCTION

The World Health Organization estimated that nearly 17.9 million people worldwide died of
cardiovascular diseases in 2016 (World Health Organization, 2020), posing a serious threat
to human health (El-Hajj and Kyriacou, 2020). Blood pressure (BP) monitoring plays an
important part in the prevention, diagnosis, and prognosis of cardiovascular disease. The mercury
sphygmomanometer is the most common method of measuring BP, but its measured value is
instantaneous, random, and might be easily affected by human and environmental factors (O’brien
et al., 2003). Therefore, efficient methods are needed to monitor BP continuously and accurately.
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Intra-arterial monitoring is the gold standard method for
continuous and accurate BP monitoring, but it can result in
trauma to the human body and is not suitable for home
monitoring. Compared with invasive intra-arterial continuous
BP monitoring, non-invasive continuous BP monitoring is more
secure and can be measured over a long time. At present, cuff-
less arterial tonometry (Pressman and Newgard, 1963) and the
volume-compensation method (Penaz, 1973) are mainly used
to non-invasive monitor BP continuously. However, arterial
tonometry is difficult to operate, which requires professional
operation and may be greatly affected by human factors; the
volume-compensation method has low precision and needs large
equipment. In a word, monitoring theories of these methods limit
their wide application in clinical and home use. Therefore, it
is necessary to develop an easy-to-use and accurate method for
continuous BP monitoring (Lázaro et al., 2019; Yang et al., 2021;
Yen and Liao, 2022).

Exploring the relationship between the characteristic
parameters of pulse waves and BP is a promising easy-to-use
method for continuous and accurate BP monitoring. Recently,
many studies have assessed the relationship between pulse wave
transit time (PTT) and BP based on traditional methods to
estimate BP, but its accuracy is low and these methods need to
be calibrated (Chung et al., 2013; Mukkamala et al., 2015; Ding
et al., 2016; Huynh et al., 2018). The combination of multiple
features (e.g., PTT and pulse wave waveforms features) from
photoplethysmography (PPG) and electrocardiograph (ECG)
can improve the accuracy of BP estimation (Kachuee et al.,
2017; Yoon et al., 2018; Thambiraj et al., 2020). However, these
multiple features related to BP from pulse waves are mainly
extracted through the feature engineering method, which has
been identified as a heavy workload at work, and is difficult to
find all of the features from PPG and ECG accurately. Besides,
due to the many factors affecting BP, these traditional methods
such as support vector machine, random forest, and adaptive
boosting, are difficult to accurately fit the relationship between
features and BP, which have limited accuracy.

With the development of artificial intelligence especially the
deep learning (Ravì et al., 2017; Miotto et al., 2018; Argha
et al., 2022), it is possible to extract multiple features related to
BP from PPG and ECG and assess their relationship with BP
accurately via the deep convolutional neural network (Radha
et al., 2019; Yan et al., 2019; Li et al., 2020; Song et al., 2020;
Paviglianiti et al., 2021). Some researchers have first extracted
features manually and then used deep convolutional neural
networks to estimate BP (Xu et al., 2017; Yan et al., 2019; Song
et al., 2020; Paviglianiti et al., 2021). For example, Xu et al.
(2017) have first manually extracted 15 features related to BP
from PPG and ECG and then assessed their relationship with
BP accurately by using artificial neural networks regression;
Maqsood et al. (2021) have first manually extracted time-domain
features, statistical features, and frequency domain features and
then regressed BP values by using Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) regression. However,
these methods also have the disadvantages of inaccuracy and
time-consuming of manual feature extraction. Subsequently, the
deep neural network methods based on end-to-end learning are

used to automatically extract features related to BP and evaluate
their relationship with BP, which achieves good performance
(Eom et al., 2020). However, to improve the accuracy of
BP estimation, the network structure (e.g., the number of
network layers) used in these methods are complicated, which
would increase the difficulty of model calculation and device
deployment. In addition, most of them can only complete
one task at a time using their model or complete multi-task
using trained multiple models for BP estimation, which greatly
reduces the efficiency of BP estimation (Gaurav et al., 2016;
Rong and Li, 2021). Therefore, it is necessary to provide a
simplified network with high accuracy and efficiency to monitor
BP continuously.

