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Abstract 

Background:  The growing availability of genomic resources in radiata pine paves the way for significant advances 
in fundamental and applied genomic research. We constructed robust high-density linkage maps based on exome-
capture genotyping in two F1 populations, and used these populations to perform quantitative trait locus (QTL) scans, 
genomic prediction and quantitative analyses of genetic architecture for key traits targeted by tree improvement 
programmes.

Results:  Our mapping approach used probabilistic error correction of the marker data, followed by an iterative 
approach based on stringent parameters. This approach proved highly effective in producing high-density maps 
with robust marker orders and realistic map lengths (1285–4674 markers per map, with sizes ranging from c. 1643–
2292 cM, and mean marker intervals of 0.7–2.1 cM). Colinearity was high between parental linkage maps, although 
there was evidence for a large chromosomal rearrangement (affecting ~ 90 cM) in one of the parental maps. In total, 
28 QTL were detected for growth (stem diameter) and wood properties (wood density and fibre properties measured 
by Silviscan) in the QTL discovery population, with 1–3 QTL of small to moderate effect size detected per trait in each 
parental map. Four of these QTL were validated in a second, unrelated F1 population. Results from genomic predic-
tion and analyses of genetic architecture were consistent with those from QTL scans, with wood properties generally 
having moderate to high genomic heritabilities and predictive abilities, as well as somewhat less complex genetic 
architectures, compared to growth traits.

Conclusions:  Despite the economic importance of radiata pine as a plantation forest tree, robust high-density link-
age maps constructed from reproducible, sequence-anchored markers have not been published to date. The maps 
produced in this study will be a valuable resource for several applications, including the selection of marker panels for 
genomic prediction and anchoring a recently completed de novo whole genome assembly. We also provide the first 
map-based evidence for a large genomic rearrangement in radiata pine. Finally, results from our QTL scans, genomic 
prediction, and genetic architecture analyses are informative about the genomic basis of variation in important phe-
notypic traits.

Keywords:  Chromosomal rearrangement, Quantitative trait loci, Radiata pine, Single-nucleotide polymorphisms, 
Within-family genomic prediction
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Background
Recent advancements in genomic technologies, such 
as the increasing availability of genome sequencing and 
high-throughput molecular markers, coupled with fall-
ing costs, has seen the application of genomics rapidly 
gain in speed, magnitude and scope [1]. These advance-
ments provide the opportunity for breakthroughs in fun-
damental and applied genomic research outside of model 
species, including in forest trees such as conifers [2, 3]. 
Dense genetic linkage maps constructed from sequence-
anchored markers are invaluable for a variety of genomic 
applications, particularly in taxa lacking a complete 
genome assembly, as they provide important information 
regarding genome structure and recombination, which 
complements the finer scale information from genome-
assemblies or genome-wide single-nucleotide polymor-
phisms (SNPs) [4]. For example, linkage maps in conifers 
have been successfully applied to comparative genom-
ics [5], quantitative trait locus (QTL) analysis, candidate 
gene discovery and validation [6, 7]; and de novo whole 
genome assembly [4].

This study focuses on radiata pine (Pinus radiata 
D.Don), an important plantation species in temper-
ate maritime regions of the southern hemisphere. Pinus 
radiata is native to the west coast of California (USA) 
and the Cedros and Guadalupe islands (Mexico), but has 
been widely planted elsewhere, including Chile, Australia 
and New Zealand [8]. In New Zealand, it occupies c. 90% 
of the 1.7 million hectares of planted forests (as of April 
2019; MPI), and the Radiata Pine Breeding Company 
(RPBC) is currently prioritising genetic gain for volume, 
form, wood density, and stiffness [9].

With accelerating environmental change and eco-
nomic uncertainty, there are strong incentives to accel-
erate the delivery of genetic gain and increase the agility 
of P. radiata breeding. This has driven significant invest-
ment in developing genomic resources, including an 
exome capture genotyping-by-sequencing panel [10], a 
genome assembly project [11], marker-based pedigree 
reconstruction, and genomic selection projects [12, 13]. 
However, robust high-density linkage maps have not 
yet been published for P. radiata. Better understanding 
of broad scale genome structure, linkage and ultimately 
haplotype structure in more diverse populations will be 
beneficial for many genomic applications. Such informa-
tion will, for example, help refine the selection of mark-
ers for genomic applications and potentially improve 
the accuracy of genomic predictions [14]. Furthermore, 
the identification of QTL in biparental families is a first 
step toward a better fundamental understanding of trait 
genetic architectures.

The primary aim of this study was to produce robust 
high-density linkage maps for P. radiata. These linkage 

maps, along with the mapping populations and genotype 
and phenotype data generated for this study, were then 
used to dissect the genetic architecture underlying varia-
tion in growth and wood properties in P. radiata, includ-
ing key traits relating to wood density and stiffness, and 
perform genomic prediction for growth and wood den-
sity. This research provides the foundation for a more 
detailed understanding of genome organisation, broad-
scale recombination, and the genetic architecture of key 
traits targeted by tree improvement programmes.

Methods
Genetic material
Two full-sib F1 populations were used for map construc-
tion. Both have been described previously and are known 
as the ‘QTL’ (268405 × 268345, n = 94) and ‘framework’ 
(FWK; 850055 × 850096, n = 82) populations [10]. The 
parents of both populations were unrelated first-genera-
tion selections from unimproved New Zealand ‘landrace’ 
stands, which have been used to provide seed for com-
mercial plantations. Genotype 268345 was also chosen 
for whole-genome assembly [11]. Both mapping popula-
tions were grown in the Bay of Plenty region of the North 
Island of New Zealand. The QTL mapping population 
was sampled from a large full-sib family planted in 1994 
in a commercial plantation in Kinleith Forest. A subset of 
this family (1379 trees), from row plots in a single large 
contiguous block with similar aspect, was selected for 
phenotyping juvenile wood density (JWD) at age four. 
The 94 individuals used in this study were the extremes of 
JWD from this larger sample [15]. The FWK population 
was planted in 1978 in a genetic gain trial (compartment 
1210, experiment RO1664/2) in Kaingaroa forest [16]. 
The trees used in this study were planted in a ‘pulpwood 
regime’ and were randomly sampled from six blocks of 
64 trees (8 × 8), which were interspersed with other seed-
lots in a randomised complete block design. The FWK 
population has been used previously to construct moder-
ate density linkage maps [17].

