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1  |  INTRODUC TION

Infertility is defined as a condition in which a couple who wants a 
child does not become pregnant for more than 1 year, and about 
15% of couples is diagnosed with infertility. Nearly 50% of infertile 
couples has a component of male factor, and almost 30% is caused 
solely due to the male factor,1 and the number of patients with poor 

sperm analysis is increasing worldwide.2 The presence of severe 
male factors necessitates the use of intracytoplasmic sperm injec-
tion (ICSI). During ICSI, embryologists evaluate sperm movement 
and morphology to determine whether to use the sperm for fertiliza-
tion operations. The World Health Organization Laboratory Manual 
and Menkveld 3,4 reported the characteristics of normal morpholog-
ical sperm, and in clinical practice, embryologists have learned these 
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Abstract
Purpose: To create and evaluate a machine- learning model for YOLOv3 that can si-
multaneously perform morphological evaluation and tracking in a short time, which 
can be adapted to video data under an inverted microscope.
Methods: Japanese patients who underwent intracytoplasmic sperm injection at the 
Jikei University School of Medicine and Keiai Reproductive and Endosurgical Clinic 
from	January	2019	to	March	2020	were	included.	An	AI	model	that	simultaneously	
performs morphological assessment and tracking was created and its performance 
was evaluated.
Results: For morphological assessment, the sensitivity and positive predictive value 
(PPV) of this model for abnormal sperm were 0.881 and 0.853, respectively. The sen-
sitivity	and	PPV	for	normal	sperm	were	0.794	and	0.689,	respectively.	For	tracking	
performance,	among	the	51	objects,	40	(78.4%)	were	mostly	tracked,	11	(21.6%)	were	
partially tracked, and 0 (0%) were mostly lost.
Conclusions: This study showed that evaluating sperm morphology while tracking in 
a single model is possible by training YOLO v3. This model could acquire time- series 
data of one sperm, which will assist in acquiring and annotating sperm image data.
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criteria empirically and select sperm based on their own criteria. 
Therefore, it is said that the morphological evaluation of sperm in 
ICSI is personal, subjective, and nonreproducible.5 Thus, the devel-
opment of a sperm assessment method using machine learning is 
expected.

Several machine- learning sperm assessments have been re-
ported for the evaluation of morphology and motility. Studies have 
evaluated the morphological classification performance of stained 
sperm	 images	 such	as	SCIAN,	HuSHeM,	and	SMIDS	using	various	
machine- learning methods for published databases,6–	9 and research 
has examined the performance of the morphological classification 
of	unstained	sperm	 image	database	called	MHSMA	for	each	acro-
some, head, and vacuole site.10,11 Studies evaluating sperm motility 
reported the use of images with a cover glass taken with an upright 
microscope.12 When performing ICSI, the embryologist uses an in-
verted microscope to observe the head and neck of unstained sperm 
at a low magnification of 400× while at the same time evaluating 
motility and morphology. To date, there have been no reports of 
a machine- learning model that can support such a series of work 
procedures at the same time. In addition, the studies reported so 
far have been modeled on data sets created at specific orientations 
and angles suitable for assessing sperm morphology. Models created 
with such data sets might have a risk of not being able to handle 
moving sperm.

In this study, we used the residual specimens of ICSI patients 
to acquire moving image data under an inverted microscope 
at a low magnification of 400× and created a new data set of 
unstained sperm images. This data set is intended for practical 
clinical use of deep- learning models and includes images of ori-
entation, angle, and focus from which it is difficult to evaluate 
morphology. Based on this data set, we created and verified the 
performance of a new deep- learning model that performs the 
morphological classification of sperm and sperm- tracking in a 
short time.

2  |  MATERIAL S AND METHODS

2.1  |  Data set

We introduce a new data set referred to as the Jikei sperm data set 
(JSD).	This	data	set	consists	of	high-	quality	images	of	4625	unstained	
sperm, of Japanese men, evaluated on an RGB scale. Figure S1 shows 
some examples of the JSD, and Table 1 shows the distribution of the 
samples in this data set. The method of generating the data set is 
described in Supporting Information 1 and Figures S2 and S3. The 
samples	 in	the	JSD	can	be	divided	 into	two	groups:	Groups	A	and	
B.	Group	A	contains	images	that	are	generally	out	of	focus,	contains	
images showing a large number of sperm in one frame, and includes 
obvious abnormal sperm such as those with a bent neck. Group 
B mainly contains images of well- focused abnormal and normal 
sperms.	Group	A	represents	the	situation	in	which	specific	sperms	
are	selected	from	a	large	number	of	sperms	(Figure	S1A),	and	Group	

B represents the situation in which sperms after immobilization are 
selected using a manipulator near the center of the angle of view 
(Figure S1B).