In this study, in order to continuously and accurately estimate
continuous BP without calibration from ECG and PPG signals,
a new method for continuous BP estimation based on multi-
scale feature extraction by the neural network with multi-task
learning (MST-net) has been proposed and evaluated. Firstly,
target signals and label signals arterial blood pressure (ABP)
are preprocessed via segmenting, extracting labels, denoising,
and normalizing. In particular, the interference of abnormal
values and the false peak of wave signals are eliminated by
peak amplitude and peak-to-peak timing limit. Subsequently,
the multi-scale features related to BP are extracted from
preprocessed target signals, and the relationship between multi-
scale features and BP is trained and learned by the neural
network with multi-task learning. Finally, the performance of the
neural network is verified and compared with the Association
for the Advancement of Medical Instrumentation (AAMI)
standards, the British Hypertension Society (BHS) standards,
and previous works. This model can not only estimate systolic
blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MAP) simultaneously but also extract
more scale features.

MATERIALS AND METHODS

The core concepts of continuous BP estimation based on multi-
scale feature extraction by the neural network with multi-
task learning proposed in this study are as follows: we adopt
segmentation, denoising, and normalization to preprocess the
target and label signals, especially using peak-to-peak timing
limits of signals to eliminate the interference of the false peak of
wave signal; we design a neural network with multi-task learning
to extract multi-scale features related to BP from preprocessed
target signals, fully excavate and learn the relationship between
the multi-scale features and BP, and then estimate three BP values
simultaneously through multi-task learning, thus improving the
accuracy of BP estimation (Figure 1).

Problem Definition
To estimate BP continuously and accurately, target signals (PPG
and ECG) and label signals (ABP) are synchronously divided into
short segments with the same length, which are used as model
inputs xi and reference label BP values (SBP, DBP, and MAP) ySBP

i ,
yDBP

i , and yMAP
i , respectively. Then all the xi are used as the input
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FIGURE 1 | Block diagram of the proposed continuous BP estimation method.

of the neural network, which is used to simultaneously estimate
three BP values zSBP

i , zDBP
i , and zMAP

i , and defined as follows:

zSBP
i = F(xi; θ

SBP) (1)

zDBP
i =F(xi; θ

DBP) (2)

zMAP
i =F(xi;θ

MAP) (3)

Where xi represents input signals, F(·) represents the input-
output function of the neural network with multi-task learning;
SBP is the force exerted by blood on arterial walls during
ventricular contraction, DBP is the force exerted by the artery
walls during ventricular relaxation, and the MAP is the average
pressure throughout the cardiac cycle; θSBP, θDBP, and θMAP

represent the specific task parameters of the function; zSBP
i , zDBP

i ,
and zMAP

i are the estimated SBP, DBP, and MAP output values
of the network, and these three values are produced at the same
time through an output layer (3 neurons) followed by the last fully
connected (FC) layer.

The convergence of the neural network is evaluated by loss
function MSE, and the MSE depends on the difference between
the reference label BP values and estimated BP values and is
defined as follows:

MSE =
1
n

n∑
i=1

[(ySBP
i − zSBP

i )2

+(yDBP
i − zDBP

i )2
+ (yMAP

i − zMAP
i )2

] (4)

Where yi ranges from 60 to 180 mmHg (60 ≤
ySBP

i , yDBP
i , yMAP

i ≤ 180), and n is the number of signal segments.
The smaller the MSE, the better performance of the model.

Preprocessing of Signals
Segmentation and label extraction. Our raw data comes from
the University of California, Irvine (UCI) Machine Learning
Repository dataset (Goldberger et al., 2000; Kachuee et al.,
2015), which is derived from the public Multi-parameter
Intelligent Monitoring in Intensive Care (MIMIC-II) database.
This database contains multiple physiological signals collected
simultaneously from intensive care unit patients. In this research,
we extract simultaneous recordings of ECG, PPG, and ABP
signals of 3,000 subjects from the database which was available
at a 125 Hz sampling rate, and select signals with appropriate

time (more than 8 min) as the data source. All selected signals
were segmented into short segments of 8 s. Subsequently,
the peak amplitude limit (80 mmHg ≤ SBP ≤ 180 mmHg,
60 mmHg ≤ DBP ≤ 130 mmHg; Kachuee et al., 2017) and the
peak-to-peak time limit (greater than 0.6 s) were set for ABP
signal to exclude abnormal value and false peaks. Then, the peaks
and troughs were extracted from the processed ABP as reference
values of SBP and DBP, respectively. The reference MAP value
was calculated as the following formula:

