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ABSTRACT

The adaptation of CRISPR/Cas9 systems for pooled
library genetic knockout screens in mammalian cells
has substantially advanced the state of the art in hu-
man functional genomics. Screening panels of cell
lines for genes whose knockout imposes a signif-
icant fitness defect has dramatically expanded our
catalog of high-confidence essential genes, and has
already proven useful in identifying tumor-specific
essential genes for the development of targeted ther-
apies. However, nonexperts currently lack an easy to
use way to access this data and to identify whether
their genes of interest are essential across differ-
ent genetic backgrounds. The volume of screening
data is expected to grow massively, making the prob-
lem more intractable. Here we describe PICKLES, the
database of Pooled In vitro CRISPR Knockout Library
Essentiality Screens, where end users can display
and download raw or normalized essentiality profiles
for more that 18 000 protein-coding genes across
more than 50 cell lines. An additional data set with
15,000 genes targeted by pooled library shRNA in
over 100 cell lines is also included. Researchers can
see at a glance the relative fitness defect and tissue
specificity of their genes of interest, generate and
save figures locally, and download all raw data. The
database is available at http://pickles.hart-lab.org.

INTRODUCTION

The ability to knock out a gene and observe the resulting
phenotype has been a foundational tool for functional ge-
nomics for decades. The yeast deletion library has been ex-
tensively studied, and recently a near-complete catalog of
fitness defects of all pairwise deletions of yeast genes was
published. The tractability of yeast genetics made Saccha-
romyces cerevisiae a powerful model system. The discov-
ery of RNA interference and its adaptation to RNA-guided

transcript knockdown brought large-scale genetic screens
to higher eukaryotes (1,2) but imprecise targeting, low pene-
trance, and off-target effects (3–5) led to a loss of confidence
in this method for large-scale screens (6). Recently, the ap-
plication of CRISPR/Cas9 technology to generate double
strand breaks in target DNA, whose repair by nonhomol-
ogous end joining frequently results in indels, has been ex-
ploited to knock out protein coding genes in a variety of
model systems by targeted introduction of frameshifts or
other deleterious mutations (7,8).

Genome-scale CRISPR libraries have been adapted to a
variety of screening goals, including knockout libraries for
loss of function screens for protein coding genes (9) (10)
and noncoding RNA (11,12). The most commonly used
CRISPR-associated endonuclease, SpCas9, has been mod-
ified to disable its endonuclease activity, facilitating protein
fusion with domains for transcriptional activation (13,14),
transcriptional repression (13,15), and chromatin modifica-
tion (16). Multiplexed guide designs have been engineered
to enable pairwise gene perturbation screens to detect syn-
thetic lethal genetic interactions (17) and to remove pre-
cisely targeted segments of DNA (12).

Despite this breadth of available technologies, the most
common application of pooled CRISPR libraries is to
screen protein coding genes for knockout fitness defects in
cancer and other human cell lines. Pooled library screens
in cancer are designed to identify the essential genes spe-
cific to tumors of a given tissue of origin or even sub-
type. Early screens demonstrated the power of this differ-
ential essentiality approach (18,19) and demonstrated that
genotype-specific vulnerabilities could be identified and tar-
geted (20), while subsequent efforts expanded the scope of
the cell lines being screened (21,22), and vastly more data is
in the pipeline (23,24) (Meyers et al., bioRxiv, 2017).

As this massive screening effort expands, so grows the
need for a central repository where researchers and the pub-
lic can easily interpret the data. Here we present PICKLES,
the database of Pooled In vitro CRISPR Knockout Library
Essentiality Screens. PICKLES presents a easy to use in-
terface where a user can visualize how the essentiality of a
given gene varies across experiments and across tissues/cells
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Figure 1. (A) Density plot of fold changes of gRNA targeting essential (red) or nonessential (blue) genes. (B) Distributions of BAGEL Bayes Factor (BF)
scores in Tzelepis AML dataset. Cells are screened under uniform conditions but experimental and biological differences drive variance in results. (C)
Quantile normalized BFs of the Tzelepis AML dataset, allowing for direct gene BF comparisons across cell lines.

probed within an experiment. Raw data from large-scale
screening efforts is processed through the BAGEL pipeline
(25), which generates a log Bayes Factor that represents the
confidence level of whether a gene is essential in a given cell
line screen. Both raw and normalized BFs are available for
download.

