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Single-cell RNA sequencing (scRNA-seq) has been a transformative
technology in many research fields. Dimensional reduction tech-
niques such asUMAP and tSNE are used to visualize scRNA-seqdata
in two or three dimensions for cells to be clustered in biologically
meaningful ways. Subsequently, gene expression is frequently
mapped onto these plots to show the distribution of gene ex-
pression across the plots, for instance to distinguish cell types.
However, plotting each cell with only a single color leads to re-
petitive and unintuitive representations. Here, we present Pie-
Party, which allows scRNA-seq data to be plotted such that every
cell is represented as a pie chart, and every slice in the pie charts
corresponds to the gene expression of a single gene. This allows for
the simultaneous visualization of the expression of multiple genes
and gene networks. The resulting figures are information dense,
space efficient, and highly intuitive. PieParty is publicly available
on GitHub at https://github.com/harbourlab/PieParty.
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Introduction

Gene expression data at single-cell resolution has brought a lot of op-
portunity to gain detailed understanding of heterogenous cell pop-
ulations, but also many challenges regarding its processing and
visualization. Principle component analysis was initially used to reduce
dimensions on single-cell RNA sequencing (scRNA-seq) datasets and to
plot them in two or three dimensions. t-SNE and UMAP were developed
subsequently, offering superior and global resolution, and are currently
the most commonly used dimensional reduction techniques for scRNA-
seq (1, 2 Preprint). Formost applications, gene expression ismapped onto
t-SNE or UMAP plots, for instance, to highlight different cell types or cell
states. The common and only approach nowadays is to color the re-
spective cell dots in UMAP or tSNE plots, where the intensity of the color
correlates with how high the gene is expressed. However, this only allows
plotting one gene per cell, which is inefficient, and results in many re-
petitive illustrations when expression of multiple different marker

genes needs to be shown. This not only consumes valuable figure
space but is also not intuitive inmany cases. Here, we present PieParty,
a python script that allows users to display each cell in t-SNE, UMAP, or
any other single-cell plots with coordinates, as pie charts. Each pie
chart can be used to visualize expression of multiple genes at once,
and canbe customized using different colors or color palettes. PieParty
also offers additional settings for normalization and customized
plotting.

Results

The basic principle of the PieParty visualization is to generate pie charts
for every cell in a single cell sequencing plot, like t-SNE and UMAP plots.
The user provides a list of genes that they want to visualize, and PieParty
will generate pie charts where each slice in a pie chart represents the
proportional gene expression of one individual gene in the list. Each
gene (slice) can be assigned a unique color, or a color palette can be
chosen to auto-assign unique colors for all genes. Choosing a color
palette is useful for larger gene lists. As an example, we analyzed scRNA-
seq data from human testis and clustered the cells with UMAP (3). The
analysis reveals a continuous developmental trajectory, ranging from
stemcells to differentiated sperm, in every defined cell stages. Figs 1 and
S1A–C shows PieParty plots, where every cell (n = 15,479) is represented
by a pie chart, with 145 different differentiation markers plotted per pie
chart. Each differentiation marker is automatically assigned a unique
color on a colormap, sorted fromearlymarkers in dark violet tomarkers
of differentiation in yellow. The resulting plot shows that even plotting a
large number of genes in pie charts still yields a very informative and
intuitive UMAP plot, showing that the expression of these differentiation
markers forms a continuum along the differentiation axis from stem
cells to differentiated sperm cells.

Besides merely plotting a single list of genes, PieParty also allows for
more complex visualizations. As an example, we used scRNA-seq data
from uveal melanoma (UM) tumors to demonstrate a more complex
application (4). There are two main classes of UM tumors, class 1, which
rarely metastasize, and class 2, which frequently metastasize and have a
high mortality rate. Eight biomarkers (EIF1B, FXR1, ID2, LMCD1, LTA4H,
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MTUS1, ROBO1, and SATB1) are expressed in class 1 tumors, and four
biomarker genes are up-regulated in the high-risk class 2 tumors (CDH1,
ECM1, HTR2B, and RRAB31). The classical way of visualizing this is by
showing 12 individual UMAP plots. Fig S2 shows all 12 genes plotted
separately, which is very space consuming, and while still possible for 12
genes, not immediately comprehensible. For these and other cases, it is
further useful to plot class 1 and class 2 tumor cells separately, which is
depicted in Figs S3 and S4. However, with 24 total plots, this consumes
even more precious space within a figure using the traditional way.
PieParty offers several options to visualize this complex relationship of