MAP =
(SBP+ 2DBP)

3
(5)

Noise Reduction
The segmented ECG and PPG signals are first preprocessed using
the discrete wavelet decomposition (DWT) filter with Daubechies
8 wavelet (db8) to remove high-frequency noise, baseline drift,
and other noise (Singh and Tiwari, 2006). Specifically, combined
with the DWT filter and Nyquist sampling theorem (Unser,
2000), all the ECG and PPG signals are sampled at 125 Hz, and
then decomposed layers to extract the approximate coefficients
(CAs) and detail coefficients (CDs), respectively. For ECG
signals, the number of the decomposed layers is seven, and
CDs of the first layer and CAs of the seventh are set to zero
to remove the baseline drift (0∼0.5 Hz) and high-frequency
noises (31.125∼62.25 Hz); For PPG signals, the number of the
decomposed layers is eight, and CDs of the first layer and CAs of
the eighth are set to zero to remove the baseline drift (0∼0.25 Hz)
and high-frequency noises (31.125∼62.25 Hz). Subsequently, the
rest of the CAs and CDs are denoised via a soft threshold and
then reconstructed to obtain the target PPG and ECG signals.

Layer Normalization
Layer normalization is the normalization of a single training
data to all neurons in a layer. Through layer normalization, the
amplitude of the preprocessed target PPG and ECG signal is
distributed within the range of [-1, 1], so that the input signals
distribution of the model is similar, and the MST-net model has
better converged. The normalization formula is defined as:

Normalized = 2×
x− xmin

xmax − xmin
− 1 (6)

Where x is the amplitude of the target PPG and ECG signals,
xmax and xmin are the maximum amplitude and minimum
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FIGURE 2 | Raw signals preprocessing pipeline.

amplitude, respectively, in the target signals. The pre-processing
of signals is shown in Figure 2.

Model Architecture
The core concept of the neural network with multi-task
learning we design is as follows (Table 1): we input the ECG
and PPG signals (two one-dimensional ECG and PPG; input
size: 2 × 1,000) at the same time and then process them
using a one-dimensional (1D) convolution layer (Conv; with
a convolution kernel of 15) to keep the information of the
original signals as much as possible; we utilize the maximum
pooling layer to remove redundant information and retain the
main signal features; we adopt three network channels whose
sizes of convolution kernels are 5, 7, and 9, respectively, to
capture multi-scale features related to BP from target signals
by using different receptive fields on each channel; we set
four modules in each channel and set two convolution layers
in each module to extract features; we set 64, 128, 256, and
512 filters on the four modules of each channel, respectively,
to learn 1,536 features of target PPG and ECG signals; we
set up two FC layers (1,536 and 256 neurons) for regression
estimation of BP values, and the output layer consists of
three neurons. In addition, to estimate SBP, DBP, and MAP
simultaneously, we design a multi-task learning module in the
designed neural network to reduce the over-fitting of specific
tasks and improve the adaptability and efficiency of different tasks
(Ruder, 2017).

Setting of Model Parameter
Batch normalization layer and activation function. Batch
normalization is the normalization of individual neurons
between different training data. The batch normalization layer
can accelerate the convergence rate. Non-linear function rectifier
linear unit (RELU) is introduced as the activation function after
the normalization layer to avoid the gradient disappearance
problem during the training process of the designed network
and make the network train faster (Han and Moraga, 1995;

Nair and Hinton, 2010; Chung et al., 2015). The RELU formula
is defined as follows:

Relu(x) =

{
0, x < 0
x, x ≥ 0

(7)

Adam
Adam can combine the advantages of AdaGrad (adjusting the
learning rate (LR) of each different parameter) and Rmsprop

TABLE 1 | The network architecture of the MST-net model.

