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Abstract

The COVID-19 pandemic has affected clinical trials across disease areas, rais-

ing the questions how interpretable results can be obtained from impacted

studies. Applying the estimands framework, analyses may seek to estimate the

treatment effect in the hypothetical absence of such impact. However, no

established estimators exist. This simulation study, based on an ongoing clini-

cal trial in patients with Tourette syndrome, compares the performance of can-

didate estimators for estimands including either a continuous or binary

variable and applying a hypothetical strategy for COVID-19-related intercur-

rent events (IE). The performance is investigated in a wide range of scenarios,

under the null and the alternative hypotheses, including different modeling

assumptions for the effect of the IE and proportions of affected patients rang-

ing from 10% to 80%. Bias and type I error inflation were minimal or absent

for most estimators under most scenarios, with only multiple imputation- and

weighting-based methods displaying a type I error inflation in some scenarios.

Of more concern, all methods that discarded post-IE data displayed a sharp

decrease of power proportional to the proportion of affected patients,

corresponding to both a reduced precision of estimation and larger confidence

intervals. The simulation study shows that de-mediation via g-estimation is a

promising approach. Besides showing the best performance in our simulation

study, these approaches allow to estimate the effect of the IE on the outcome

and cross-compare between different studies affected by similar IEs. Impor-

tantly, the results can be extrapolated to IEs not related to COVID-19 that fol-

low a similar causal structure.

1 | INTRODUCTION

The COVID-19 pandemic has affected clinical trials across disease areas,1,2 raising questions on whether and how inter-
pretable results can be obtained by ongoing studies.3 Disruptions to trials caused by the pandemic can be considered
“Intercurrent Events” (IE)4 as defined in the Estimand framework as “Events occurring after treatment initiation that
affect either the interpretation or the existence of the measurements associated with the clinical question of interest”.5
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In the estimand framework, integrating with the other attributes (treatment, population, variable of interest and popula-
tion-level summary), the handling of the IE defines the estimand of interest in a clinical trial and is explicitly acknowl-
edged to reflect and shape the question that the study aims to address.6–8

Where the objective of a trial is to estimate the effect of a treatment in the absence of some of the impacts of the
pandemic, it has been proposed that the analysis should aim to determine the effect if the COVID-related IE had not
occurred.9,10 However, the existence of reliable estimators is a precondition to implement this (hypothetical) strategy.9

Importantly, the suitability and performance of estimators depends on the clinical context and positioning of the IE in
the causal structure of the trial.

To investigate candidate estimators for an estimand that includes the hypothetical strategies for a COVID-related
IE, in this article we present a simulation study, using the CANNA-TICS trial (ClinicalTrials.gov identifier
NCT03087201) as an example. This multicenter, randomized, double-blind, placebo controlled, and parallel-group trial
aims to demonstrate that the treatment with the cannabis extract Nabiximols is superior to placebo in reducing tics and
comorbidities in adult patients with chronic tic disorders (CTD) and Gilles de la Tourette syndrome (TS). The primary
endpoint is based on the Total Tic Score (TTS) of the Yale Global Tic Severity Scale (YGTSS),11 a semi-structured inter-
view assessing the severity of motor and phonic tics (ranges 0–50). As the primary endpoint, a dichotomization of the
continuous relative change from baseline compared to 13 weeks after treatment initiation is used to measure the pro-
portion of patients with a reduction in the YGTSS-TTS of at least 30%. More details can be found in the study protocol
publication12 and the previously published investigation of the impact of the COVID-19 pandemic on the power of the
trial if a treatment-policy strategy is employed for handling the COVID-related IEs.13 Lasch et al. showed that
depending on the proportion of affected patients, substantial power losses are possible, potentially making sample size
increases necessary to retain sufficient power. Additionally, the simulation study showed that by adjusting for the
occurrence of the COVID-19-related IE, the power loss could be diminished to different degrees in most of the investi-
gated scenarios.

For the CANNA-TICS trial, the following elements are examples for COVID-19-related IEs:

1. The implementation of social distancing measures such as social distancing or complete lockdowns can affect men-
tal health and increase anxiety. This has been shown to increase the severity of tics of patients with CTD and TS.14

In a clinical trial, this would imply a potential increase in the YGTSS-TTS due to the COVID-19 pandemic in
patients recruited before the start of the COVID-19 pandemic and assessed at 13 weeks during the pandemic.

2. The ascertainment method for the YGTSS-TSS has been changed from in-person to remote due to the change in
access rules by participating hospitals. This change in the assessment method from baseline to primary endpoint
measurement might influence the interpretability of the primary endpoint, for example due to the different psycho-
logical state of the subjects undergoing a visit in a clinic versus connecting from their own house, leading to a differ-
ent assessment of their own symptoms.15 While no specific evidence comparing in-person versus remote assessment
of the YGTSS exists, conflicting evidence can be found from other neurological and psychiatric conditions. On the
one hand, there is some support to the interchangeability of in person and remote assessment for some of the most
widely used scales for depression15 and remote assessment of the YGTSS is used as a pre-defined standard procedure
in the EMTICS trial.16 On the other hand, there is some evidence suggesting that the physical distance from the cli-
nician can decrease anxiety,17 or that patients might be more or less prone to admit severity of symptoms depending
on the modality of assessment.18

Note that addressing the IE with a hypothetical strategy does not directly translate to estimating the effect of the treat-
ment in a “post-COVID-19 world” or “in line with the initial trial objective.”19 While handling these two IEs with a
hypothetical strategy is in principle compatible with these scenarios, additional IEs like COVID-19 infections would
need to be considered in addition to fully reflect the scenario of interest. Additionally, different stakeholders (pharma-
ceutical industry, regulators, Health Technology Assessment bodies, prescribers, and patients) might be interested in
slightly different questions, which would translate to different estimands of interest. The above-described IEs are con-
sidered relevant examples in the investigated disease and trial setting, but they do not aim to represent all relevant IE
that are related to Covid-19. Consequently, the focus of our article is the comparison of the performance of candidate
estimators for an estimand that handles (some) Covid-19-related IE with a hypothetical strategy. The findings are appli-
cable for different IEs as long as data-generating model and the causal structure are the same as one of those simulated.

The impact of the IE on the trial and on the performance of different estimators depends not only on the character-
istics of the IE per se, but also on the proportion of patients affected and the absolute number of patients. For example,
the operating characteristics of some estimators might be sensitive to the absolute number of affected and unaffected
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patients available for modeling. While the proportion of affected patients cannot be known at the planning stage, it can
be determined at the blind review stage before the final analysis. The performance of the estimators is also influenced
by factors that are usually not known a priori such as the magnitude of the effect of the IE and the relationship between
the magnitude of this effect and the original value of the outcome variable.