DNA extraction and genotyping
DNA extraction and quantification were performed using 
the protocol developed by [18]. The germplasm used in 
this study represented a subset of the genotypes used in 
the development of the exome capture genotyping-by-
sequencing panel for radiata pine; see [10] for details of 
DNA extraction, quantification and genotyping. Briefly, 
exome capture is a technique for sequencing the pro-
tein-coding regions of a genome, which provides a cost-
effective alternative to whole-genome sequencing. It 
involves enrichment to selectively capture the exome 
using a panel of custom oligonucleotide probes, followed 
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by sequencing with high throughput techniques. In this 
case a method developed in Pinus taeda and successfully 
used in other large conifer genomes was implemented 
[19], with probe development based on a large set of P. 
radiata transcriptome contigs [20] and the P. taeda refer-
ence genome [21].

Filtering and ranking markers
After preliminary filtering described in [10], genotype 
data comprised 84,671 SNPs (genotyped in 95 progeny), 
and 75,413 SNPs (genotyped in 93 progeny), for the QTL 
and FWK mapping populations, respectively. Due to a 
high proportion of missing data, one of the QTL popu-
lation progeny and 11 of the FWK population progeny 
were removed prior to filtering markers. Parental geno-
types for each SNP were determined based on the major-
ity call from 5 to 8 replicates. Following linkage map 
construction in the QTL population, this step was redone 
after it was discovered that some of the putative parental 
replicates for 268,345 were not of the expected genotype 
(see below).

These data were further filtered by removing markers: 
1) in which both parents did not have a ‘reliable’ geno-
type call across the replicates (Additional file 1: Table S1), 
and 2) with > 20 missing data calls in the offspring. The 
remaining markers were divided into data sets segregat-
ing from each parent, and those segregating in a test-
cross configuration (i.e., heterozygous in one parent 
and homozygous in the other) were retained for map-
ping (Additional file  1: Table  S1). Only test-cross mark-
ers were selected for mapping as they have the greatest 
information content and produce more reliable marker 
orders than maps incorporating inter-cross markers 
[22]. Following this filtering, markers were ranked into 
different quality classes (Class 1–3) for mapping (see 
‘Linkage map construction’ below), based on parental 
reproducibility, polymorphism information content (PIC; 
a measure of segregation ratio [23];) and missing data 
(Additional file 2: Table S2).

Error correction and removal of redundant markers
Correcting genotyping errors
For each parental dataset, the genotype data were first re-
coded into the double haploid data type required by Sim-
pleMap [24]. The data were then loaded into Joinmap 4.1 
[25] to estimate preliminary maps, with linkage groups 
defined at a minimum logarithm of the odds (LOD) score 
of 4 in each parental map. Ordering within linkage groups 
was performed using the maximum-likelihood algorithm 
with default parameters. The SMOOTH procedure [26] 
was then used to remove highly improbable data points, 
i.e. ‘singletons’ which are apparent double recombinants 

identified from neighbouring loci in the preliminary 
maps, which likely have a high proportion of errors. This 
procedure was repeated 16 times with increasingly strict 
error correction, following the method outlined in Van 
Os et al. [26]. In the first round data points were removed 
at a high singleton probability threshold of 0.99 then 0.98 
and after this reducing by 0.02 each iteration until reach-
ing a singleton probability threshold 0.70 at which point 
empirical evidence suggests the proportion of errors 
removed will be equal to the proportion of correct data 
points removed in error [26]. This resulted in c. 5–9% 
of genotype calls being re-coded as missing data within 
each parental dataset.

Binning markers
After error correction, SimpleMap [24] was used to iden-
tify and remove redundant markers to increase the com-
putational efficiency and improve the accuracy of linkage 
map construction. SimpleMap identifies bins of co-segre-
gating or tightly linked markers. A maximum recombina-
tion threshold of < 3 cM Kosambi (roughly equivalent to 
3% recombination frequency) is recommended for identi-
fying ‘bins’ of linked markers in SimpleMap. Accordingly, 
bins were identified using a maximum of three recom-
binants in the QTL population, and two recombinants 
in the smaller FWK population. The SimpleMap pipeline 
identifies a single representative marker for each bin, 
which is placed in a file for mapping along with single-
tons (i.e., markers which did not bin). An additional file is 
also generated, which shows the markers within each bin 
and the number of recombinants between each marker 
and the representative marker, allowing reintegration and 
ordering of the removed markers around the representa-
tive marker after construction of bin maps (Fig. 1).

Linkage map construction
Separate ‘bin maps’ were constructed for each parent 
using Joinmap  4.1, based on the representative mark-
ers for each bin as well as singletons which did not bin. 
Linkage groups were defined at a minimum of LOD 3. 
Marker ordering within groups was performed with the 
regression algorithm using default Joinmap 4.1 settings. 
An iterative procedure was used to construct linkage 
maps for each group, beginning with a subset of (c. 
20–30) Class 1 markers, then adding smaller batches 
(ca. 1–6 markers) from the remaining Class 1 mark-
ers, before adding the Class 2 markers, and then Class 
3 markers. The rationale behind this approach was to 
establish a ‘trusted order’ based on the highest quality 
markers before adding lower quality markers, which 
are likely to produce less reliable orders [27]. Joinmap 
produces up to three different maps at each attempt of 
marker ordering, with decreased stringency in round 
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two and round three maps [25]. Following each itera-
tion of mapping, the round one or, where present, 
round two maps were inspected and markers were 
removed based on whether they significantly changed 
the trusted order. Markers were also excluded based 
on: Chi-square goodness-of-fit contribution > 2.5; high 
nearest neighbour fit; the genotype probability func-
tion; being forced in a third round of mapping; and 
aberrant segregation distortion relative to surround-
ing markers, as all of these criteria can be indicative of 
genotyping errors. After removing markers according 
to these criteria, the maps were re-calculated and the 
above criteria re-evaluated until acceptable values were 
reached and all markers mapped within two rounds 
of mapping. Following the construction of bin maps, 
‘comprehensive maps’ were constructed by reintegrat-
ing markers from the binning procedure around the 
representative bin markers using SimpleMap.