MST (5) MST (7) MST (9)

Input (2 × 1,000)

Stream 1 Stream 2 Stream 3

Layer 1 Conv (15)

Layer 2 Max-pooling (3)

Layer 3 Conv (5)-64 Conv (7)-64 Conv (9)-64

** ** **

Layer 4 Conv (5)-64 Conv (7)-64 Conv (9)-64

** ** **

Layer 5 Conv (5)-128 Conv (7)-128 Conv (9)-128

** ** **

Layer 6 Conv (5)-128 Conv (7)-128 Conv (9)-128

** ** **

Layer 7 Conv (5)-256 Conv (7)-256 Conv (9)-256

** ** **

Layer 8 Conv (5)-256 Conv (7)-256 Conv (9)-256

** ** **

Layer 9 Conv (5)-512 Conv (7)-512 Conv (9)-512

** ** **

Layer 10 Conv (5)-512 Conv (7)-512 Conv (9)-512

** ** **

Layer 11 AvgPool1d (1) AvgPool1d (1) AvgPool1d (1)

Layer 12 FC-512 FC-512 FC-512

Layer 13 FC-256

Output-3

**Represents “Batch Normalization layer + non-linear function rectifier linear unit.”
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(overcome the problem that the gradient of AdaGrad decreases
sharply) optimization algorithms to update the parameter of the
designed network to find the appropriate parameters and better
convergence (Kingma and Ba, 2014).

Hyperparameters
In the training process, to train the designed network better and
obtain the expected learning effect, the data input batch size is set
to 100. The epoch is set to 150. The initial LR of the network is set
to 0.01, and the fixed LR is decayed once every 5 epochs, which is
defined as follows:

LR = lrbase × gamma
step

5 (8)

Where lrbase is the original LR, gamma is the decay rate, and
step represents the running number of epochs.

L2 Regularization
L2 regularization is added in the training process to improve
the fitting effects and the generalization performance when the
training set is small and the model is complex in the process of
designed network training, that is, a constraint term is added to
the MSE loss function L(θ) (Eq. 3) to generate a new loss function
which is defined as follows:

L = L(θ)+ λ

k∑
i=1

w2
i (9)

Where i is the layer number of the network, w is the weight of
the network. λ is the coefficient of the L2 regularization which
weighs the weight between the constraint term

∑k
i=1 w2

i and
L(θ). Through the L2 regularization term, w can be reduced,
and the smaller w, the lower the complexity and better the
fitting of the network.

Model Performance Verification
The neural network with multi-task learning proposed in this
study runs under the Pytorch1.8.1 framework, using Windows
Server 2019 as the operating system. The server is equipped
with an RTX 2080ti GPU with 11 G memory and an Intel
Xeon Gold 5218 CPU with 32 cores and 64 GB memory. Based
on existing methods for creating training/test data sets in BP
estimation studies (Yan et al., 2019; Li et al., 2020; Miao et al.,
2020a; Panwar et al., 2020), we set different training and test
data. Due to the limited number of target signals data sets,
five-fold cross-validation is used to evaluate the performance
of the model. Our data is randomly divided into five equal-
sized subsets, four of which are trained as training data, and
the other one is tested as test data in turn, and the average
of the five results is used as an estimate of the accuracy
of the algorithm.

Model Performance Evaluation
To evaluate the BP estimation accuracy of the designed neural
network, Pearson correlation coefficient (r), mean absolute error
(MAE), mean error (ME), and standard deviation (SD) are

examined. r represents the consistency of the estimated BP value
and the reference BP value, ME represents the error between the
estimated BP value and the reference BP value, MAE represents
the absolute error between the estimated BP value and the
reference BP value, and SD represents the degree of dispersion
between the estimated BP value and the reference BP value. r,
MAE, ME, and SD equations are defined as follows:

r =
∑n

i=1(zi − z)(yi − y)√∑n
i=1(yi − y)2

√∑n
i=1(zi − z)2

(10)

ME =
∑n

i=1(yi − zi)

n
(11)

MAE =
∑n

i=1 |zi − yi|

n
(12)

SD =

√∑n
i=1(zi − yi −ME)2

n− 1
(13)

Where yi is the reference BP label value obtained from ABP,
y is the average of yi, zi is the estimated BP value of the MST-
net model, z is the average value of zi, and n is the total
number of target PPG and ECG signals segments in the test
data set. Finally, BP estimation accuracy of the MST-net model
is compared with the AAMI standards (Association for the
Advancement of Medical Instrumentation, 2002) and the BHS
standards (O’Brien et al., 1990) which are widely used as criteria
for evaluating BP devices.