In the following sections, first we briefly introduce the CANNA-TICS trial as a motivating example and outline the
simulation model and the simulated scenarios—implementing different modeling assumptions for the real relationship
between IE and outcome under both the presence and absence of a treatment effect. In this article, we assume that only
the IE influences the outcome of the patient and not vice versa. This assumption would not hold in case the occurrence
of the IE was confounded by the patient outcome: for example, if patients could choose between assessment methods,
patients with a high YGTSS-TTS might be less/more likely to choose a clinical assessment. Subsequently, we describe
the candidate estimators for both the responder criterion, dichotomizing the relative change in YGTSS-TTS, and the
continuous relative change in YGTSS-TTS.

Finally, we present the performance results for the simulated scenarios, for both the continuous and the dichoto-
mized endpoint and discuss the consequences of our findings.

2 | OBJECTIVES

This article discusses estimators for an estimand applying a hypothetical strategy for COVID-19-related IE for both a
dichotomized and a continuous endpoint in trials with a small sample size. We aim to compare different estimators for
the continuous analysis of the underlying scale and the binary endpoint regarding bias, mean squared error, type I error
control, and power.

3 | METHODS

To compare the performance of different estimators for the estimand applying a hypothetical strategy for COVID-
19-related IEs, we designed a simulation study motivated by the ongoing CANNA-TICS trial. For better identification
of the impact of the IEs, we simplified some aspects of the trial for the simulation study as outlined below.

4 | DATA-GENERATING MODEL

As the CANNA-TICS trial and the modeling of the IEs have already been extensively described in the context of the
estimation of a treatment-policy effect,13 we will provide a concise description here.

In the CANNA-TICS trial patients were randomized in a 2:1 ratio to Nabiximols or placebo. The assignment is rep-
resented here as a random variable Z taking values of 1 for patients assigned to Nabiximols and 0 for patients assigned
to placebo. The outcome, the YGTSS-TTS, is measured twice, at baseline (Y 0) and after 13 weeks (Y �

1). Some of the
patients (depending on time of recruitment and region) will be affected by the pandemic (P¼ 1Þ, which is the intercur-
rent event of interest. In this case, their outcome value at week 13 (Y �

1) will be a function of their (unmeasured) under-
lying severity value Y 1 (i.e., of the severity value that would have been observed in absence of the IE) and of the effect
of the IE. For all other patients, Y �

1 ¼Y 1. The YGTSS-TTS at week 13 (Y 1) is also affected in all scenarios (Figure 1 and

FIGURE 1 Data-generating mechanism in absence of an effect of treatment on the outcome. Observed variables are represented as

squares, unobserved variables as circles
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Figure 2) by the baseline value (Y 0), and only in the scenarios simulated under the alternative hypothesis (Figure 2) by
the treatment assigned (Z). We are here assuming that the study was fully recruited (or recruitment was halted) at the
time the first measures were implemented. Hence, no patients are affected by the pandemic at baseline. In case recruit-
ment was still ongoing at the onset of the pandemic, more granular definitions of the IEs might be needed. For the
change in assessment method, the IE “change in assessment method” could be split in two separate IEs (i) “change in
assessment method from clinical to remote” and (ii) “change in assessment method from remote to clinical.” Both IEs
could be handled with a hypothetical strategy, but estimation would be more complex as compared to the simulation
study as two IEs would need to be considered simultaneously.

For a fixed sample size n¼ 75 and fixed proportions of patients affected by the IE pP, the number of patients (not)
affected was calculated as follows:

nunaffected ¼ round n� 1�pPð Þð Þ

and

naffected ¼n�nunaffected:

The variable Pi ¼
0 i� 1,…,nunaffected

� �
1 i� nunaffectedþ1,…n

� �
:

(
denotes whether a patient is affected by the IE in question. Note that in the causal DAGs assumed for this simula-

tion study, the occurrence of the IE is independent on the outcome of the patient. The treatment allocation Zi ~Ber ptreatð Þ
for each patient i� 1,…,nf g was simulated as Bernoulli distributed variable with fixed probability ptreat¼ 2

3 to receive
Nabiximols. For each patient, a baseline value Y 0,i �N 25,6:5ð Þ 14,50½ � from a truncated normal distribution was
simulated,22 where the lower boundary of 14 reflects a simplified inclusion criterion and the upper boundary of
50 reflects the maximal value of the YGTSS-TTS. We simplify the assumptions of the Cannatics trial by assuming equal
variances of the relative change in both treatment groups. The relative change from baseline to week 13 was assumed
to be approximately normal distributed with

changei
treati¼0

¼Y1,i�Y0,i

Y0,i

���� ����
Zi¼0

�N �0:025,0:12ð Þ

for placebo patients. For patients receiving Nabiximols, we chose two different distributions for investigating candidate
estimators for the binary responder criterion and candidate estimators for the relative change as a continuous endpoint.
This ensures that—in both the binary and the continuous cases—an analysis based on the unaffected values has a nom-
inal power of 90% and thus is sensitive to detect differences in power between candidate estimators. We have chosen
the relative changes in order to achieve such power. Consequently, for a comparison of estimators for the binary
responder criterion, we modeled the relative change via

changei
treati¼1

¼Y1,i�Y0,i

Y0,i

���� ����
Zi¼1

�N �0:234,0:12ð Þ

FIGURE 2 Data-generating mechanism in presence of an effect of treatment on the outcome. Observed variables are represented as

squares, unobserved variables as circles
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and for a comparison of estimators for the continuous endpoint, we simulated the relative change via

changei
treati¼1

¼Y 1,i�Y 0,i

Y 0,i

���� ����
Zi¼1

�N �0:122,0:12ð Þ:

Next, the underlying, potentially unobserved YGTSS-TTS scores after 13 weeks, unaffected by IEs, were calculated as
follows:

Y 1,i ¼Y 0,iþ changei
�Y 0,i ¼Y 0,iþY 1,i�Y 0,i

Y 0,i

�
Y 0,i:

For modeling the impact of the intercurrent event on the score at week 13, we implemented both (i) an additive model
and (ii) a multiplicative model influencing the score that would have been observed in absence of the IE.

Under both the additive and multiplicative models, we assume that the IE affects the patients' outcomes
heterogeneously.