Linkage groups were numbered following a P. taeda 
reference linkage map [28], based on microsatellite (SSR) 
markers mapped in both P. radiata and P. taeda. In order 
to identify homologous linkage groups in our maps, SSR 
markers genotyped for an earlier comparative mapping 
study (unpublished), which included our QTL pedigree, 
were placed in the parental maps for 268405 and 268345. 
The SSR markers which were representative markers 

were all excluded due to the criteria described above, but 
a small number of bin markers remained in the final com-
prehensive maps of this pedigree. Shared exome-capture 
SNP markers at the contig level were used to standard-
ise linkage group numbering and orientation in the FWK 
population c.f. the QTL population.

Refinements post‑mapping
After completing the parental linkage maps we found 
that five of the 10 putative parental replicates used to 
determine the genotype for parent 268345 were incor-
rect, with samples originating from two different geno-
types, one of which had been mis-labelled. Hence, the 
parental genotype at 268345 was retrospectively revised 
for all markers segregating in the QTL pedigree (from 
268345 and 268405) based on the true replicates. Mark-
ers were removed from the linkage maps where the 
original genotype call changed or was not supported by 
a majority call from at least two replicates. For markers 
within bins, this involved simply removing the marker 
from the bin which did not affect the bin maps. Where 
the removed markers were representative markers, the 
maps were re-calculated and, where necessary, addi-
tional markers were excluded from the maps according 
to the above criteria (i.e., based on whether they signifi-
cantly changed the trusted order and the other criteria 
for linkage map refinement).

Comparison of parental comprehensive maps
The repeatability of marker ordering was evaluated by 
calculating Spearman’s correlations between common 
syntenic markers (i.e., those that mapped to homolo-
gous linkage groups in each parental map) in all pair-
wise combinations amongst the different parental 
linkage maps. ‘Common markers’ were identified at the 
contig level and where multiple markers from the same 
contig were mapped within a parental linkage group, 
the mean position of the markers representing a contig 
were used.

Phenotypic measurements of the QTL population
Diameter at breast height and juvenile wood density
In the QTL population diameter at breast height (1.4 m; 
DBH [cm]) was measured at 5 years of age. Juvenile 
wood density (JWD [kg/m3]) was determined from two 
5 mm diameter cores extracted 60 cm above ground 
level at 4 years of age. In cases where cores had more 
than trace amounts of compression wood (red coloura-
tion), they were discarded, and new cores extracted. 
Wood density in each core (JWD_A [kg/m3] and 
JWD_B [kg/m3]; Table 1) was estimated using the maxi-
mum moisture content method [29]. Where differences 
between the two cores exceeded 30 kg/m3, both cores 

Fig. 1  Summary of the pipeline used for the construction of parental 
linkage maps in the Pinus radiata QTL and FWK populations
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were remeasured. Trees where differences between 
cores remained greater than 30 kg/m3 after remeasure-
ment were removed from the experiment. QTL analy-
sis was conducted on each core separately (i.e. JWD_A 
and JWD_B), as well as based on their arithmetic mean 
(JWD; Table 1).

Physical wood properties measured by Silviscan®

A range of physical wood properties were measured 
using the Silviscan®-2 system at the CSIRO Forestry 
and Forest Products laboratory (Melbourne, Australia). 
These measurements were based on a single 12 mm 
pith-to-bark core extracted 1.4 m above ground from 
each tree, at 10 years of age. Cores were soaked in eth-
anol prior to preparation of strips for measurement. 
Strips were prepared by cutting a 1 mm thick by 7 mm 
high flitch vertically, with respect to the grain, along 
the length of the core. Gravimetric density (weight/vol-
ume) was determined for each flitch. The flitches were 
then air dried (20 °C, 40% RH) and scanned for density 
using direct X-ray detection, and for microfibril angle 
(MFA [degrees]) using X-ray diffractometry. Density 
was obtained at 25 μm and 50 μm intervals and MFA 
was obtained at 5 mm intervals. All values were aver-
aged within rings to obtain ring means. The modulus 

of elasticity (MoE [GPa]) was predicted for each core. 
Ring boundaries were allocated, using the wood density 
profile, and applied to the profiles of all other traits. The 
average properties for each growth ring were recorded 
for further analysis.

All data from the first measured ring closest to the 
pith were eliminated from further analyses due to mini-
mum values of zero being detected for all traits in this 
ring. Following this, the data were weighted for ring 
area using the standard formula for calculating the area 
of a circle (area = пr2) and ring width data (r = ½ ring 
width + distance from pith to ring). Ring area weighting 
was undertaken because it reflects the true proportion 
of wood for each ring within the entire circumference of 
the tree at that height. Hence, area weighted means for 
each trait were used for QTL analyses, although correla-
tions between area weighted and arithmetic means were 
very high (data not shown). Means were calculated for 
the area-weighted ring groups up to and including age 5, 
and for ring groups corresponding to 6–10 years of age. 
This resulted in no data for rings corresponding to ages 
1 and 2, sometimes for age 3, and occasionally age 4. This 
was because there were no data for the inner ring, due 
to the trees not reaching a height of 1.4 m (breast height) 
by their first, and sometimes second, year. Also, data for 

Table 1  Phenotypic traits used for QTL analysis/validation and analyses of genetic architecture in each population of Pinus radiata 

a Assessed at 10 years of age
b Assessed at four years of age [15]
c Based on Silviscan ‘Den’ estimate in the QTL population and maximum moisture content estimate at 16 years of age in the FWK population
d Assessed at five years of age in the QTL population [15] and 19 years of age in the FWK population

Trait Description Population Genomic 
heritability (SD)

Predictive ability (SD)

aSilviscan traits

  Area Ring area (mm2) QTL 0.27 (0.17) 0.06 (0.10)

  WD Density (kg/m3) QTL 0.71 (0.13) 0.57 (0.05)