class 1 and class 2 genes. One consideration to make is that plotting two
or more gene lists with different number of genes, in this case, eight
genes for class 1 versus four genes for class 2, comes with a bias which
needs to be corrected for. If one gene list is twice the size of the second,
but every gene is expressed in the same amount, the pie would be
colored more with colors of the longer gene list. Hence, PieParty allows
normalization for that fact and weighs gene sets equally by applying a
normalization factor to account for the difference in number of genes in
each gene list. The normalized expression value (Xnorm) is calculated by
multiplication of the expression value (X) with the number of total genes
in all lists (Ntotal), divided by the number of genes in the list of the re-
spective gene (Ngene_list), with Xnorm = XpNtotal

Ngene list
. This normalization tech-

nique was applied for all following plots, and the color intensity of the
individual pie sliceswas set to correlatewith gene expression, in addition
to the size of the pies itself. Fig 2A depicts the tSNE plots of 11 UM tumor
samples (three class 1, eight class 2, n = 59,915 cells), plottedwith PieParty
and a simple blue/red color scheme. Immune cell clusters are indicated,
the other cells depicted are tumor cells, with the exception of very small
clusters of other cell types (4). Class 1 and class 2 tumor cellswere plotted
individually, as well as combined in one big plot. It is immediately evident
that the tumor cell markers are not only found in tumor cells, but also in
immune cells. Class 2 tumor markers are predominantly enriched in
macrophagesandmonocytes,whereas class 1 tumormarkersarepresent
in other immune cells including, lymphocytes, NK cells, and T Cells. As can
be seen in this example, adding the layer of different color intensities
allows comparison of gene expression levels. For instance, some cells
appear dark blue, while others are entirely light blue. This shows that
genes from the same group are predominantly expressed in those cells,
however, with different expression levels. The information density can be
further increased by assigning individual colors to each gene, which
PieParty can do automatically. Fig 2B shows the same dataset with color
palettes applied automatically to the two gene lists. Especially interesting
is the fact that in this scRNA-seq dataset some class 1 tumormarkers are

Figure 1. PieParty plot depicting single cell RNA sequencing data from 5,479
testis cells.
145 differentiation markers were sorted from early (blue) to late (yellow) and
auto-assigned with a color.

Figure 2. PieParty representation of 59,915 uveal melanoma (UM) cells. (A) Class 1 and Class 2 tumor cells plotted separately, with class 1 associated genes in blue, and
class 2 associated genes in red. Immune cell clusters are indicated, the other cells are mainly tumor cells. The big plot on the right side of (B) combines all class 1 and
class 2 cells (“All cells”). (B) Same plot as in (A), but with auto-assigned color palettes, giving each gene a unique color. Color intensity of each slice correlates with gene
expression, in addition to slice size.

PieParty Stefan et al. https://doi.org/10.26508/lsa.202000986 vol 4 | no 5 | e202000986 2 of 4

https://doi.org/10.26508/lsa.202000986


expressed in some class 2 immune cells, including ID2, and to some
extent SATB1, and EIF1B. Whereas all this information is technically visible
whenall genesare plotted individually in 24plots (see Figs S3 andS4), the
PieParty plots are intuitively readable and visualize these relationships in
a space efficientway. All labels indicatingwhich genewas assignedwhich
colors are generated automatically by PieParty. This visualization shows
that for class 2 tumors the biomarkers expressed by immune cells are
different from the genes expressed by tumor cells, whereas for class 1
tumors there is overlap. Together, visualizing this dataset with PieParty,
proportional expression of biomarkers, as well as expression amount for
each gene are all assessable in one single plot.