For the additive scenarios, a random term from a normal distribution was simulated for each patient, Ci �N 2,1ð Þ.
Using this term, the observed scores were calculated as

Y �
1,i ¼Y 1,iþCi �Pi,

making sure that for unaffected patients, the observed score equals the underlying score. This corresponds to an average
increase of the YGTSS-TTS by the occurrence of the IE.

For the multiplicative scenarios, a random factor from a normal distribution truncated at 0 and 2 was simulated for
each patient, Ci �N 1:5,0:1ð Þ. Using this factor, the observed scores were calculated as Y �

1,i ¼Y 1,i �CPi
i , making sure that

for unaffected patients, the observed score equals the underlying score. On average, this corresponds to an increase of
the YGTSS-TTS by the occurrence of the IE.

Under both models, the impact of the pandemic, Ci, does not only increase the YGTSS-TTS score Y �
1,i, but also

increase the variance of Y �
1,i, which in turn influences the expectation of the dichotomized responder criterion. Based

on the observed valueY �
1,i, the observed relative change is calculated as change�i ¼

Y �
1,i�Y 0,i

Y 0,i
, and the responder criterion is

calculated as follows:

responder�i ¼
0 change�i > �0:3

1 change�i ≤ �0:3

�

5 | SIMULATION SCENARIOS

The performance of the candidate estimators is investigated under the null hypothesis and under the alternative
hypothesis. Under both hypotheses, we investigate both and additive impact of the IE and a multiplicative impact of
the IE on the YGTSS-TTS after 13 weeks of treatment, Y 1. As described in the previous section, under the alternative
hypothesis, different distributions for changei jtreati¼1 were used depending on whether estimators using the binary
responder criterion or the continuous variable relative change were compared. To investigate the impact of the propor-
tion of patients affected by the pandemic on the performance of the candidate estimators, for each of the above scenar-
ios, we investigate proportions pP � 10%20%,…,80%f g of affected patients. As the methods reported are proposed to
handle the intercurrent event, scenarios with 0% affected patients were not simulated. In total, this results in 2�8¼ 16
simulation scenarios under the null hypothesis and 2�2�8¼ 32 simulation scenarios under the alternative hypothesis,
each with 10,000 simulation runs (see Table 1). The number of simulation runs was chosen to achieve a standard error
for the estimated empirical power/empirical type I error of at most 0.005, resulting in a half-width of the respective 95%
confidence interval of at most 0.01, which we considered resulting in negligible standard errors.
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6 | ESTIMANDS AND ESTIMATORS

6.1 | Formal definition of the Estimands

The estimands of interest for (a) the continuous and (b) the binary endpoint are defined as follows, where IE, the
corresponding strategies, and the estimand attributes of treatment condition and population are the same for both (and
they only differ for variable and summary measure):

Treatment conditions: Investigational treatment with cannabis extracts Nabiximols for a 4-week titration period
followed by 9 weeks of stable treatment at the individually selected dose versus matching placebo;

Population: Patients with Chronic Tic Disorder or Gilles de la Tourette syndrome;
Variable:

a. Relative change of YGTSS-TTS from baseline to 13 weeks ([13 weeks—baseline] / baseline);
b. Responder status (responder/non-responder), where a responder is defined as having a reduction of YGTSS-TTS

from baseline to 13 weeks of at least 30% (relative change≤ �30%).

6.2 | Summary measure

a. Difference in mean relative change of YGTSS-TTS from baseline to 13 weeks;
b. Difference in responder proportions.

IE and strategies:

1. Implementation of social distancing measures—hypothetical strategy (as if the IE—that is, the implementation of
social distancing measures—had not taken place)

2. Change in assessment method for the YGTSS-TTS—hypothetical strategy (as if the IE—that is, the implementation
of social distancing measures—had not taken place)

Note that the estimands attribute “population” defines the target population and does not equal the analysis set
used for the estimation. In our example, we did not restrict the target population regarding COVID-19 (e.g., by targeting
only Patients with Chronic Tic Disorder or Gilles de la Tourette syndrome that are not affected by social distancing
measures). On the estimator level however, we investigate candidate estimators that use as analysis set either (i) all trial
patients irrespective of the occurrence of COVID-19-related IEs or (ii) only patients that finished study procedures prior
to the outbreak of the pandemic. Importantly, even if the target population had been restricted to patients that are not

TABLE 1 Overview of simulation scenarios

Hypothesis Impact of IE Analysis focus
Distribution
of changei jtreati¼1

Proportion of
affected patients

Null Additive
Ci �N 2,1ð Þ

binary + continuous N �0:025,0:12ð Þ pP � 10%20%,…,80%f g

Null Multiplicative
Ci �N 1:5,0:1ð Þ

binary + continuous N �0:025,0:12ð Þ pP � 10%20%,…,80%f g

Alternative Additive
Ci �N 2,1ð Þ

binary N �0:234,0:12ð Þ pP � 10%20%,…,80%f g

Alternative Additive
Ci �N 2,1ð Þ

continuous N �0:122,0:12ð Þ pP � 10%20%,…,80%f g

Alternative Multiplicative
Ci �N 1:5,0:1ð Þ

binary N �0:234,0:12ð Þ pP � 10%20%,…,80%f g

Alternative Multiplicative
Ci �N 1:5,0:1ð Þ

continuous N �0:122,0:12ð Þ pP � 10%20%,…,80%f g
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affected by social distancing measures, on the estimator level it would still be an option to use all trial patients in the
analysis.

In formal notation, the estimand in our simulation study can be defined as follows. Although the IE is not a media-
tor in the causal structure assumed for this simulation study, we can use the counterfactual concept from mediation
analysis for a formal definition described by Richiardi et al.20 The estimand is the effect of Z on change�1 in the hypothet-
ical scenario that no COVID-19-related IE would have occurred, a controlled direct effect that can be formalized as
follows:

E change1½ jZ¼ 1��E change1½ jZ¼ 0�

In the given DAGs, this is equivalent to defining the estimand of interest as

E change�1
� ��Z¼ 1,P¼ 0��E change�1

� ��Z¼ 0,P¼ 0�

because the unobserved variable change1 equals change�1 j P¼ 0, and conditioning on P does not open any backdoor
path between Z and change1.

7 | ESTIMATORS

7.1 | Reference estimators for the true value of the estimands

We define the true value of the estimand (a) as the treatment effect estimate derived from a linear regression model
with treatment and baseline severity as linear predictors, using the underlying values of the outcome before applying
the effect of the COVID-19-related IE (Y 1). This estimator cannot be obtained in practice as Y 1 is unobserved but is
available to us given the simulation nature of our experiment.