2.2  |  Deep- learning model and learning method

We used YOLO v3, a deep- learning model with the addition of a de-
tection head (Figure 1).13,14

To support embryologists in clinical practice, real- time as-
sessment is a priority; thus, we used YOLOv3, which can perform 
object detection and classification in a short time, in this study. 
The detection head is highlighted in Figure 1 and is useful for 
extracting features from high- resolution layers to detect small 
features such as vacuoles. The implementation of YOLOv3 used 
AlexeyAB/darknet	 (https://github.com/Alexe	yAB/darknet)	 to	 run	
on Windows.

Artificial	intelligence	(AI)	learning	consists	of	preprocessing,	aug-
mentation, and training (Figure S4), and their details are described 
below.

2.2.1  |  Preprocessing

For the input, we used the RGB image of the frame (2448 × 1920 
pixels)	of	the	video	taken	with	a	microscope,	cropped	at	960	×	960	
pixels centering on the annotated sperm, and resized to 448 × 448 
pixels.

2.2.2  |  Augmentation

To generate image data to supplement the variation of normal and 
abnormal sperm, we performed the following augmentation on the 
448 × 448 images: Exposure, saturation, and hue were ±10% each; 
image shift was ±30% both vertically and horizontally; the scale con-
version of the input image size was ±20%; and a mix- up was used to 
combine the images and labels for any two data.3

To improve the accuracy of cases in which abnormal sperm was 
detected due to a wide head, we used the data generated by apply-
ing an elastic transform to the normal sperm data. Elastic transform 
is a transformation that randomly distorts the vertical and horizontal 
grids and trains data that are largely distorted as abnormal and data 
that are distorted small as normal (Figure S5).

TA B L E  1 Distribution	of	samples	in	the	proposed	data	set

Class Group A Group B Total

Normal 658 270 928

Abnormal 1287 966 2248

Unclassifiable 1095 0 1095

Vacuole 0 354 354

https://github.com/AlexeyAB/darknet
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2.2.3  |  Training

The image generated by preprocessing and augmentation was input 
to YOLOv3 as training data. The learning parameters were batch 
size	64,	 iteration	10	000,	and	 initial	 learning	rate	0.0010.	The	 loss	
function was binary cross- entropy loss with focal loss. Focal loss is a 
method that scales the loss that is easy to recognize relatively small 
and the loss that is difficult to recognize relatively large and reflects 
it in learning.15	A	stochastic	gradient	descent	optimizer	was	used	for	
learning. The parameters of SGD were momentum 0.90 and weight 
decay 0.005. Furthermore, to converge the learning, we introduced 
scheduling of the learning rate, and the learning rate was multiplied 
by 0.10 at 8000 and 9000 iterations, respectively. Of the 1000 itera-
tion training, we adopted the one with the maximum mean average 
precision of the validation data as the result of the learning.

2.3  |  AI prediction

AI	prediction	consists	of	prediction,	postprocessing,	and	the	predic-
tion	result	(Figure	S6),	and	their	details	are	described	below.

2.3.1  |  Prediction

The image data output in real- time from the microscope camera was 
converted to an image size of 1440 × 1120 pixels and used as an 

input	to	the	AI.	There	are	four	reasons	to	convert	to	1440	× 1120 
pixels: it is a multiple of 32, which is in accordance with the restric-
tions of YOLOv3; it is a conversion close to the scale conversion 
(448/960	=	0.467)	performed	at	the	time	of	learning;	it	maintains	the	
aspect ratio of the image (2448/1920 = 1.275, 1440/1,120 =	1.286);	
and it meets the constraints of the GPU memory used (<10 GB).

2.3.2  |  Postprocessing

Because YOLOv3 might detect one object in duplicate, we per-
formed nonmaximum suppression to integrate objects with an inter-
section	over	the	union	of	≥50%.

2.3.3  |  Prediction	result

The detection thresholds were fixed at 0.25 for normal, abnormal, 
and unclassifiable and 0.05 for vacuole. The detection thresholds 
are the thresholds at which a label cannot detect sperm if the pre-
diction probability is less than the threshold value. For the classifica-
tion of normal, abnormal, and unclassifiable, we used the label with 
the highest prediction probability as the final prediction result. We 
lowered the threshold in the vacuole because we assumed that the 
detection rate would be increased, and the final decision would be 
left to the embryologist. In addition, the time required for the judg-
ment display was calculated.