RESULTS AND DISCUSSION

Data Source
To accurately extract the true BP value (reference BP value) from
ABP, the amplitude and peak-to-peak time of the ABP signal
were restricted to exclude the interference of abnormal signals
and false peaks. We can notice that multiple dicrotic wave peaks
(false peaks) existed in the ABP signal (Figure 3A), and this might
cause the number of detecting peak values to be more than the
true number. We can extract the peak value more accurately
after our restriction processing (Figure 3A; red dots). When
limited the signal amplitude (<180 mmHg) and time constraints
(>8 min) during ABP signals processing, the total number of
subjects was reduced from 3,000 to 514. Then we obtained a
total of 21,334 segments of BP data after the data segmentation
process, that is, we use 213,340 beats in our model. The peaks
and troughs were extracted from the processed ABP and used as
the reference values of SBP and DBP, respectively, and calculated
MAP based on SBP and DBP. The results showed that the DBP
was mainly distributed in the range of 60 to 130 mmHg, the
SBP was mainly distributed in the range of 80 to 180 mmHg,
and the MAP was calculated based on DBP and SBP was mainly
distributed between 70 and 135 mmHg (Figure 3B). This result
was the same as the distribution of BP values obtained by Miao
et al from ABP before (Kachuee et al., 2017; Miao et al., 2020b),
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FIGURE 3 | (A) blue “I” represents peak detection before processing, red “x” represents peak detection after processing, (B) Statistical histogram of BP data
extracted from ABP.

which could provide the reference BP values for our designed
neural network to estimate BP values.

Estimation Performance
To judge whether there is overfitting in our model, we used
training loss and validation loss during the training process,
and the training loss and validation loss were in a stable state
after 100 epochs in the model training process, that is, the
model had converged.

In order to investigate the performance of the designed
neural network, the BP estimation accuracy of the network was
evaluated according to r, ME, MAE, and SD. As result, the r of
SBP, DBP, and MAP estimated by the MST-net model were 0.96,
0.92, and 0.94, respectively, and ME ± SD were 0.01 ± 5.81,
0.02 ± 3.55, and 0.01 ± 3.58 mmHg, respectively, (Figure 4).
It can be observed that all reference values have a strong linear
relationship with BP estimates (SBP, DBP, and MAP). The p-value
for SBP, DBP, and MAP were 0.972, 0.796, and 0.969, respectively.
It implied that the population mean of the samples was equal.
These data points fell on both sides of the regression line and were
close to the regression line (Figures 4A–C), indicating estimated

BP data with high accuracy. The average values and difference
values of reference and estimated BP values were the horizontal
axis and vertical axis of the Bland-Altman plot (Figures 4D–F),
respectively, these data points fall within the 95% confidence
interval [-1.96 × SD, 1.96 × SD], indicating a good level of
consistency of the reference and estimated BP data. Also, the
average error between the reference and the estimate (red line) is
very close to zero mmHg, indicating a high degree of consistency
between the reference and estimated BP data. In addition, we
provided the histogram of the error distribution between the
estimate and the reference value, and we can observe that most
of the errors are concentrated around 0 (Figures 4G–I). On the
other hand, our network had fewer parameters than previous
network models (Biswas et al., 2019; Panwar et al., 2020). That
is to say, our network with an optimized algorithm was of lower
complexity which can contribute to avoiding the constraints of
computing power and memory for platform deployments (e.g.,
mobile devices, wearable devices). From the above analysis, it can
be noted that the method of this study can achieve a precision
estimation of SBP, DBP, and MAP. It is noted that the estimated
SBP values through our model were not limited to less than
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FIGURE 4 | Evaluation of the estimated BP performance of the MST-net model: (A) SBP correlation coefficient plot; (B) DBP correlation coefficient plot; (C) MAP
correlation coefficient plot; (D) Bland-Altman plot of SBP; (E) Bland-Altman plot of DBP; (F) Bland-Altman plot of MAP; (G) Error histogram for SBP; (H) Error
histogram for DBP; and (I) Error histogram for MAP.

180 mmHg, and the SBP values beyond 180 mmHg can be also
predicted through our model. However, we just predicted SBP
values within 180 mmHg same as many references (Kachuee
et al., 2017; Baek et al., 2019; Thambiraj et al., 2020, etc.). The
reasons were as follows: First, there were a few cases of SBP
reaching 180 mmHg in the database; Secondly, when analyzing
the reference signal and input signal values, the SBP values greater

TABLE 2 | Comparison of estimated BP values between our work
and AAMI standard.