This will be our estimator of reference for (a) that other estimators will be compared against.
We define the true value of the estimand (b) as the difference in responder proportions based on the underlying

values of the outcome before applying the effect of the COVID-19-related IE (i.e., on Y 1). Due to the small sample size
and small expected responder proportion under the null-hypothesis, Fisher's exact test is used for the responder
analysis.

This will be our estimator of reference for (b) that other estimators will be compared against.
In the following section, we briefly describe the candidate estimators investigated for the continuous YGTSS-TTS

and for the dichotomized responder endpoint. We first describe the continuous analysis methods and thereafter intro-
duce analogous approaches for the binary analysis, by modifying or building on the continuous estimators. Candidate
estimators have been chosen from different classes of approaches including different regression approaches, multiple
imputation, weighting-based methods and de-mediation approaches to cover a wide range of possible candidates.
Methods have been grouped according to the use of values collected after the occurrence of COVID-19-related IEs, as
those represent two radically different approaches.

7.2 | Methods using the values collected after occurrence of COVID-19-related IE

7.2.1 | Observed values analysis

For the continuous analysis, this approach uses a linear regression model with the observed relative change change�1 as
dependent variable irrespective of the patient being affected by the IE, and baseline YGTSS-TTS Y 0 and treatment Z as
independent variables. The linear regression is implemented in R using the glm function.

For the binary analysis, both estimation and significance testing are as per the reference estimator but using the
responder proportions calculated from the observed outcome Y �

1.
This method is expected to be unbiased under the null hypothesis, as the IE would affect both arms equally by a par-

allel shift in the continuous score with the same starting point and hence would disappear by using the difference in
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between arms as the effect estimate both in the binary and continuous analysis. Under the alternative hypothesis in the
multiplicative scenario, the IE would impact the two treatment arms differently, and effect estimate derived from the
linear regression model would be biased as well as the difference in responder proportions. Under the alternative
hypothesis in the additive scenario, the continuous analysis is expected to be unbiased again, as the impact of the IE
would be equal on both treatment arms. However, the binary analysis is expected to be biased, as the parallel shift due
to the IE in both treatment arms would have different starting points (since the treated patients are expected to have a
lower score) and thus affect the responder proportions after the dichotomization of the continuous score (see13 for a
graphical representation).

7.2.2 | COVID-19 covariate

For the continuous analysis only, this approach uses a linear regression model with the observed relative change
change�1 as dependent variable irrespective of the patient being affected by the IE, and baseline YGTSS-TTS Y 0, Z and
P, a categorical variable indicating whether the patient was affected by the IE, as independent variables. The linear
regression is implemented in R using the glm function.

The performance of this method is expected to be similar to the “observed values analysis” described above with a
gain in precision due to the adjustment for the occurrence of the IE.

7.2.3 | Loh's g-estimation—de-mediation for Y �
1

Loh and colleagues21 propose a g-estimation method for estimating controlled direct effects in randomized studies,
where mediators are present. By extension, we propose that this allows comparing the potential outcomes under fixed
values of the treatment and of other events affecting the outcome (in our case, not occurrence of COVID-19-related
IEs). Loh's method was applied to the simulated trials by the following steps:

i. fit a logistic model for the expected value of P (i.e., being affected or not by the COVID-19-related IE) using the
assigned treatment Z and Y 0 as predictors;

ii. predict the probability pP (i.e., being affected or not by the COVID-19-related IE) by the logistic model for all
patients;

iii. fit a linear model for the expected Y �
1 using as predictors pP, P, Z and Y 0;

iv. compute a transformed response variable R0,j ¼Y �
1,j� coeff Pð Þ �Pj using the coefficient from step (iii) to remove the

effect of the potential the occurrence of the COVID-19-related IE on the outcome, and calculate the relative change
as R1,j ¼ R0,j�Y 0

Y 0

v. run a linear regression on the transformed response variable R1 with Z and Y 0 as linear predictors to estimate the
controlled direct effect of the treatment.

We used the model-derived standard error from step (iv) for deriving confidence intervals and statistical inference.
In a reduced set of simulations, this showed similar performance to the more computationally intensive bootstrapping
approach recommended by Loh et al.

For the binary analysis, we follow the steps (i) to (iv) as outlined above and use Rj for deriving the responder status
respondj before calculating the difference in responder proportions and applying an exact Fisher test.

7.2.4 | Loh's g-estimation 1—de-mediation for change�1

As an alternative approach to de-mediating the impact of the intercurrent event on the dependent variable relative
change directly, we modified step (iii) and (iv) of Loh's g-estimation. In step (iii), a model for the expected relative
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change is build using as predictors pP, P, Z and Y 0. In step (iv), the impact is de-mediated via
R1,j ¼ change�1,j� coeff Pð Þ�Pj directly, without the need to calculate R0,j in an intermediate step. As for the un-modified
approach, statistical inference is based on model-derived standard errors.

7.2.5 | Loh's g-estimation 2—de-mediation for log Y �
1

� �
To allow de-mediation in a case where the IE impacts the YGTSS-TTS multiplicatively, we modified steps (iii) and
(iv) of Loh's g-estimation by using a logistic function for de-mediating. In step (iii), a model for the expected log Y 1ð Þ is
build using as predictors pP, P, Z and Y 0.In step (iv), the impact is de-mediated via R0,j ¼ exp Y �

1,j� coeff Pð Þ�Pj

	 

and

the relative change is calculated as R1,j ¼ R0,j�Y 0

Y 0
. As for the un-modified approach, statistical inference is based on

model-derived standard errors.

7.2.6 | Adaptive de-mediation g-estimation

Investigating a data-driven approach to de-mediation, we combined the additive de-mediation approaches for change�1
and Y �

1 and the multiplicative de-mediation approach outlined above to a candidate estimator using R2 for selecting the
de-mediation approach: based on the model estimating the de-mediation effect in step (iii) of the (modified) Loh's g-
estimation, we selected the de-mediation approach based on the approach with the higher value of the R2 for estimating
the de-mediation effect Note that due to the same number of predictors in each de-mediation model, this is equivalent
to using adjusted R2. Other criteria for model selection (like AIC or BIC) are not suited to our specific situation, as the
de-mediation models are based on different outcome scales (absolute values of YGTSS-TTS, log transformed absolute
values of YGTSS-TTS or relative change), and therefore no meaningful comparison of the AICs can be made, but could
be candidates in case all de-mediation models use the same outcome.

As for the individual approaches, for statistical inference we used the model-derived standard error of the selected
model separately.