  Rad Radial cell diameter (μm) QTL 0.58 (0.18) 0.42 (0.06)

  Tan Tangential cell diameter (μm) QTL 0.72 (0.12) 0.57 (0.04)

  Crs Fibre coarseness (μm/m) QTL 0.31 (0.18) 0.10 (0.08)

  Wall Cell wall thickness (μm) QTL 0.60 (0.16) 0.41 (0.05)

  Sur Specific surface area (m2/kg) QTL 0.63 (0.16) 0.44 (0.05)

  MFA Microfibril angle (degrees) QTL 0.48 (0.19) 0.29 (0.08)

  MoE Modulus of elasticity (GPa) QTL 0.47 (0.19) 0.25 (0.08)

Other traits

  JWD_A Density prediction for first 5 mm core (maximum moisture 
content method) (kg/m3)

QTL 0.71 (0.11) 0.55 (0.04)

  JWD_B Density prediction for second 5 mm core (maximum 
moisture content method) (kg/m3)

QTL 0.73 (0.11) 0.61 (0.04)

  JWDb Average of density predictions for two cores above QTL 0.73 (0.10) 0.61 (0.04)

  %LW1–10 Area weighted percent late wood ages 1–10 (%) FWK

  WDc Wood density (kg/m3) Both 0.77 (0.08) 0.52 (0.04)

  DBHd Diameter at breast height (mm) Both 0.19 (0.12) 0.11 (0.07)
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the inner-most ring on the cores were eliminated from 
the analyses because of zero values from SilviScan®, as 
described above.

The following SilviScan® traits were used for QTL 
analyses: (Table  3): ring area (Area [mm2]); wood den-
sity (WD [kg/m3]); radial (Rad [μm]) and tangential (Tan 
[μm]) cell diameters; fibre coarseness (Crs [μm/m]); cell 
wall thickness (Wall [μm]); specific surface area (Sur [m2/
kg]); MoE [GPa]; and MFA [degrees] (Table 1).

Phenotypic measurements in the FWK population 
and across populations
In the FWK population, DBH and WD were measured 
at 16 years of age, while the percent of late wood for ages 
1–10 (%LW1-10) was measured from cores extracted at 
19 years of age. To measure WD, two 5 mm outer wood 
cores of 50 mm length were taken from opposite sides 
of each tree, and density was measured using the maxi-
mum moisture content method described above. Least 
square means for WD were used for QTL analyses to 
account for variation between replicate blocks, and ran-
dom error, within the field trial [16]. To measure %LW1-
10, two 5 mm diameter cores were extracted 1.4 m above 
ground level at 19 years of age. Traits related to wood 
density, including %LW1–10, were estimated using x-ray 
densitometry [30]. The percentage of latewood in rings 
corresponding to years 1–10 was weighted for ring area 
as described above. Descriptive statistics and frequency 
distributions for all phenotypic traits measured in each 
population are shown in Additional  file  3: Table  S3 and 
Additional file 4: Fig. S1, respectively.

For genomic prediction and analyses of genetic archi-
tecture (see below), phenotypic values for DBH and WD 
across both populations were then calculated as best 
linear unbiased predictors (BLUPs) using a mixed linear 
model, which was implemented in the lme4 R package 
[31, 32] and included “Experiment” (effectively mapping 
population) as a fixed effect and “Genotype” as a random 
effect. In addition, we also performed analyses of Silvis-
can traits (as defined above) within the QTL population.

QTL analysis
QTL discovery was performed in the QTL population 
for Silviscan traits, JWD (four years of age) and DBH. 
QTL analyses in the FWK population for stem diame-
ter (DBH) and wood density traits (WD and %LW1–10) 
were used to validate the genomic location of QTL from 
the QTL population.

In both mapping populations, QTL analyses were con-
ducted with MAPQTL 6.0 [33] based on the individual 
parental bin maps. Analyses used interval mapping 
(IM) with the regression algorithm and MAPQTL 6.0 
[33] default parameters. In the QTL population (used 

for QTL ‘discovery’), map intervals exceeding the sug-
gestive significance threshold in IM were selected as 
cofactors for restricted multiple-QTL model (rMQM) 
mapping. rMQM mapping was performed using an itera-
tive approach and forward selection of cofactors until 
a stable set of cofactors was found and no further QTL 
were detected. In both populations and analyses, puta-
tive QTL were declared at two different levels: suggestive 
(chromosome-wide type I error < 0.05) and significant 
(genome-wide type I error < 0.05). The LOD thresholds 
for each level were determined based on 1000 permuta-
tions [34]. QTL were presented at the reduced ‘sugges-
tive’ significance threshold to aid comparative mapping 
[35], as this significance level will decrease the type 
II error rate relative to the genome-wide significance 
threshold. The non-parametric Kruskal-Wallis test was 
used to provide additional support for the QTL found in 
the QTL population. This approach makes no assump-
tions about the probability distribution of the quantita-
tive trait after fitting the QTL genotype [33]. All input 
files used for QTL analysis are included as Additional 
files (5, 6, 7, 8, 9, 10, 11, 12, 13 and 14).

QTL validation
For validation, the location of QTL from equivalent link-
age groups in each population were compared based 
on the closest ‘common marker’ to each QTL peak (i.e., 
markers from the same contig included in the parental 
maps of both pedigrees; where multiple markers from the 
same contig mapped to the same parental linkage group, 
their mean position was used). In cases where the closest 
common marker differed between the QTL in each popu-
lation, the mean distance between these markers in each 
parental map was estimated. To account for genomic 
regions with few markers, and localised inconsisten-
cies in marker order between maps, threshold values of 
< 15 cM between the QTL peak markers and the closest 
common marker in each map, and < 5 cM mean distance 
between the closest common markers in each map, were 
used to declare QTL validation.