F I G U R E  1 Architecture	of	the	model	with	detection	head	added	to	YOLO	v3.	The	shading	in	the	figure	represents	the	detection	head.	
Because this structure enables the extraction of features from a layer with high resolution, it is suitable for detecting small features such as 
vacuoles
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2.4  |  Evaluation method of AI performance of 
morphological assessment

We performed fivefold cross- validation to evaluate the proposed 
model. In fivefold cross- validation, the annotated image data were 
randomly divided into five groups. Image data extracted from the 
same video were divided into the same group. We used 9/10 of the 
four groups as training, 1/10 as validation, and one group as the test. 
The model created by training data was applied to the test data, and 
the	performance	of	the	model	was	evaluated.	As	a	result,	five	mod-
els were generated, and each was evaluated. The mean sensitivity 
and positive predictive value (PPV) of the five models were used as 
evaluation indexes. The “unclassifiable” label was not included in 
the evaluation data of the model because this label is a classifica-
tion set for tracking sperm that cannot be judged as normal or ab-
normal, and its discrimination performance is not of interest to this 
study. The definition of “sensitivity” and “PPV” is given in Supporting 
Information 2 and Table S1.

The PPV was used as an important index for minimizing the 
negative impact on the embryologist by making a prediction that 
AI	 was	 different	 from	 the	 “ground	 truth.”	 For	 vacuole	 detec-
tion, sensitivity, PPV, and specificity were calculated in the same 
manner.

2.5  |  Method for visual explanation

We	used	gradient-	weighted	class	activation	mapping	(Grad-	CAM)	to	
evaluate this model.16 This is a heat map showing the areas of inter-
est when the model makes classification predictions. In this study, 
Grad-	CAM	was	applied	to	two	layers	(L92	and	L104)	with	different	
resolutions (Figure 1). L104 is a layer that detects fine features com-
pared with L92, and in vacuole detection, it is ideal to show that the 
Grad-	CAM	in	L104	is	more	focused	on	the	vacuole	region.

2.6  |  Method for tracking sperm

YOLO v3 performed object detection in each frame of the video, 
and object tracking was performed by associating the same ob-
ject's bounding box between frames. SORT was used as the track-
ing method.17	 A	 description	 of	 SORT	 is	 provided	 in	 Supporting	
Information 3.

2.7  |  Evaluation method of tracking performance

For the tracking evaluation, one video was used. For the model eval-
uating the tracking performance, a fold1 model that does not use 
this video as training data was used. There were 51 sperm in the 
video, and we evaluated what percentage of all 152 frames could 
be tracked. Those detected in 80% or more frames were classified 
as mostly tracked, those detected in 20% to 80% of frames were 

classified as partially tracked, and those detected in less than 20% 
of frames were classified as mostly lost. We also measured the ID 
switch, the number of times the tracking was interrupted, and the 
sperm was recognized as another sperm. In addition, false positives, 
which recognize the place where there is no sperm as sperm, and 
false negatives, which do not recognize the place where sperm is 
present as sperm, were also evaluated in all frames. We also calcu-
lated the multiple object tracking precision (MOTP) and the multiple 
object	tracking	accuracy	(MOTA),18 which are often used to evaluate 
tracking	performance.	The	definitions	of	“MOTP”	and	“MOTA”	are	
given in Supporting Information 4.

3  |  RESULTS

3.1  |  Performance of sperm morphological 
assessment

Table 2 displays the average sensitivity and PPV of the fivefolds, 
and the sum of the confusion matrices in the proposed model is pre-
sented in Table 3. Table S2 shows the performance and confusion 
matrix of each fold.

The sensitivity of this model to abnormal sperm was 0.881, and 
the PPV was 0.853, which were extremely high values. (Video S1) 
The detection of abnormalities indicates that about 90% of the cases 
can be judged as being equivalent to those of the embryologist. It 
was clarified that by using a data set with abundant variations, it is 
possible for the model to learn to an accuracy that is sufficient for 
use in clinical practice. The sensitivity to normal sperm was 0.794, 
and	the	PPV	was	0.689,	which	is	slightly	lower	than	those	detected	
by abnormal sperm; however, the accuracy was relatively high. 
(Video S2) In this model, normal sperm candidates can be predicted 
simultaneously among multiple motile sperms, and the embryologist 
made the final judgment, using a manipulator to determine whether 
to select the sperm for ICSI.