7.2.7 | Sequential g-estimation

G-estimation aims at estimating the controlled direct effect22 based on the variance estimation from Acharya et al.23

We applied the method using the sequential_g function as implemented in the R package DirectEffects,24 specifying
change�1 as the outcome, treatment allocation Z and Y 0 as baseline variables, Z and Y 0 as intermediate variables and P
as the only variable in the demediation function. The sequential g-estimation approach implemented in the
sequential_g function in principle follows the same approach as Loh's sequential g-estimation. But in contrast to Loh's
g-estimation described above, steps (i) and (ii) are omitted and the predicted probability pP is omitted from the de-medi-
ation model in step (iii). Loh and colleagues showed that the estimator for the effect of the mediator derived in step
(iii) from Loh's g-estimation is consistent even if the outcome model in step (iii) is incorrectly specified. In contrast, the
estimator for the effect of the mediator on the outcome derived from the sequential g-estimation approach is only con-
sistent if the outcome model is correctly specified.21

The expectation for the performance of the g-estimation approaches are as follows. The two key assumptions on this
method are that (1) no unobserved confounder between treatment and outcome and (2) no unobserved confounders
between the intercurrent event and the outcome exist. Both (1) and (2) are met in all scenarios. Due to the causal struc-
ture used in the DGM for this simulation study, both assumptions are fulfilled. Additionally, the (mis)specification of
the de-mediation model influences the performance of the estimators.

For all additive scenarios, the sequential g-estimation method and Loh's g-estimation de-mediating for Y �
1 are

expected to be unbiased (that is, to target the estimand of interest unbiasedly). In the multiplicative scenarios, Loh's g-
estimation de-mediating for log Y �

1

� �
is expected to be unbiased. Additionally, for the same reasons given above for the

‘observed case analysis’, under the Null hypothesis, all g-estimation methods are expected to be unbiased. In all other
cases, the respective methods are expected to show a bias with unknown magnitude.
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7.3 | Methods not using the values collected after occurrence of Covid-19-related IE

All method not using the values collected after the occurrence of the IE should be unbiased estimators for the target
estimand both in the additive and multiplicative scenario, as the occurrence of the IE is completely random in the
DGM. Therefore, excluding affected patients does not introduce bias, but increase variability. The increase in variability
is expected to be largest for the ‘unaffected case analysis’, and to be compensated to some degree by the weighting-
based and imputation-based methods. Hence, in principle no increase in type I error is expected, but a decrease in
power is expected proportional to the proportion of affected patients to different degrees.

However, due to the small sample size, computational problems might affect the below methods differentially as
some methods might be sensitive to the absolute number of observations available for modeling/analysis.

For example, both inverse probability weighting methods (normal and doubly robust), should be unbiased, if the fol-
lowing assumptions as outlined by Hern�an, are fulfilled25:

• the average outcome in the individuals not being affected by the IE must equal the unobserved average outcome in
the individuals affected by the IE with the same values for treatment Z, Y 0 and Y �

1 (exchangeability),
• all conditional probabilities of not being affected by the IE, P P¼ 0jZ¼ z,Y �

1 ¼ y�1,Y 0 ¼ y0
� �

>0Þ given realizations of
the variables Z, Y 0 and Y �

1 must be greater than zero (positivity), and
• a well-defined treatment (consistency).

Due to the causal structure depicted in Figures 1 and 2 used for our simulation study, exchangeability and consistency
are given. In principle (that is, in expectation) also positivity is given, since occurrence of an IE is always random in our
data-generating model (that is, it does not depend on any measured variable), and hence, the expected conditional prob-
ability for not being affected by a COVID-19-related IE is larger than 0 for all realizations of variables Z , Y 0 and Y �

1.
Thus, we do not have a “structural violation” of the positivity assumption.25 However, in any simulated study, by
chance there might be a threshold a>0, so that (1) there are patients with Y �

1 > a and (2) all patients with Y �
1 > a are

affected by an IE. Consequently, the conditional probability for not being affected by the IE is 0 for a subset of patients
with P Y �

1 > a
� �

>0. This “random violation” of the positivity assumption could lead to biased estimates. This problem
has also been highlighted Mallinckrodt and colleagues,26 but the magnitude of potential bias cannot be anticipated.

7.3.1 | Unaffected cases analysis

This approach includes only patients unaffected by the IE. For the continuous analysis, a linear regression model with
the observed relative change change�1 as dependent variable, and baseline YGTSS-TTS Y 0 and Z as independent vari-
ables. The linear regression is implemented in R using the glm function.

The responder proportions are compared based on Fisher's exact test and a risk difference is computed.
Given that the measurements of interest are those under unaffected conditions, this method is equivalent to using a

complete case analysis considering all data from affected patients as missing. As the structure of the (artificial) missing
data problem is MCAR (see DAGs in Figures 1 and 2), it can be expected that the method will not be biased, but lose
precision and power due to not using the information from the affected patients.27

7.3.2 | Predictive mean matching

Predictive mean matching was implemented in the following steps:

i. missing data are imputed through predictive mean matching28 using the mice function implemented in the R pack-
age Mice.29 Values after the occurrence of the IE are set to missing and imputed using Y 0 and Z in the prediction
matrix. The mice function imputes missing values by first building a linear regression on all complete cases based
on Y 0 and Z generating regression parameter estimates bβ. Secondly, regression parameters eβ are randomly drawn
from the posterior predictive distribution of bβ. Thirdly, the outcome for all cases is predicted based on eβ to identify
in a fourth step which complete cases are most similar in the predicted values to the predicted value of the missing
value. Lastly, the observed outcome value for one of the closest five neighbor cases is randomly chosen to replace
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each missing value. While Schafer30 proposed to impute five datasets, an a priori investigation showed a better per-
formance (equal bias and T1E, but slightly larger power) for 50 imputed datasets. Consequently, for all multiple
imputation methods, 50 datasets were imputed.

ii. For the continuous analysis, linear regression analyses with Y 0 and Z as predictors are performed, as for the refer-
ence estimators on the imputed datasets and results is pooled.31

iii. For the binary analysis, the responder status respondi is determined based on the imputed data sets. Next, risk dif-
ferences are calculated, and Fisher's test is applied to the 5 sets of responder strata, and the final risk difference is
calculated as the average of the imputed dataset-specific risk differences. Additionally, a p-value is derived by tak-
ing the median value of the p-values calculated for the imputed data sets.32

We investigated both, the predictive mean matching implementation using meth=“pmm,” and the Midas touch
algorithm developed by Gaffert et al.33 by specifying meth=“midas.”