Genomic prediction and analyses of genetic architecture
We used standard ridge regression/GBLUP genomic 
prediction methodology [36, 37] as implemented in the 
rrBLUP R package [38] and random cross-validations 
[39] to calculate the predictive ability (the correlation of 
predicted and “observed” phenotypes for the validation 
population) of GBLUP as applied to unknown pheno-
types in the QTL and FWK populations. In contrast to 
a previous study Klápště et  al. [40], in which we used a 
much wider training population, both training and test 
sets were randomly drawn (i.e., according to the desired 
training population size) only from the respective 
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mapping population. This simulates a breeding scenario 
where a small subset of a full-sib family is field-tested 
to obtain phenotypic data, and then a family-specific 
GBLUP model is used to predict phenotypes for a larger 
subset of genotypes that were either stored (e.g., cryopre-
served) or obtained by repeating the original controlled 
cross. In addition, we used the Bayesian Mixture Model 
“BayesR” [41] as implemented in the GCTB software 
[42] to estimate genomic heritabilities, genetic architec-
ture parameters, and marker effect sizes. We ran BayesR 
using its default parameters in GCTB, partitioning mark-
ers into four classes: no effect, small, medium, and large 
effects [γ = (0,0.01,0.1,1.0)’], where γ are the scaling fac-
tors for the respective marker effect variances σ 2

β of each 
class, with marker effects defined as the partial regres-
sion coefficients (β) of markers on phenotypes, expressed 
in phenotypic standard deviations. The prior for the 
mixing proportions of the four classes was the default 
π = (0.95,0.03,0.01,0.01).

Results and discussion
Linkage mapping
Of the testcross markers segregating from each par-
ent, we were able to place in the comprehensive paren-
tal linkage maps 1285 and 4487 (27 and 41%) for 268345 
and 268405, respectively; and 4674 and 4132 (50 and 
41%) for 850055 and 850096, respectively (Table 2, Addi-
tional file 15: Table S4). All maps had 12 linkage groups, 
corresponding to the haploid chromosome number 
in P. radiata. Marker density was generally high, with 
the mean interval between markers ranging from c. 
0.7–1.0 cM among all parental maps except 268345, in 
which the mean interval was 2.1 cM. The lower number 
of markers and marker density in the 268345 parental 
map reflected the apparent lower number of markers 
segregating from this individual. However, the apparent 
low segregation from parent 268345 was due to errors 
among the putative parental replicates used for the ini-
tial filtering in this parent, which led to many markers 
being excluded in the initial filtering and to a much lesser 
degree retrospectively (see ‘Refinements post mapping’ 

above). Specifically, after the initial filtering, there were 
4844 test-cross markers which were used for mapping in 
268,345 (results not shown), although the second filter-
ing post mapping showed there should have been 11,599 
markers available for mapping from this parent (Addi-
tional file 1: Table S1). Overall, there was a low propor-
tion of redundancy [based on the assignment of exome 
capture markers to P. taeda contigs [10];] among the 
parental maps with a total of 7123 unique P. taeda con-
tigs placed across the four comprehensive parental maps, 
which is promising for the effective anchoring of scaf-
folds in the P. radiata genome assembly (not available 
at the time of this analysis). The overall marker orders 
were generally stable between iterations of map con-
struction, and rank order correlations among syntenic 
markers in the comprehensive parental maps were high 
(mean  Spearman’s r = 0.94–0.97; Table  3), giving con-
fidence that marker orders were robust. Map lengths 
were similar to previous linkage maps constructed in 
P. radiata [17], and smaller than the recent ultra-dense 
maps constructed in Picea abies [4].

The large number of molecular markers produced by 
high-throughput technologies challenges conventional 
approaches for linkage mapping, both in terms of com-
puting time and the accuracy of ordering tightly linked 
markers. Even relatively small amounts of genotyping 
errors impact marker ordering [43] and greatly inflate map 
lengths in high-density maps [44]. The impact on marker 
ordering can extend beyond tightly linked markers to cause 
inversions [43] and translocations of map regions > 10 cM. 
Our method of first correcting improbable genotypes, then 
removing redundant (and near redundant) data from map 
calculations proved highly effective in achieving robust 
marker orders, as  evidenced by high repeatability during 
mapping iterations, high rank order correlations among the 
comprehensive parental maps, and realistic map lengths. 
Correcting genotyping errors also significantly reduced 
overall map lengths in our study, which were at least an 
order of magnitude greater prior to error correction com-
pared to the final maps and expectations based on previous 
linkage maps in P. radiata [7, 17].

Table 2  Summary statistics for comprehensive maps in the Pinus radiata QTL and FWK pedigreesa

a cM values are cM Kosambi

Population Parent # Markers Unique positions Linkage group 
length (cM)

Total length
(cM)

Mean interval 
between markers 
(cM)

QTL 268,345 1285 1095 147.6–237.1 2291.9 2.11

QTL 268,405 4487 3173 142.2–199.4 2117.9 0.67

FWK 850,055 4674 2355 84.0–174.3 1642.7 0.70

FWK 850,096 4132 2019 121.0–245.1 2081.7 1.04
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Synteny amongst parental linkage maps
Comparison of common markers between parental maps 
(at the contig level) revealed a significant departure 
from synteny among the parental linkage maps (Addi-
tional  file  16: Fig. S2). Specifically, ‘linkage group 8’ in 
parent 850,096 was ‘chimeric’, being composed of mark-
ers which mapped to both linkage groups 8 and 10 in 
the 268345 and 268405 parental linkage maps. The dis-
tribution of syntenic markers was quite striking, with 
0 to ~ 155 cM on parent 850096 linkage group 8 com-
posed of markers homologous to linkage group 8, and 
a further ~ 90 cM composed of markers homologous to 
linkage group 10 in parents 268345 and 268405, with 
high collinearity among the parental maps in each dis-
tinct region. Where these different regions intersected, 
in parent 850096 linkage group 8, there was a region of 
~ 10 cM with a mixture of homologs from linkage groups 
8 and 10 as well as very tightly clustered markers (Addi-
tional file 16: Fig. S2B). In contrast, all mapped markers 
in parent 850096 linkage groups 8 and 10 matched only 
their homologous chromosomes in the mapped markers 
from parent 850,055 (Additional file 16: Fig. S2C).