Anotherfieldof application for PieParty is distinguishing cell types and
identifying rare cell populations. As an example, we visualized different
immune cells from the UM dataset. Fig 3A shows the macrophage
population extracted from the complete dataset (n = 8,048 cells), where
three M1 macrophage markers assigned the color red and eleven M2
macrophage markers were assigned blue. As mentioned above, PieParty
normalized by gene numbers in the different marker lists, which permits
for listswith verydifferentnumberof genes tobeused like in this case. Fig
3A shows the clear visualization of M1 and M2 macrophages on the right
side of the plot, strongly expressing the indicated markers. Interestingly,
there is an equally big population of cells present that expressmainly M2
markers butweakly (“weakexpressers”), which cluster to the left of theM1
and M2 cells. This provides a striking and clear visualization of macro-
phage activation heterogeneity and phenotype diversity within the tumor
immune microenvironment. Hence, this visualization allows to distin-
guish these very similar cell types in one plot in a data-driven way, and
display the landscape of the expression data. This approach can also be
applied to highlight rare cell populations. As an example, we extracted
macrophages, monocytes, and undetermined lymphocytes form the UM
scRNA-seqdataset (n = 5,111 cells) (Fig 3B). In this dataset, T cells are a rare
cell population, comprising only 1.1% of the total cells. We distinguished T
cells by the expression of CD3G, CD4, CD8A, and CD8B from monocytes
andmacrophages, which express CD14, FCGR3A, FCGR1A, CD68, TFRC, CCR5,

and ITGAM. The PieParty plot shows how a rare cell population can be
clearly distinguished directly in a data-driven way, in contrast to relying
on a manually labeled cell cluster.

Another functionality in PieParty is toplot theaverage geneexpression
per cell cluster. Fig 4 depicts the “plot clusters” functionality, which
generates one pie chart per cell cluster, with the pie chart size correlating
with the number of cells in the respective cluster. This plotting style can
greatly simplify complexdatasetsandallow for an intuitiveassessmentof
the expression of different markers in the clusters.

Figure 3. PieParty plots of immune cell populations of uveal melanoma tumors.
(A) M1 (red) and M2 (blue) macrophage markers are plotted to distinguish M1 and M2 macrophages. (B) Use of PieParty to plot rare cell populations distinguished by
multiple markers. T-cell markers (green) are combined to highlight this rare cell population and distinguish them from monocytes and macrophages. Color intensities
correlate with gene expression levels.

Figure 4. PieParty cluster plot, using the “big pies” function.
Each cell cluster is assigned one pie chart depicting the average gene
expression in the respective cluster. The chart sizes correlate with the number of
cells in the cluster. Class 1 tumor genes were auto-assigned colors from the color
map “winter” (blue-green), and class 2 tumor genes were colored with
“autumn” (red-yellow).
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Discussion

Here we present PieParty, which allows single cells from scRNA-seq
data to be represented as pie charts instead of single-colored dots.
PieParty plots are far more information rich, allowing multi-
dimensional single cell sequencing data to be represented in an
intuitive and space-efficient way, and for the identification of
previously unrecognized transcriptional heterogeneity. We have
presented use cases including gene lists with large number of
genes to display expression of differentiation markers in sperm
differentiation (Fig 1), discern tumor risk classes (Fig 2), characterize
immune cell infiltrates (Fig 3A), as well as highlight rare cell pop-
ulations (Fig 3B). With the public availability of various gene sets, this
new visualization technique can be used to visualize various cell
types, cell states, pathways, cell cycle, senescence, gene networks,
and many more (5). Together, PieParty can provide deeper insights
into biology derived from single cell sequencing data by allowing for
multidimensional visualization of high-density datasets.

Materials and Methods

scRNA-seq data for testis and UM are publicly available (3, 4) and
were downloaded and analyzed with Seurat (Version 3.2.2) as
previously described (4). The pure macrophage population was
generated by extracting cells with CD68 expression >1. The mac-
rophages, monocytes, and undetermined lymphocyte population
used for rare cell population identification was generated by
extracting cell clusters based on cell type classifications generated
from the original analysis (4).

PieParty plots were generated using PieParty 1.4 - 1.8, with
standard settings. For Fig 1, “lighten colors,” “-lc” was set to “False.”

Data Availability

PieParty and example data to test are available on GitHub: https://
github.com/harbourlab/PieParty.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000986.
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