7.3.3 | Multiple Imputation—normal

Parametric multiple imputation was applied in line with Bayesian linear regression as outlined in Rubin34 by the fol-
lowing steps:

i. missing data are imputed using the mice function implemented in the R package Mice29 by specifying met-
h=“normal.” Values after the occurrence of the IE are set to missing and imputed using Y 0 and Z in the prediction
matrix. The mice function based on Bayesian linear regression imputes missing values in line with Rubin31 by first
building a linear regression model on all complete cases based on Y 0 and Z generating regression parameter esti-
mates bβ and estimated variances bσ2. Secondly, regression parameters eβ and a variance eσ2 are randomly drawn from
the posterior predictive distribution of bβ and bσ2. Lastly, Y 1 is imputed as a random draw from the predictive distri-
bution based on eβ and eσ2.

Subsequently, analyzing the imputed data sets and pooling the results was conducted exactly as step (ii) for predictive
mean matching for the continuous and binary variable.

7.3.4 | Multiple Imputation based on logistic regression

For the responder analysis only, we investigate also the approach of directly imputing a binary variable instead of
imputing on the continuous scale and dichotomizing the imputed value as outlined for the MI methods above. Using
the mice function with specification meth = “logreg,” we implemented imputation by logistic regression, which follows
the steps outlined by Rubin31: Values after the occurrence of the IE are set to missing and imputed using Y 0 and Z in
the prediction matrix. Based on the non-affected values, a logistic regression with logit link function with the responder
status as dependent and Y 0 and Z as independent variables is estimated, generating logistic regression parameter esti-
mates bβ. Secondly, regression parameters eβ are randomly drawn from the posterior predictive distribution of bβ. To gen-
erate the responder status, random uniform variables are compared with the inverse logit of the predicted value.
Missing values are imputed as responders, if the random uniform variable is smaller than the inverse logit of the
predicted value.

Subsequently, analyzing the imputed datasets and pooling the results was conducted exactly as step (ii) for predic-
tive mean matching for the binary endpoint only.

7.3.5 | Multiple imputation by Classification and Regression Trees (CART)

As for the above, this method only applies to the responder analysis. Values after the occurrence of the IE are set to
missing and the responder status is imputed using Y 0 and Z in the prediction matrix. The method has been employed
as implemented in the R package mice. Based on complete cases, a classification tree is created with splits based on
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values of the variables included in the prediction matrix.35,36 Trees are built so that any terminal “node” contains at
least five observations. Each case with missing outcome (i.e., each patient with the IE) is classified based on the tree
and a random value from those in the same “leaf” is assigned as imputed value. This process is used to build five
imputed datasets and the results from the analysis in the five datasets imputed were pooled as described above.

7.3.6 | Inverse probability weighting

Inverse probability weighting was carried out for the continuous analysis only in the following steps37:

i. a logistic regression model with 1�P as dependent variable is fitted using Y 0 and Z as independent variables;
ii. this model is used to predict probability of the IE not occurring;

iii. the weights are computed as the inverse of the probability computed above. Extreme weights are trimmed—bottom
and top 2.5% weights are replaced by the 2.5% and 97.5% weight percentiles;

iv. a weighted linear regression model with Y 0 and Z as independent variables on change1 is performed, using data
only from patients without occurrence of the IE; and

v. standard errors are computed by stratified (by Z �P) bootstrapping using the boot function from the R package
boot.38,39 Stratified boostrap (in contrast to unstratified boostrap) was chosen to avoid computational problems that
would occur due to the overall small sample size for the unstratified boostrap for higher proportions of affected
patients because in the sampled data all unaffected patients might have the same treatment status, and hence, the
regression model in step (iv) with Z as independent variable could not be calculated.

7.4 | Performance criteria

The following performance criteria were used in evaluating the performance of the estimators in the scenarios tested40:

• bias, expressed on the scale of the YGTSS-TSS and estimated as 1
nsim

Pbθk�θ where θ is the true value if the estimand,
nsim is the number of simulations, bθk is the value of the estimand estimated by each method in a specific realization
and θ is the true value of the estimand in the respective scenario);

• length of the 95% confidence interval estimates of bθk. This is estimated in each run as the difference between upper
and lower bound, and averaged thereafter;

• Coverage, estimated as the % of times θ falls within the 95%-confidence interval for bθk;
• mean squared error, MSE, estimated as 1

nsim

Pcθkð �θÞ 2
• square root mean squared error,

ffiffiffiffiffiffiffiffiffiffi
MSE

p
, expressed on the scale of the relative change and estimated

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsim

Pcθkð �θÞ 2
q

;
• empirical alpha, measured as the proportion of cases where the null hypothesis was rejected. This will be reported

and interpreted in different ways depending on whether the scenarios were simulated under null or alternative
hypothesis. Under the null hypothesis, this measure will be reported as empirical type I error rate, and under the
alternative hypothesis as empirical power.

For all performance criteria, Monte Carlo estimates of the Standard Errors are computed.40 For the binary analysis,
only bias, mean squared error, square root mean squared error and the empirical alpha are calculated.

8 | RESULTS

The following sections display the performance of the candidate estimators under the above-described data-generating
mechanisms for Null hypothesis and alternative hypothesis depending on the proportion of affected patients.
Tables include all investigated methods while the figures include a selection only. For methods from the same class
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following a similar approach (e.g., predictive mean matching using the midastouch or the pmm algorithm), only one
representing method was selected for the figures if they showed similar performance throughout all investigated
scenarios.

8.1 | Null hypothesis

All methods investigated display a negligible bias and imprecision under the null hypothesis, regardless of the modeling
assumption for the effect of the IE, both for the continuous (Figures S1 and S2 and Tables S1–S4) and for the binary
analysis (Figures S3 and S4, lower panels and Tables S5–S8). Coverage is close to the nominal level (Tables S9 and S10),
except—at higher proportions of patients affected—for Multiple imputation via the Normal model and for the
weighting-based methods.

The type I error is controlled below the value of one-sided 0.025 for most methods. However, for the continuous
analysis (Figures 3 and S5, S11, and S12), the weighting-based estimators have an increased type I error rate for scenar-
ios with proportions of affected patients ≥70%. For the binary analysis (Figures 4 and S6 and Tables S13 and S14), an
inflation of type I error rates can be observed for the Multiple Imputation with the Logistic model.

The length of the confidence interval markedly increases for the imputation and weighting-based methods with pro-
portions of patients increased above 60% (Tables S15 and S16).