ME (mmHg) SD (mmHg) Subjects Assessment result

Our results SBP 0.007 5.81

DBP 0.022 3.55 514 Satisfied

MAP 0.009 3.58

AAMI SBP ≤5 ≤8 ≥85

(AAMI, 2002) DBP

MAP

than 180 mmHg were calculated from the reference signal, which
was generally caused by irregular noise signals.

In order to evaluate the accuracy of BP estimation based on
this study, the BP estimation results of this study were compared
with international AAMI and BHS standards. According to the

TABLE 3 | Comparison of estimated BP values between our work
and BHS standard.

Cumulative error percentage

C. P. 5 C. P. 10 C. P. 15 Assessment

result

SBP 71.56% 92.28% 97.66% A

Our result DBP 89.88% 98.25% 99.40% A

MAP 87.89% 98.05% 99.52% A

Grade A 60% 85% 95%

BHS (O’Brien et al., 1990) Grade B 50% 75% 90%

Grade C 40% 65% 80%
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TABLE 4 | Comparison with other experimental performance.

Work Dataset Method SBP DBP MAP

MAE SD MAE SD MAE SD

Miao et al., 2020a Own dataset Feature extraction 6.13 7.76 4.54 5.52 4.81 6.03

Ding et al., 2016 4.09 5.21 3.18 4.13 3.18 4.06

Sharifi et al., 2019 MIMIC II Deep learning algorithm 7.83 9.10 4.86 5.21 3.63 4.60

Baker et al., 2021 MIMIC III 4.41 6.11 2.91 4.23 2.77 3.88

This work MIMIC II MST deep learning algorithm 4.04 5.81 2.29 3.55 2.46 3.39

AAMI standard (Table 2), the target subjects of this study were
514, far more than the 85 required by the AAMI standard. the
ME of SBP, DBP, and MAP were 0.007, 0.022, and 0.009 mmHg,
respectively, which were far lower than the ME ≤ 5 mmHg
required by the AAMI standard. SD of SBP, DBP, and MAP
estimated were 5.81, 3.55, and 3.58 mmHg, respectively, which
were far lower than SD ≤ 8 mmHg required by the AAMI
standard. It showed that the estimated BP values by our
customized model met the AAMI standard. The cumulative error
percentage estimated by our model of the SBP reached 71.56,
92.28, and 97.66%, respectively; the DBP reached 89.88, 98.25,
and 99.40%, respectively, and the MAP reached 87.89, 98.03, and
99.52%, respectively, (Table 3), which all showed much higher
than the A grade standard of BHS (60, 85, and 95%). To sum
up, BP values (SBP, DBP, and MAP) estimated by our customized
model reached a small error and achieved good results.

In order to verify the effectiveness of the designed network,
the proposed BP estimation method was compared with previous
work. In general, it is difficult to make a fair comparison
of BP estimation work due to different evaluation metrics
and inadequately specified datasets. For example, for some BP
estimation work based on ECG and PPG, Miao et al. (2020a)
and Ding et al. (2016) used their own data sets, Baker et al.
(2021) used the MIMIC III database, Sharifi et al. (2019) used

TABLE 5 | Comparison of predicted BP values between our and previous work
based on our dataset from MIMIC-II.

Work MAE ± SD (mmHg)

SBP DBP MAP

Resnet (He et al., 2016) 4.12 ± 5.97 2.31 ± 3.60 2.50 ± 3.67

VGG (Simonyan and Zisserman, 2015) 8.47 ± 11.45 4.70 ± 6.70 5.09 ± 6.94

This work 4.04 ± 5.81 2.29 ± 3.55 2.46 ± 3.39

TABLE 6 | Comparison of No. model for BP evaluation between our
and previous work.

Work Subjects Model SBP (mmHg) DBP (mmHg)

Rong and Li, 2021 11,546 samples 2 5.59 ± 7.25 3.36 ± 4.48

Kachuee et al., 2017 942 subjects 2 11.17 ± 10.09 5.35 ± 6.14

Gaurav et al., 2016 3,000* subjects 2 4.47 ± 6.85 3.21 ± 4.72

This work 21,334 samples 1 4.04 ± 5.81 2.29 ± 3.55

*Number of subjects before signal processing.