The sensitivity of vacuole detection was 0.537, and the PPV was 
0.585, which was not very high. Even if vacuoles are detected, their 
use in ICSI depends on their size and position. Thus, the threshold 
is	set	to	0.05	with	priority	given	to	detection	sensitivity.	As	a	result,	
the PPV was lower than in other predictions, and the specificity was 
as	high	as	0.876.	It	is	considered	that	the	detection	itself	is	difficult	
because of the small number of pixels of the vacuole, and in cases 
of multiple vacuoles, the sensitivity and PPV are lowered because 
of the inability to correctly recognize the second and subsequent 
vacuoles. The inference time required for the proposed model was 
0.246	s.	This	means	that	 it	 is	possible	to	obtain	a	 judgment	with	a	

TA B L E  2 Average	performance	of	fivefold	cross-	validation

Abnormal Normal Vacuole

Sensitivity 0.881 0.794 0.537

PPV 0.853 0.689 0.585

Abbreviation:	PPV—	positive	predictive	value.
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small time- lag in normal moving image data, which is a little longer 
than the frame- switching time of 0.033 s.

3.2  |  Results of the visual explanation

We attempted to make a visual explanation by showing a heat map 
created	 by	 the	 Grad-	CAM	 technique	 adapted	 to	 this	 model.	 As	
shown in the figure, it was clarified that this model focuses on the 
part	 expected	 to	make	 the	 judgment	 (Figure	 2A–	D).	 In	 the	 image	
showing an abnormality in the neck, the abnormality was predicted 
by focusing on the vicinity of the neck (Figure 2B). Normal sperm 
respond more widely from head to neck than abnormal sperm 
do	 (Figure	 2A).	 The	 unclassifiable	 image	 reacts	 more	 extensively	
(Figure 2C). In sperm with vacuoles, a reaction was observed near 
the head in L104, which is a layer with a finer spatial resolution 
(Figure 2D). These findings are consistent with the points to which 
embryologists should pay attention.

Label
Actual class 
Abnormal Normal Unclassifiable Vacuole

No 
object

Abnormal 647 51 0 0 50

Normal 77 215 0 0 16

Unclassifiable 0 4 0 0 2

Vacuole 1 0 0 154 95

No object 0 0 0 125 0

TA B L E  3 Sum	of	confusion	matrixes	
of proposed model for evaluation on the 
test set

F I G U R E  2 (color	figure).	Visual	explanation	of	the	proposed	model	generated	by	the	Grad-	CAM	technique.	When	producing	the	
inference	results,	the	model	pays	attention	to	warm	colors.	Normal	(A),	abnormal	(B),	and	unclassifiable	(C)	results	are	more	commonly	
shown in the abstract layer L92, and the vacuole (D) shows the result at L104

TA B L E  4 Results	of	the	tracking	performance	of	the	proposed	
model

n (%)

Unique object 51 (100)

Mostly tracked 40 (78.4)

Partially tracked 11	(21.6)

Mostly lost 0 (0)

False positive per frame 1.22 (2.4)

False negative per frame 2.18 (4.3)

ID switch 21*

MOTA	(%) 84.37

MOTP 0.173

*Times for all frames.
Abbreviations:	MOTA—	multiple	objects	tracking	accuracy;MOTP—	
multiple objects tracking precision.
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3.3  |  Tracking performance

In Table 2, we present the video and tracking performance of the 
results	of	the	tracking	AI	detection	(Video	S3	and	Table	4).

Among	 the	 51	 objects,	 40	 (78.4%)	 were	 mostly	 tracked,	 11	
(21.6%)	were	partially	tracked,	and	0	 (0%)	were	mostly	 lost.	There	
were 21 ID switches, indicating that tracking was interrupted and 
recognized as another sperm. The numbers of false positives and 
false negatives for the entire video were 185 and 332, with 1.22 
(2.4%) and 2.18 (4.3%) per frame, respectively. With this level of 
tracking performance, it can be used in clinical settings without any 
discomfort. To improve the accuracy of tracking, we annotated ob-
jects that were almost out of focus when creating the true correct 
answer, so there were many false negatives. Most of these were ob-
jects that this model was unable to recognize as sperm because they 
were	 too	 out	 of	 focus.	MOTA	 and	MOTP	were	 84.4%	 and	 0.173,	
respectively. The high tracking performance means that it is possible 
to display sperm motility and the trajectory at the same time as the 
morphological evaluation.