The departure from synteny in 850096 relative to the 
other parental linkage maps was somewhat surprising 
given the high level of synteny previously found between 
linkage maps in P. radiata [7] and more broadly between 
Pinus and Picea (family Pinaceae) species [45]. Recipro-
cal translocations are known to cause pseudo-linkage 
between markers on different chromosomes in linkage 
maps produced from the offspring of individuals het-
erozygous for the translocations [46–48], which may 
explain the chimeric linkage group 8 in 850096. Other 
potential explanations for the departure from synteny 

among the parental linkage maps include: i) mapping 
error; or ii) translocation of a region of linkage group 10 to 
linkage group 8 in parents 268345 and 268405. To investi-
gate the possibility that the departure from synteny was an 
artefact of mapping error, we checked statistical support 
for defining linkage groups and ordering markers within 
linkage groups 8 and 10 in 850096. However, there was 
no evidence for mapping error as both linkage groups: i) 
remained stable to a high independence LOD (minimum 
of LOD 8) in the grouping tree; and ii) had strong statis-
tical support for marker order from criteria such as the 
Chi-square goodness-of-fit contribution, and the geno-
type probability function. Furthermore, inspection of the 
initial marker grouping in parent 850055 linkage group 
10 (as opposed to the final map for this group) revealed 
numerous markers representing contigs which mapped to 
linkage group 8 and 10 in parent 850096 but not the other 
parents, supporting the presence of a chimeric linkage 
group in parent 850096 and arguing against an inter-chro-
mosomal translocation in 268345 and 268405. Therefore, 
of the above potential explanations the most parsimoni-
ous one for the chimeric linkage group in 850096, and the 
tightly clustered markers where homologs from both of 
these groups are found, is that this parent is heterozygous 
for a reciprocal translocation involving linkage groups 8 
and 10. Notably, inspection of the initial grouping for 
linkage group 10 in parent 850055 also showed markers 
covered a larger area of linkage group 10 than those in the 
final maps (Additional file 16: Fig. S2A, Fig. S2C). Hence, 
in this case ‘mapping error’, i.e., the exclusion of many 
poorly fitting markers during map construction (see link-
age map construction above), very likely explains the low 
coverage of linkage group 10 in parent 850055.

Table 3  Spearman’s correlations of marker order between Pinus radiata parental linkage mapsa

a Based on P. taeda contigs common to parental maps. Where multiple markers represented a single contig, the mean position of these markers was used. (#) = The 
number of contigs used in the comparison for each linkage group. * = P < 0.05, ** = P < 0.01, *** = P < 0.001

LGb 850,055 vs 850,096 850,055 vs 268,345 850,055 vs 268,405 850,096 vs 268,345 850,096 vs 268,405 268,345 vs 268,405

1 0.94 (39)*** 0.93 (25)*** 0.97 (58)*** 0.93 (23)*** 0.96 (59)*** 0.97 (23)***

2 0.97 (65)*** 0.99 (41)*** 0.97 (75)*** 0.99 (21)*** 0.96 (60)*** 0.95 (17)***

3 0.97 (37)*** 0.95 (19)*** 0.96 (50)*** 0.97 (11)*** 0.94 (43)*** 0.86 (11)**

4 0.94 (19)*** 0.97 (23)*** 0.99 (44)*** 0.99 (10)*** 0.95 (25)*** 0.90 (15)***

5 0.98 (29)*** 0.96 (18)*** 0.98 (50)*** 0.98 (17)*** 0.93 (42)*** 0.95 (10)***

6 0.90 (9)*** 1.00 (8)*** 0.97 (37)*** 0.95 (8)** 0.96 (31)*** 0.89 (7)*

7 0.94 (23)*** 0.90 (5)n.s. 0.97 (51)*** 0.93 (7)** 0.95 (42)*** 1.00 (6)**

8 0.81 (32)*** 0.93 (12)*** 0.98 (54)*** 0.95 (8)** 0.95 (36)*** 1.00 (4) n.s.

9 0.95 (51)*** 0.97 (13)*** 0.97 (43)*** 0.95 (20)*** 0.98 (50)*** 0.80 (4) n.s.

10 0.88 (17)*** 0.84 (10)** 0.91 (38)*** 0.92 (11)*** 0.97 (49)*** 0.98 (14)***

11 0.97 (27)*** 0.99 (16)*** 0.98 (42)*** 0.89 (12)*** 0.98 (39)*** 1.00 (7)***

12 0.97 (30)*** 0.95 (18)*** 0.98 (54)*** 1.0 (7)*** 0.95 (41)*** 1.00 (6)**

Mean 0.94 (31.5) 0.95 (17.3) 0.97 (49.7) 0.95 (12.9) 0.96 (43.1) 0.94 (10.3)
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Chromosomal structural rearrangements are com-
mon throughout the evolutionary history of land plants, 
including conifers [5, 45, 49]. Reciprocal translocations 
are among the most common structural rearrange-
ments and have important consequences for recombi-
nation, adaptation and gamete fertility [47]. They have 
been detected in many species by techniques such as: 
studying pollen viability; chromosome pairing during 
meiosis; linkage mapping; and DNA sequence analysis 

[46–48]. The occurrence of a large linkage group with 
markers homologous to multiple groups in a reference 
genome, or linkage maps of other individuals, as well as 
very tightly clustered markers indicative of suppression 
of recombination around the breakpoints, is consistent 
with observations in other species for which there are 
multiple lines of evidence for reciprocal translocations, 
including barley, soybean, and hybrids between peach 
and almond [46–48]. Further work will be required to 

Table 4  QTL for growth and wood properties detected by rMQM mapping in the Pinus radiata QTL population

a QTL LOD peak position
b Closest marker to QTL LOD peak
c Genome wide significance * = P < 0.05, ** = P < 0.01. The remaining QTL were significant at the suggestive level (chromosome-wide type I error rate < 0.05)
d The percent variation explained at each QTL peak
e Kruskal-Wallis significance at the closest marker (ie adjacent marker) to each QTL peak. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
f Positonal support for QTL from those found in the FWK population, all of which were significant at the suggestive level. In each case, the trait for which the 
supporting QTL was found is shown, (#) indicates average distance to the closest shared marker to each of the QTL in each map
f Silviscan traits are an average from two measurements: tree-rings 1–5 and tree-rings 6–10