The PICKLES database currently contains data from
four unique CRISPR knockout libraries applied in screens
of over 60 cell lines, performed in at least six labs. It addi-
tionally contains data from genome-scale shRNA knock-
down screens in over 100 cancer cell lines (26–28). We an-
ticipate expanding this database as additional large scale
screening data are made available.

DATA SOURCES AND PREPROCESSING WITH
BAGEL

Viral-mediated, pooled library CRISPR screens involve
transducing a large population of cells with a pooled li-
brary of CRISPR reagents (guide RNAs, or gRNA). Ex-
pression of SpCas9 or a related endonuclease, either from
prior genetic knock-in or encoded on the same viral back-
bone as the gRNA, results in gRNA-mediated cleavage and,
in most cases, error-prone repair of targeted loci. Successful
targeting of a fitness gene results in mutation or indels re-
sulting in frameshift, loss of gene function, and subsequent
cell death, arrest, or severe fitness defect, causing cells har-
boring that gRNA to represent an ever smaller fraction of
total transduced cells as generations pass. At an endpoint,
typically 8–15 doublings after library transduction, gRNA
sequences are amplified from genomic DNA and sequenced
and their relative abundance is compared to either a con-
trol timepoint immediately after infection or to the original
plasmid pool. Guide RNA targeting essential genes will be
depleted in the final pool, resulting in a strong negative fold
change relative to genes with no fitness defect.

Raw read count data from all datasets was acquired and
processed with BAGEL (25). BAGEL is a Bayesian clas-
sifier trained using gold standard reference sets of essen-

tial and nonessential genes. The observed fold changes of
gRNA targeting uncharacterized genes are compared to
the observed fold change distributions of gRNA targeting
genes in the training sets and a log Bayes Factor (BF) is cal-
culated. The BF represents the relative confidence that the
gene is essential (i.e. that the observed fold changes were
more likely drawn from the essential or nonessential distri-
butions; Figure 1A).

The BF for a given gene in a given screen is a function
of the number of gRNA targeting that gene, the number
of replicates screened, and the number of doublings at the
screen endpoint, as well as other global experimental fac-
tors. It is also common for BF distributions to vary con-
siderably even within the same set of experiments/screens
conducted in a single lab (Figure 1B). For this reason, we
have quantile normalized the BF from each experimental
set before generating the display (Figure 1C). Both raw
and quantile normalized BF data are available for down-
load from the website. However, across-dataset compar-
isons are still problematic. The different CRISPR libraries
generally have different numbers gRNA per gene, as well as
wide variation in gRNA knockout efficiency, and the vari-
ous screening groups often implement experimental designs
that differ in number of replicates and timepoints assayed.
The BAGEL pipeline accumulates information from each
gRNA in each replicate at each timepoint, leading to highly
accurate results within a dataset but strong batch effects be-
tween datasets. We therefore display the results from each
dataset independently.

shRNA data

In addition to CRISPR data, the PICKLES database also
contains a large compendium of pooled library shRNA
screen data from (26–28). This data has undergone consid-
erably more thorough preprocessing and filtering, including
reducing the number of screens to 112 high quality screens,
ensuring minimal representation of shRNA in T0 popula-
tions, and normalizing to the number of shRNA targeting
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Table 1. Fitness screens currently available in PICKLES

Screen/library Data type Number of genes Number of cell lines

shRNA Essentiality Score 13 395 112
GeCKO Quantile Normalized Bayes Factor 15 466 33
TKOv1 Quantile Normalized Bayes Factor 17 230 10
Tzelepis/Yusa Quantile Normalized Bayes Factor 17 997 5
Wang Quantile Normalized Bayes Factor 19 161 19

Figure 2. BFs of FZD5 in the TKOv1 library dataset. Dashed blue line indicates a threshold for gene essentiality (BF = 3). The tissue key displays the cell
line tissue/tumor subtype of origin. The FZD5 receptor is essential in PDAC cells (orange), with all PDAC Bayes Factors falling well above the indicated
threshold.

each gene in each experiment, in order to yield a robust
dataset with minimal false positives. These data processing
steps are described in (Hart et al., bioRxiv, 2017). Table 1
shows a complete listing of the data available at time of writ-
ing. We note that, in general, CRISPR screens show much
greater sensitivity and specificity than shRNA screens (29)
and that global analyses such as those presented here are
less affected by these QC considerations.