4  |  DISCUSSION

We have shown that the proposed model makes short- time pre-
dictions for normal and abnormal sperm with sensitivities of 0.794 
and	0.881	and	PPVs	of	0.689	and	0.853,	respectively.	It	also	dem-
onstrated high tracking performance for video data that are easily 
out of focus. This high performance made it possible to evaluate the 
morphology of sperm while tracking, as carried out by embryologists 
during ICSI, making it the model closest to the clinical application at 
this time. In addition, by performing morphological evaluation and 
tracking simultaneously, it became possible to acquire time- series 
data of one sperm. This makes it easy to acquire and annotate sperm 
image data and helps solve the proposition of improving the preg-
nancy rate by linking the evaluation of sperm morphology with clini-
cal information.

The	proposed	AI	model	may	assist	in	detecting	abnormal	sperms	
in a clinical setting, reducing the workload of embryologists, and 
complementing subjectivity.

4.1  |  Model performance of 
morphological assessment

Because we used the JDS in this study, the original unstained sperm 
image data set; it makes sense to compare its performance with 
other	 studies	 using	 the	MHSMA	data	 set,	which	 also	 collects	 un-
stained sperm. However, a simple comparison would not make sense 
because of the different natures of these data sets.

The	MHSMA	 data	 set,	 which	 consists	 of	 pictures	 of	 approxi-
mately 1,540 unstained sperm taken at low magnification of 400 × or 
600	× , is provided with expert judgment as to whether the head, 
acrosome, vacuoles, neck, and tail are normal or abnormal.11 These 

pictures are taken in a focused state and in a direction in which it can 
be determined whether the picture is normal or abnormal (mostly in 
a	direction	in	which	the	maximum	width	can	be	measured).	Although	
the data are slight, it also includes pictures that have been judged 
despite inappropriate orientation or angle for the classification.

The	 state-	of-	art	 model	 for	 the	 MHSMA	 data	 set	 at	 this	 time	
was	reported	by	Abbasi	et	al,11 who used a method called the “deep 
transfer learning technique” to address the lack of training data in 
MHSMA.19 In this technique, the selected parameters of a neural net-
work trained earlier on one or more data sets to solve source prob-
lems will be retrained on a new data set to tackle the target problem.11 
In	the	model	proposed	by	Abbasi	et	al,	the	normal	PPVs	were	very	
high at 93.4%, 91.8%, and 97.7% for each of the sperm acrosome, 
head, and vacuole, respectively, whereas the abnormal PPVs were 
43.7%,	63.0%,	 and	65.8%,	which	were	 lower	 than	 the	model	 used	
in this study. Those authors excluded the sperm neck and tail from 
the evaluation because they are easy to evaluate by experts and do 
not	require	assistance	from	an	AI	model.	In	addition,	as	the	authors	
pointed	out,	the	low	variation	in	abnormal	sperm	in	the	MHSMA	data	
set is considered to be one of the factors that do not improve the 
PPV for abnormal sperm. It is considered that because our proposed 
model was trained with a data set with more variations for cervical 
abnormalities, it had a higher PPV for abnormal sperm. In addition, 
the	MHSMA	data	set	consists	of	sperm	with	only	good	orientations	
that can be easily predicted and well- focused, and thus, the model 
that trained such data may not be able to recognize it as a sperm in 
clinical practice, and the frequency of false positives and false nega-
tives are expected to increase. In our study, objects that could not be 
determined were classified as unclassifiable, which makes it possible 
that abnormal and normal characteristics became apparent.

The	AI	model	 developed	 in	 this	 study	evaluated	 images	under	
an inverted microscope in a short time, and its sensitivity and PPV 
for abnormal sperms were very high. This may help detect abnormal 
sperms in clinical settings, potentially reducing the workload of em-
bryologists and complementing subjectivity.