Trait Population and 
parent

LG cMa Adjacent markerb LODc PVEd KW Supporte Validatedf

Silviscan traitsf

  WD QTL/405 4 58.4 63204602_117107 3.44 16.7 ****

  Tan QTL/405 4 37.0 63055824_6340 2.56 12.7 **

  Wall QTL/405 4 76.1 63177503_30587 4.40** 18.9 **

QTL/405 11 5.1 62510986_25015 2.80 11.5 * DBH (4.85)

  Sur QTL/405 4 75.1 63177503_30587 4.45** 19.1 **

QTL/405 11 5.1 62510986_25015 2.82 11.6 * DBH (4.85)

  MFA QTL/405 11 94.9 62955572_13326 2.82 13.9

  MOE QTL/405 4 52.1 63204602_174680 2.32 11.5 *

Other traits
  JWD_B QTL/405 10 72.4 58974239_18736 2.43 12.0 *** %LW1-10 (0)

  JWD QTL/405 10 72.4 58974239_18736 2.37 11.8 ** %LW1-10 (0)

  DBH QTL/405 1 172.3 62736216_20622 2.73 13.7 **

Silviscan traits
  Area QTL/345 3 35.1 62962718_10700 3.09* 12.2 **

QTL/345 4 115.6 62596398_9713 2.55 9.9 *

QTL/345 5 90.7 63227690_179297 2.39 9.4 **

  WD QTL/345 12 187.6 63206125_97028 2.23 11.2 *

  Rad QTL/345 1 25.5 63090351_5536 2.82 12.2 **

QTL/345 5 171.1 62991642_9036 2.11 9.0 **

  Tan QTL/345 1 36.6 63118470_4543 2.09 10.5 **

  Wall QTL/345 12 186.6 63206125_97028 2.49 12.3 *

  Sur QTL/345 12 186.6 63206125_97028 2.47 12.3 *

  MFA QTL/345 1 103.4 63206856_147794 2.71 13.4 **

Other traits
  JWD_A QTL/345 4 184.8 63016409_79396 2.87 12.8 **

QTL/345 3 82.0 62923239_33293 2.46 11.0 *

  JWD_B QTL/345 4 185.8 63016409_79396 3.38* 13.8 **

QTL/345 5 57.1 62362541_2029 2.52 10.1 *

QTL/345 3 82.0 62923239_33293 2.11 8.4

  DBH QTL/345 3 14.8 62962718_10700 3.81* 17.4 **

QTL/345 10 7.0 63227371_228101 2.38 10.8 *
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provide additional evidence for the putative chromo-
somal rearrangement in 850,096 and its potential func-
tional implications.

QTL analysis
QTL ‘discovery’ was performed in the QTL population 
while the FWK population was used to provide positional 
‘validation’ of the QTL discovered. In total, 28 QTL were 
detected in the QTL population, five of which were sig-
nificant at the genome-wide level (type I error rate < 0.05). 
The remaining 23 were significant at the suggestive level 
only (chromosome-wide type I error rate < 0.05), how-
ever all but two of the 28 QTL were supported by the 
non-parametric Kruskal-Wallis tests (Table  4). Within 
each parent, 1–3 QTL were detected per trait, and the 
estimated phenotypic variation explained by each QTL 
ranged from 8.4–19.1% (Table 4). Despite some co-colo-
cations of QTL for different traits within each paren-
tal map (defined as having peaks within 7.5 cM), QTL 
were widely distributed across 7 of the 12 linkage groups 

(Fig.  2). Specifically, 17 QTL mapped to 13 discrete 
regions in six linkage groups in the 268,345 parent, and 
11 QTL mapped to 8 discrete regions on 4 linkage groups 
in the 268,405 parent. Not surprisingly, most of the co-
located QTL were for traits with very high phenotypic 
correlations in the QTL population, such as Sur and Wall, 
and JWD measurements (Additional  file  17: Table  S5). 
Notably, comparison of homologous markers between 
linkage maps suggested no QTL were co-located between 
the different parental maps (Fig.  2, Fig.  3). However, 
four QTL in two different genomic locations (defined as 
regions with QTL separated by no more than 1 cM) in the 
discovery population, were also detected in the ‘valida-
tion’ FWK population at the suggestive significance level 
(Table 4). Both of these QTL segregated from the 268,405 
parent (Table 4, Fig. 2B).

The low number of QTL detected for each trait (mean 
1.6/parent, where significant QTL were found), and 
the relatively high estimated range of phenotypic vari-
ance explained (PVE) by each QTL (> 10% for 24 of the 

Fig. 2  QTL positions on the parental linkage maps of the Pinus radiata QTL population. A QTL positions in the 268,345 parental linkage map. B QTL 
positions in the 268,405 parental linkage map. Scale bars shows cM (Kosambi). Horizontal lines show the location of markers in the parental bin 
maps
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28 QTL discovered; Table 4) likely reflects the relatively 
small sample size of the QTL population, which is a com-
mon limitation in QTL studies of forest trees [50]. Spe-
cifically, the small sample size employed will reduce the 
number of QTL detected per trait, and overestimate the 
effect size of those QTL that are detected [51], both of 
which will bias the findings to suggest ‘major effect’ QTL 
are segregating in this pedigree. Indeed, Hall et  al. [50] 
estimated the ‘effective number of QTL’ (based on meta-
analysis of QTL studies in forest trees) to be 17 and 35, 
with a median PVE of individual QTL 4.5 and 7.7, for 
traits related to growth and physical wood properties, 
respectively, and that c. 1800 individuals are needed to 
capture 50% of the genetic variation in these traits. The 
selection of extreme phenotypes for wood density in the 
QTL population [15], however, likely  increased the  sta-
tistical power to detect QTL for wood density and cor-
related traits, such as cell wall thickness and specific 
surface area, relative to a random population of this size 
[52]. Nonetheless, for all traits studied there are no doubt 
many more loci influencing the phenotypic variation in 
the mapping population that were not detected, in line 
with previous findings particularly for ‘complex traits’ 
such as growth (DBH and or height) and wood density 
from QTL [15] and genome-wide association studies [53, 
54]. Despite this, the QTL presented here, particularly in 
the two genomic regions with positional support from 
the FWK population, provide promising targets to search 
for candidate genes and for further functional genomic 
studies. We are currently conducting genome-wide asso-
ciation and QTL mapping studies employing much larger 
sample sizes and more diverse germplasm to better char-
acterise the number, location and magnitude of effects 
of loci influencing growth and wood properties in the 
radiata pine breeding programme.