8.2 | Alternative hypothesis

The scenarios under the alternative hypothesis have been simulated with a real value of the estimands of a difference
between mean relative change in YGTSS-TTS between treatment groups of �0.122 – (�0.025) = 0.097 for the continu-
ous analysis and of a difference between responder proportions of 29%–1% = �28% for the binary analysis.

The methods tested mostly displayed a negligible bias for both the continuous (Figures 5 and S7 and Tables S17 and
S18) and the binary (Figure 6 and S8, lower panels and Tables S19 and S20) estimands. However, the Observed Values
estimator has a slight bias that is proportional to the proportion of affected patients. Under the multiplicative scenario,
Loh's g-estimation approach displays a similar behavior when the de-mediation model is miss-specified. Furthermore,
imputation methods display a bias at very high proportions of affected patients.

FIGURE 3 Type I error of the candidate estimators for the continuous estimand, multiplicative IE impact
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For both the continuous (Figures 7 and S9 and Tables 2 and 3) and the binary (Figures 8 and S10 and Tables 4 and
5) estimands, all methods that do not use post-IE data show sever power losses in all scenarios with at least 30% affected
patients as compared to the reference estimator. The Observed values estimator retains power for the continuous analy-
sis under the additive scenario, but not under the multiplicative scenario. The de-mediation approaches retain power in
all scenarios, regardless of the misspecification of the de-mediation model. The observed values estimator displays a
similar behavior regarding precision (Figures S11–S14 and Tables S21–S24) and confidence interval length (Figures S15
and S16, and Tables S25 and S26). Confidence interval length consistently increases with the increase of the percentage
of affected patients for all the methods that do not use post-IE data. Despite larger confidence intervals, coverage is

FIGURE 4 Type I error of the candidate estimators for the binary estimand, multiplicative IE impact

FIGURE 5 Bias of the candidate estimators for the continuous estimand under the alternative hypothesis, multiplicative IE impact
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markedly decreased at high proportions of affected patients for the Multiple Imputation methods and for the
weighting-based approaches (Tables S27 and S28).

It needs to be noted that the treatment effect specified in the data-generating mechanism is smaller in the continu-
ous scenario as compared to the binary scenario to ensure a nominal power of 90% in each scenario. This could contrib-
ute to the more rapid power loss of the multiple imputation approaches in the continuous scenario as compared to the
binary scenario (see performance of ‘MI normal’ in Figures 7 and 8). However, not all methods that use the continuous
endpoint also as a basis for the binary analysis show the same pattern. Notably, the de-mediation approaches also use
the continuous endpoint for de-mediation before dichotomizing the de-mediated outcome, but performance is equally
good in the binary and the continuous scenarios (see Figures 7, 8, S9, and S10).

FIGURE 6 Bias of the candidate estimators for the binary estimand under the alternative hypothesis, multiplicative IE impact

FIGURE 7 Power of the candidate estimators for the continuous estimand under the alternative hypothesis, multiplicative IE impact
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The approach we have implemented for a data-driven selection of the de-mediation model based on the R2 of the
respective de-mediation models shows mixed performance in discriminating between an additive and a multiplicative
underlying data-generating model (Table S29) with miss-classification up to 40% under the alternative hypothesis.
While in the additive scenarios, the proportion of runs in which the adaptive approach wrongly selects the multiplica-
tive de-mediation model does not change qualitatively depending on the proportion of affected patients, in the multipli-
cative scenarios the proportion of correctly selecting the multiplicative de-mediation model increases with the
proportion of affected patients. However, classification improves with higher proportions of affected patients (where
using the right de-mediation model has a larger impact on the results). Especially, in the multiplicative scenarios, this
leads to comparable performance to the correct multiplicative de-mediation model.

9 | DISCUSSION

Based on the CANNA-TICS trial, this simulation study has investigated the performance of candidate estimators for an
estimand applying a hypothetical strategy for COVID-19-related IEs with the relative change in the YGTSS-TTS scale as
continuous and a dichotomized responder criterion as binary endpoints under a small sample size. The IEs was
modeled to affect the underlying value on the YGTSS-TTS both in an additive and in a multiplicative way, and the pro-
portion of affected patients was varied from 10% to 80% to cover a wide range of application and investigate the perfor-
mance of the estimators also in extreme situations.

As expected, there was no bias under the null hypothesis. Under the alternative hypothesis modest bias could be
observed for some candidate estimators and the bias depends both on the data-generating model for the impact of the
IE (additive or multiplicative) and the proportion of affected patients. For the binary analysis, the only methods show-
ing an inflated type I error rate are multiple imputation with a logistic model and weighting-based methods. For multi-
ple imputation on the continuous scale via a normal model followed by dichotomization, an inflated type I error rates
could only be observed in the scenario where 80% of the patients are affected by the IE. Overall, type I error was
inflated only for high proportions of affected patients in our simulation. For the continuous analysis, the weighting-
based approaches displayed increased type I error rates for high proportions of affected patients.

Of more concern, all methods that discarded post-IE data displayed a sharp decrease of power proportional to the
number of affected patients.

TABLE 2 Power for the continuous analysis under the alternative hypothesis, additive scenario

Method 10% 20% 30% 40% 50% 60% 70% 80%

ANCOVA—true values 0.89 (0.003) 0.885 (0.003) 0.89 (0.003) 0.886 (0.003) 0.884 (0.003) 0.884 (0.003) 0.89 (0.003) 0.89 (0.003)

ANCOVA—unaffected

case

0.858 (0.003) 0.798 (0.004) 0.747 (0.004) 0.675 (0.005) 0.597 (0.005) 0.487 (0.005) 0.382 (0.005) 0.238 (0.004)

ANCOVA—observed

values

0.882 (0.003) 0.872 (0.003) 0.874 (0.003) 0.868 (0.003) 0.863 (0.003) 0.863 (0.003) 0.874 (0.003) 0.878 (0.003)

ANCOVA—covariate 0.883 (0.003) 0.879 (0.003) 0.884 (0.003) 0.878 (0.003) 0.877 (0.003) 0.877 (0.003) 0.881 (0.003) 0.884 (0.003)

Sequential g-estimation 0.892 (0.003) 0.885 (0.003) 0.89 (0.003) 0.888 (0.003) 0.885 (0.003) 0.885 (0.003) 0.889 (0.003) 0.893 (0.003)

Additive Loh g-est,

de-med change

0.889 (0.003) 0.887 (0.003) 0.89 (0.003) 0.885 (0.003) 0.883 (0.003) 0.883 (0.003) 0.887 (0.003) 0.889 (0.003)