the same database like ours. From the results, our proposed
method performed better than these studies (Table 4). For a fair
comparison, we selected two popular machine learning methods,
VGG network (Simonyan and Zisserman, 2015) and Resnet (He
et al., 2016), to compare BP estimation results using the same
dataset. We can notice that the MAE ± SD of SBP, DBP, and
MAP in our study (SBP: 4.04± 5.81, DBP: 2.29± 3.55, and MAP:
2.46 ± 3.39) all were smaller than the popular machine learning
methods results (VGG, SBP: 8.47 ± 11.45, DBP: 4.70 ± 6.70,
MAP: 5.09 ± 6.94; Resnet, SBP: 4.12 ± 5.97, DBP: 2.31 ± 3.60,
and MAP: 2.50 ± 3.67), indicating that the network model we
designed performed better at a BP estimated work (Table 5). It
should be noted that the setting of hyperparameters in the two
popular machine learning methods is the same as our proposed
method (except that the LR of the VGG network is set to 0.005).
In addition, we noticed that compared with previous studies that
used a separate training method to estimate a BP value, our model
can simultaneously estimate multiple BP values by using only one
model, which not only reduced the complexity but also improved
the work efficiency (Table 6).

Overall, the MST-net model proposed in this study had a
relatively simple structure and achieved good accuracy in the
field of continuous BP estimation, which was a very competitive
method and made contributions to the improvement of BP
estimation accuracy.

Impacts of Model Architecture
In order to determine the effects of network structure on
the performance of BP estimation, the effects of the number
of network channels and the size of the convolution kernel
of network channels on BP estimation performance were
investigated (Table 7). Compared to the BP estimation results
of the single-channel model with convolution kernels of 7, the

TABLE 7 | Impacts of that number of network channels and the size of channel
convolution kernel on the performance of BP estimation.

Kernel size SBP (mmHg) DBP (mmHg) MAP (mmHg)

MST-net (3) 4.40 2.50 2.68

MST-net (5) 4.20 2.41 2.58

MST-net (7) 4.13 2.33 2.52

MST-net (9) 4.07 2.31 2.48

MST-net (3, 5, 7) 4.10 2.28 2.47

MST-net (5, 7, 9) 4.04 2.29 2.46
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estimation errors of SBP, DBP, and MAP via the three-channel
model with convolution kernels of (3, 5, 7) were reduced by
0.03, 0.05, and 0.05 mmHg, respectively. The reason was that
multi-channel can extract more abundant features than single-
channel. In the single-channel model, when the size of the
convolution kernel increased from 3 to 9, the errors of SBP, DBP,
and MAP decreased significantly, indicating that the increase of
the convolution kernel in the model could improve BP estimation
performance. The reason was that the larger convolution kernel
has a larger receptive field which contributes to extracting the
features related to BP from time-series signals with periodic
patterns. These results also showed that the features related to
BP have a larger span of time. At the same time, with the
increase in the size of the convolution kernel, the increase of
BP estimation performance gradually decreased, indicating that
the size of the convolution kernel used to extract features was
limited, and cannot be infinite. When the size of the multi-
channel convolution kernel was increased from (3, 5, 7) to (5, 7,
9), the estimated errors of SBP, DBP, and MAP were improved by
0.06, 0.01, and 0.01 mmHg, respectively. This also showed that
the larger convolution kernel could improve the performance of
the BP estimation model.

CONCLUSION

In this article, a novel continuous BP estimation based on
multi-scale feature extraction by the neural network with multi-
task learning was proposed to estimate BP continuously and
accurately without calibration using PPG and ECG signals. This
research was a step toward developing an efficient and lightweight
solution. We adopted segmenting, denoising, and normalizing
to preprocessed target and label signals and then extracted the
reference BP value from the preprocessed label signals, especially
using peak-to-peak timing limits of signals to eliminate the
interference of the false peak of the wave; we designed a neural
network with multi-task learning to extract multi-scale features
related to BP from preprocessed target signals, fully excavated

and learned the relationship between the multi-scale features
and BP, and then estimated three BP values simultaneously
through multi-task learning. The results showed that the errors
of MAE ± SD for SBP, DBP, and MAP were 4.04 ± 5.81,
2.29 ± 3.55, and 2.46 ± 3.58 mmHg, respectively, and the
correlation coefficients were 0.96, 0.92, and 0.94, respectively.
These results met the AAMI standard and reached A level of
the BHS standard, and showed better BP continuous monitoring
results than other previous works, and without calibration.

In conclusion, our study provided convincing evidence that
our method can achieve high precision continuous BP estimation
and had a relatively simple structure, which can be further applied
to wearable devices.
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