Genetic architecture and genomic prediction
Results from genomic prediction and analyses of 
genetic architecture (Table  1, Figs.  4 and 5, S2) were 
generally consistent with those from QTL scans. There 
was substantial variation among traits, with wood 
characteristics generally having moderate to high 
genomic heritabilities and predictive abilities (Table 1) 
and relatively less complex genetic architectures (i.e., 
controlled by higher proportions of loci with large and 
moderate effects, Fig. 5) compared to DBH. This is not 

Fig. 3  QTL positions on linkage group 4 in the 268345 and 268405 
parental linkage maps in the Pinus radiata QTL population. Scale bar 
shows cM (Kosambi). Horizontal lines show the location of markers in 
the parental bin maps. Lines between groups show the location of a 
sub-set of homologous contigs between the parents
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surprising as numerous previous studies have shown 
that DBH, presumably a highly complex trait, with 
relatively weak genetic control and strong genotype-
by-environment interaction in comparison to wood 
characteristics (reviewed by [55]) and is therefore a 
challenging trait to predict using genomic information 
[56–58]. Similarly, low predictive ability was observed 
for height in Norway spruce [58], in line with the 
detection of few QTL in later genome-wide association 
studies for this trait. The authors attributed the lack 
of power to detect QTL to the implemented genomic 
resources (exome capture might miss some important 
regulatory regions) and the size of the discovery pop-
ulation [59]. Overall, our results are consistent with 
a growing consensus that marker-assisted selection 
will likely have limited applicability in tree breeding 
because of the high complexity of most traits of inter-
est, with genomic selection being the only potentially 
feasible approach at present [3].

Our findings on within-family genomic prediction 
complement results from a previous study, in which we 
used a much wider training population and the result-
ing within-family predictive abilities were moderate 
for WD, but very low or absent for DBH [40]. This was 
also the case when adding up to 40 individuals from 
the respective mapping family to the wider training 
population [40]. In contrast, the alternative approach 
we assessed here (i.e., training GBLUP models specifi-
cally within each family), resulted in predictive abilities 

that increased stably with training population size and 
reached a plateau with ca. 2000 markers for both WD 
and DBH (Fig.  4, Additional  file  18: Fig. S3). Taken 
together, results from these two studies have two prac-
tical implications for the implementation of genomic 
selection. First, using family-specific GBLUP models 
for within-family prediction is clearly superior for more 
complex and less heritable traits, such as DBH. This is 
presumably because the genetic architectures of such 
traits, even if completely unknown at present, are likely 
to vary considerably among populations and families 
(i.e., because different sets of causative loci segregate in 
each family or population). Implementing family-specific 
GBLUP models will almost certainly be unfeasible in 
typically structured tree breeding programmes because 
of the logistical challenges associated with holding large 
numbers of seedlings or cryopreserved somatic embryo-
genesis materials until phenotypic data become available 
to train these models. However, knowing that reasonable 
predictive abilities can be achieved even with very small 
training population sizes (Fig. 4, Additional file 18: Fig. 
S3) would make it possible to revisit particularly suc-
cessful controlled crosses retrospectively and perform 
within-family genomic selection with very high intensity 
(i.e., select the very best full-sibling from the very best 
control-pollinated families). Such scenarios could con-
ceivably be exploited in the ‘rolling front’ radiata pine 
breeding programme in New Zealand [60], in which 
clonal tests of control-pollinated offspring produced by 

Fig. 4  Genomic predictive ability for diameter at breast height (DBH) and wood density (WD) as a function of training population size (A) and 
number of markers (B) used in random cross-validations of 86 Pinus radiata genotypes from the QTL population. Error bars correspond to standard 
deviations across 100 random cross-validations for each set of parameters. Analyses in (A) were based on all markers (M = 9353). The training 
population size in (B) was N = 43 (two-fold cross-validation) and subsets of markers were selected at random
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the top parents are established every year. Second, prac-
tically useful genomic predictive abilities were achiev-
able using as few as 2000 SNPs both within the two 
families used in this study (Fig. 4, Additional file 18: Fig. 

S3) and across much wider breeding populations [40]. 
Thus, low-density genotyping platforms can consider-
ably improve the cost-benefit ratio of ongoing genomic 
selection experiments in radiata pine.

Fig. 5  Genetic architecture of growth and wood quality traits in Pinus radiata. Relative proportions of markers with small, medium, and large effects 
(A) and standardised marker effect size distributions for diameter at breast height (DBH) and wood density (WD) as estimated using GCTB (B). 
Figure 5 (B) reports results from analyses across both populations. In Fig. 5 (A) WD* and DBH* were from analyses combined across populations, the 
remaining traits were from the QTL population only
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Conclusion
The linkage maps produced in this study provide 
fundamental information regarding linkage and 
genome structure in P. radiata, which will be use-
ful for a variety of applications including selection of 
marker panels for genomic studies (such as genomic 
selection) and comparison with our de novo whole 
genome assembly. Comparison of common markers 
in the parental linkage maps provides the first map-
based evidence for a large genomic rearrangement in 
P. radiata. The QTL presented here will be useful for 
further genomic studies, such as candidate gene dis-
covery and validating association genetics findings. 
Finally, genomic prediction and genetic architecture 
analyses provide insights into the genomic basis of 
variation in important phenotypic traits and inform 
practical decisions regarding the implementation of 
genomic selection in radiata pine breeding.
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bars correspond to standard deviations across 100 random cross-valida-
tions for each set of parameters. Analyses in (A) were based on all markers 
(M = 9353). The training population size in (B) was N = 40 (two-fold cross-
validation) and subsets of markers were selected at random.
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