Additive Loh g-est,

de-med Y1

0.89 (0.003) 0.885 (0.003) 0.889 (0.003) 0.885 (0.003) 0.884 (0.003) 0.884 (0.003) 0.889 (0.003) 0.889 (0.003)

Multiplicative

Loh g-est

0.889 (0.003) 0.884 (0.003) 0.89 (0.003) 0.884 (0.003) 0.882 (0.003) 0.882 (0.003) 0.887 (0.003) 0.887 (0.003)

Adaptive Loh

g-est—r-squared

0.889 (0.003) 0.884 (0.003) 0.889 (0.003) 0.886 (0.003) 0.883 (0.003) 0.883 (0.003) 0.888 (0.003) 0.888 (0.003)

MI—Normal 0.855 (0.004) 0.792 (0.004) 0.733 (0.004) 0.655 (0.005) 0.567 (0.005) 0.444 (0.005) 0.333 (0.005) 0.185 (0.004)

PMM—“pmm” 0.852 (0.004) 0.78 (0.004) 0.713 (0.005) 0.627 (0.005) 0.538 (0.005) 0.43 (0.005) 0.344 (0.005) 0.225 (0.004)

PMM—“midastouch” 0.842 (0.004) 0.749 (0.004) 0.633 (0.005) 0.505 (0.005) 0.366 (0.005) 0.233 (0.004) 0.143 (0.003) 0.062 (0.002)

Inverse probability

weighting

0.87 (0.003) 0.817 (0.004) 0.771 (0.004) 0.713 (0.005) 0.643 (0.005) 0.547 (0.005) 0.463 (0.005) 0.361 (0.005)
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While there is no universally best estimator for both the additive and the multiplicative data-generating mechanism,
neither for the continuous nor for the binary analysis, we generally observe that de-mediation approaches have the best
performance. This is in line with what we have recently shown41 for handling the use of symptomatic medication with
a hypothetical strategy in clinical trials for disease modifying Alzheimer's Disease treatments. While the data-generating
mechanism and the causal structure are different in this case, in both settings the observed values—albeit affected by
an IE to be treated with the hypothetical strategy—can be assumed to carry information on the targeted (unobservable)
value. Here, we formulate the hypothesis that in settings where this condition is met the de-mediation approaches have
an advantage compared to estimators that set data as missing. Interestingly, this also applies where the IE is not a medi-
ator (as in this case, where the treatment is not a cause of the IE).

In the scenario where the IE influences the YGTSS-TTS in an additive way, the de-mediation approach proposed by
Loh et al.21 on the additive scale (de-mediating the effect of the IE on the continuous outcome variable relative change)
followed by dichotomization performs best for the binary analysis. Similarly, in the scenario of a multiplicative impact
of the IE on the YGTSS-TTS, the modified de-mediation approach using the log-transformed YGTSS-TTS for de-
mediation (de-mediation on a multiplicative scale) followed by dichotomisation performs best. While there is no univer-
sally best estimator, the performance of the additive de-mediation under a multiplicative impact of the IE and vice versa
are close to the optimal estimator. Also in the continuous analysis, the de-mediation approach based on the correct
model for the impact of the IE performs best. However, in contrast to the binary analysis, the difference between the
additive and the multiplicative de-mediation is notable. Especially, under a multiplicative impact of the IE, the additive
de-mediation is biased.

The performance of the adaptive de-mediation approach is in-between the additive and multiplicative approaches.
Generally, the proposed data-driven selection of de-mediation model does not consistently identify the underlying data-
generating mechanism. However, the discrimination is poorest in situations where the difference between the de-
mediation approaches is neglectable (null hypothesis, additive impact of Covid-19). In contrast, in situations where the
difference between the de-mediation approaches is largest (multiplicative impact of Covid-19, high proportion of
affected patients), the discrimination works well, and the adaptive approach shows comparable performance to using
the correct de-mediation. Future work is needed to investigate different approaches to identify the optimal de-
mediation model.

Within the multiple imputation approaches for the binary analysis, imputing the continuous endpoint before
dichotomizing had a better performance than imputing the response directly, in line with the literature.42

For the extrapolation of our findings it is important to note the dependence of our results on the causal structure
that we have imposed on the data. In particular, we have not included a causal link between the treatment assignment

FIGURE 8 Power of the candidate estimators for the binary estimand under the alternative hypothesis, multiplicative IE impact
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and the risk to be affected by the pandemic during the trial. While this was judged to be a reasonable assumption for
the motivating IEs of this article based on the CANNTA-TICs trial, this is not the case, for example, (i) for trials with
response-adaptive allocation or (ii) if the assessment method can be chosen by the patient. In case a causal link exists,
the IE becomes a mediator, a case more similar to what has been studied in Lasch et al41. Additionally, this work only
considers the occurrence of one IE within the trial. For different IEs occurring in the same trial, the estimators would
need to be expanded and potentially different directions of the effects of the IE would need to be considered. Finally,
we did not simulate missing data, including missingness that might be caused by the intercurrent event. While this
limits the direct applicability of our results for the methods that rely on post-IE data, the good performance of the de-
mediation approaches, which use the post-IE data, stress the importance not to interrupt data collection after the occur-
rence of an IE for which the hypothetical strategy is in place. On the other hand, the findings of our simulation study
can also be applied to IEs that are not related to the pandemic. While this simulation study is motivated by COVID-
19-related IEs, the performance of the candidate estimators can be extrapolated to other scenarios with the same causal
structure. For more complex scenarios (e.g., in case the intercurrent event can occur at more than one timepoint), more
research on the adaptation of the estimators proposed is needed.

In the conclusion, de-mediation via g-estimation is a promising family of estimators for an estimand that handles
COVID-19-related IEs with a hypothetical strategy. Besides showing the best performance in our simulation study,
these approaches allow us to estimate the effect of the IE on the outcome and cross-compare between different studies
affected by similar (COVID-19 related) IEs. In case results from the previous studies are available and the effect of the
IEs has been estimated, these can inform the choice of de-mediation model for subsequent trials and serve as a diagnos-
tic of the analysis model on an interpretable clinical scale. Potentially, prior information (e.g., observational data in the
target condition during the pandemic) could even be incorporated directly into the estimation of the effect of the
IE. Additionally, discrepancies between studies regarding a well-fitting de-mediation model or the magnitude or direc-
tion of the effect of the IEs could trigger follow-up investigations and help to understand the impact of COVID-19 on
trials to learn about the future analysis of trials affected by the pandemic.
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