DATABASE INTERFACE AND TUTORIAL

The PICKLES database can be found at pickles.hart-
lab.org. The main database display tool is found under the
‘Essentiality Map’ tab. Upon entering a valid gene symbol
in the input form, the essentiality profile for that gene will
be plotted for each data set where that gene is assayed (30).
For each display, the primary y-axis plots the gene BFs (blue
dots connected by a line), as well as a dashed line at BF =
3 (dashed blue) representing a low-stringency threshold for
gene essentiality (29) (Figure 2). Above the plot is a color-
coded bar representing the cancer subtype or tissue of ori-
gin for the cell line; the key is to the right of the plot. Figure
2 shows the essentiality plot for the FZD5 receptor, which
is specifically essential in RNF43-mutant pancreatic ductal
adenocarcinoma (PDAC) cells (20). As with all essentiality

plots, the figure can be saved locally in png format and the
data can be downloaded in a tab-delimited text file.

Where available, the target gene expression level is dis-
played on the same graph. For example, Figure 3A shows
the essentiality plot for KRAS in the Project Achilles
screens (22), and demonstrates the tissue-specific depen-
dence on KRAS of PDAC and select lung cancer cell lines.
Expression level of KRAS drawn from CCLE microarray
data is plotted for each cell line in red (right Y axis). In this
case, no obvious correlation between expression and essen-
tiality exists. In contrast, breast cancer oncogene FOXA1
(Figure 3B) shows high essentiality and high expression
only in HER2+ and luminal breast cancer cell lines.

Other tabs on the top navigation bar provide links to
standard resources. The statistics tab shows summary statis-
tics of the database; at time of writing, these data are sum-
marized in Table 1. Raw data and processed (quantile nor-
malized) data for all screens can be downloaded from the
Documents tab, as well as links to the published studies
from which these data are derived.

IMPLEMENTATION AND FUTURE DIRECTIONS

The data display is currently implemented exclusively in
javascript, using the charts.js library for display. A sqlite
database containing all gene essentiality and gene expres-
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Figure 3. (A) BFs of KRAS in the Achilles library dataset (blue), with gene expression data (red). Pancreatic (tissue key; orange) and specific lung (tissue
key; cyan) cancer cell lines have high BFs consistent with KRAS dependence in KRAS-mutant cancers. (B) BFs of FOXA1 using the shRNA library
dataset. Both gene expression (red) and BFs (blue) are high in luminal and HER2 breast cancer cell lines compared to basal breast, ovarian, pancreatic
and colon cancer cell lines.

sion data resides on the web server and is queried through
a custom python web service. The browser-based javascript
modifies the view in response to user selection of options
and downloads additional data via http request when the
user searches for a new gene. Currently statistical tests are
pre-calculated for the existing data and are loaded as static
metadata.

CONCLUSIONS

We present PICKLES, the database of Pooled In vitro
CRISPR Knockout Library Essentiality Screens, where re-
searchers can explore the gene essentiality profiles of their
favorite genes across a large set of CRISPR knockout and
shRNA knockdown fitness screens, mostly in cancer cell
lines. Raw data from five major data sets of genome-scale
screens, for a total of over sixty CRISPR-screened cell lines
and over one hundred shRNA-screened cell lines, was ac-
quired and processed with the BAGEL algorithm, result-
ing in a consistent set of essentiality scores. An easy to
use interface allows users to visualize how gene-specific es-
sentiality varies across tissue types and, in many cases, the

relationship with gene expression levels in the same cells.
We anticipate that this database will grow rapidly as hun-
dreds of screens are known to be in the pipeline in screening
labs around the world, and we envision that the PICKLES
database will be a broadly useful tool for mining this impor-
tant resource.
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