4.2  |  Model performance of tracking

There are several reports on tracking motile sperm using deep 
learning,20–	23 of which the latest and highest performing ones were 
reported by Somasundaram et al.12 The sperm with the fastest move-
ment speed was detected in 1.12 se, and the error rate was 2.31 with 
high accuracy. Those authors dealt with vertical defocus by using a 
cover	glass	to	drop	unstained	sperm.	A	cover	glass	cannot	be	used	
when performing ICSI in the clinical setting, because an inverted mi-
croscope is used. If the cover glass is not used, it is difficult to focus 
because of the movement of sperm in the Z direction (perpendicular 
to the surface of the stage of the microscope). In this study, by creat-
ing a classification called “unclassifiable,” we found it was possible to 
deal	with	a	lack	of	focus	and	perform	tracking.	As	a	result,	40	of	51	
(78%)	sperm	in	the	evaluated	video	were	mostly	tracked,	and	MOTA	
and MOTP were 84.4% and 0.173, respectively, making it possible 
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to evaluate sperm motility with high tracking performance. In the 
tracking competition for multiple objects (https://motch allen ge.net/
resul	ts/MOT20)	held	in	2020,	the	top	models	were	MOTA	58%	and	
MOTP 0.20, which indicate that the performance of this model is 
high. High- precision tracking of sperms, which are easily out of focus 
under an inverted microscope, may be practically useful because it 
enables	velocity	calculation.	The	short	evaluation	time	of	0.246	sis	
also crucial for evaluating sperms in motion in clinical situations.

4.3  |  About the setting of ground truth

At	present,	the	fact	that	the	“ground	truth”	is	the	judgment	by	the	
embryologist remains a problem. Sperm morphology is continuously 
present in varying degrees, from ideal normal sperm morphology, as 
shown in the literature, to apparently abnormal sperm. Therefore, 
setting a clear threshold between normal and abnormal is difficult.24 
In clinical practice, judgments differ to some extent depending on 
the semen findings of individual embryologists and the status of 
their patients. This ambiguity has also become a problem when de-
fining the ground truth, and in some cases, the ground truth was 
reevaluated	by	the	prediction	of	the	AI	model.	This	model	is	a	digi-
tized version of the sperm assessment technique of one embryolo-
gist.	Assuming	that	the	judgment	criteria	of	each	embryologist	are	
potentially different, this algorithm cannot be used as it is in other 
facilities. However, it is considered possible to create a new algo-
rithm suitable for the facility by changing annotation for a new judg-
ment	criterion.	The	AI	prediction	is	just	a	prediction.	Although	this	
prediction is useful for detecting morphological abnormalities, there 
is still a need for the embryologist to make the final decision whether 
or not to use sperm for ICSI.

4.4  |  How to use the proposed model in 
clinical situations

An	 embryologist's	 judgment	 can	 now	 be	 stored	 using	 such	 image	
recognition	AI.	Displaying	 the	 judgment	 results	 on	 screen	may	be	
effective in situations where the embryologists will be educated. It 
is also useful when determining the sperm selection criteria for each 
facility. The ability to detect abnormalities with a high degree of ac-
curacy may also reduce the workload of embryologists. Furthermore, 
it	may	be	possible	to	create	an	AI	model	that	predicts	fertilization	
and pregnancy by linking this model with clinical information such 
as the presence or absence of fertilization and pregnancy in addition 
to	features	extracted	by	an	AI	model	capable	of	evaluating	oocyte	
morphology.

However,	 there	 remains	 a	 concern	 that	 the	 introduction	 of	 AI	
models into daily clinical practice may itself reduce work efficiency. 
This	is	because	once	AI	is	introduced	into	clinical	practice,	the	task	
of	confirming	the	AI’s	judgment	will	be	added	to	the	usual	workflow	
of performing ICSI. Embryologists will need to look away from the 
inverted	microscope	 once	 to	 check	 the	AI	 decision	 on	 a	 separate	

monitor. To improve the work efficiency loss due to the one- step 
addition,	it	is	necessary	to	place	a	monitor	displaying	the	AI	results	
near the inverted microscope and increase familiarity of embryolo-
gists	with	the	workflow	using	AI.

5  |  CONCLUSIONS

In this study, we created the JSD, which is a high- quality data set 
acquired in accordance with the work process performed by embry-
ologists during ICSI in clinical practice. Moreover, based on this data 
set, we created a new model that performs high- accuracy morpho-
logical prediction and tracking in short time using YOLOv3. This is 
the first report of a model that has high tracking performance and 
can perform the morphological assessment for video data that are 
difficult	to	focus.	Rather	than	competing	on	the	performance	of	AI	
models on a given data set, this study has been conducted in a prac-
tical clinical setting; to the best of our knowledge, this has not been 
reported before. Morphological evaluation while tracking and the 
short evaluation time may be useful in clinical settings to assist in 
the detection of abnormal sperms and reduce the burden on em-
bryologists. In addition, by performing the morphological evaluation 
and tracking at the same time, it became possible to acquire time- 
series data of one sperm. This makes it easy to acquire and annotate 
sperm image data and helps to solve the proposition of improving 
the pregnancy rate by linking the evaluation of sperm morphology 
with clinical information. Future studies on highly practical models 
are expected.
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