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Abstract: Soft tissue reconstructs require materials that form three-dimensional (3-D) structures
supportive to cell proliferation and regenerative processes. Polysaccharides, due to their
hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable
functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological
signaling, and tunable tissue response have been achieved through chemical modification of
polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of
the scaffold to a targeted site. With the advent of newer technologies, these preparations can
be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli.
In this review, we discuss the developmental and biological aspects of scaffolds prepared from four
polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX).
Clinical studies on these scaffolds are also discussed.

Keywords: Polysaccharides; scaffolds; bioresorbable materials; cell adhesion; soft tissues;
regeneration; chemical modification

1. Introduction

Soft tissues are complex fiber-reinforced structures, generally distinguishable from hard tissues
by their high water content [1]. They are continuously invaded by trauma, invasive surgery, and
aging. This often leads to impaired physiological functions, large scale tissue loss, and even organ
failure [2]. The restorative approaches include direct administration of primary or genetically
engineered cells of auto-, allo-, or xenogeneic origin [3,4], and transplantation of cells seeded
into tissue-like three dimensional (3D) scaffolds. Devoid of a stiff matrix, the former approach is
associated with serious obstacles, such as the rapid escape of cells, suboptimal dispersion, insufficient
vascularisation, donor site morbidity, potent immunogenic response, and long-term administration of
immunosuppressive agents [5–10]. The implantation of autologous cells is challenging due to difficulty
in harvesting clinical-grade cells in sufficient number, especially in aged recipients or when the damage
is high [11]. Moreover, cell harvesting requires a second surgical site. This two-stage procedure
increases surgery time and patients may suffer nerve damage at the harvest site [12]. The instillation
procedure via traditional hand held injections imposes a pronounced surgical stress on suspended
cells [13]. Studies report that 80%–90% of transplanted cells die within the first 72 h of injection [14].
More importantly, cellular de-differentiation during in vitro propagation may alter the biosynthetic
properties of autologous cells [15].

Seeding the lineage- and tissue-specific progenitors, derived from patient’s normal tissue or
donor, into scaffolds is a rapidly expanding tissue engineering (TE) alternative. In the 1980s, TE
was understood as the application of prosthetic devices and surgical manipulation of tissues [16].
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Evolution TE as a modern science is dedicated to the experiments of Vacanti et al., who developed the
first tissue engineered scaffold to be used in a human [17]. An advanced understanding on TE as an
interdisciplinary science emerged from one of the most cited articles published in Science by Langer
and Vacanti [18].

Unlike cell suspension, seeded scaffolds exhibit a more predictable transport of high density
cells into the defect site [14,19–26]. Therefore, it is essential that the structure and composition of
scaffolds emulate the complexity of target tissue and mimic the confluent extracellular matrix (ECM).
This is accomplished through inclusion of synergistic cell types, ECM proteins, and angiogenic factors
into the scaffold [27,28]. ECM proteins and growth factors facilitate cooperative signaling and thus,
augment the regenerative response [29]. Researchers have identified key peptide sequences (viz. RGD,
YIGSR, and REDV) among large non-cellular binding domains of ECM proteins. Functionalization of
scaffold material with these short peptides has shown to significantly enhance the cell attachment and
proliferation. Of note, short peptides can conveniently be synthesized with desirable functionalities
and be attached to polymer end groups while conserving the native properties of ECM protein [30–33].
Local placement of scaffolds, loaded with tissue-specific regenerative components, concentrates the
payload in the region of interest and stimulates regeneration through defined biomolecular recognition
events. Occasionally, acellular scaffold is administered to the recipient wherein regeneration leans over
recruitment of native cells into the implant. This strategy has been successfully tested by Stevens et
al. [34] for neobone formation. Authors have demonstrated the generation of mineralized compact
bone exhibiting the expression of histological markers and mechanical properties of native bone.

It is desirable that the scaffold is stably located and offers a hospitable environment for tissue
regeneration. In accordance, its performance is evaluated by the matrix stability, biocompatibility, and
achievement of tissue-specific physiological signaling (Table 1). Mechanical properties are evaluated
in terms of storage and loss moduli, and gel strength. These properties can be modulated either by
changing the crosslinking density and molecular weight of the polymer, or through incorporation
of additional components [35,36]. Nevertheless, ensuing characteristics must be appropriate for
manipulation during implantation [14]. Porosity and pore interconnectivity facilitate the metabolic
exchange, waste disposal, colonization, and survival of entrapped cells [37,38]. Biocompatibility with
seeded cells and host tissues has been studied using validated assay procedures. Material safety has
been evaluated in animal models to verify that unseeded scaffold does not induce cell infiltration
or aberrant histological changes in the neighboring tissues [39]. Finally, the scaffold should provide
molecular signals for driving complex multi-cellular processes and get degraded in concert with
cells proliferation [40,41]. The by-products of material degradation must not induce local or systemic
adverse events [42,43].

Table 1. Summary of important parameters for tissue scaffold development.

General Attributes Biocompatibility Biological Signaling

Composition and porosity Predictable degradation Mimicry to the native
environment

Stiffness and elasticity Low immunogenicity Release of cooperative factors

Formulation development and
payload incorporation Non-toxic degradation products Colonization of host cells without

inducing any histological changes

Ease of administration Payload release Integration with host tissues

2. Scaffolds Developed from Polysaccharides

A variety of macromolecules, ranging from synthetic to natural polymers, have been explored
for the fabrication of scaffolds. Despite flexible material properties, synthetic polymers find
limited TE applications as they lack biological cues inherent in many natural polymers [19,30].
Biomacromolecules (polysaccharides and proteins), derived from both animal and plants, are receiving
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wider interest in scaffold development [44,45]. Indeed, scaffold research has advanced in recent years
due to polysaccharides, such as chitosan [46,47], alginate [43,48], dextran [49–51], and hyaluronic
acid [41,52]. They readily form loose viscoelastic gel in aqueous vehicles via non-covalent interactions.
Other attractive features include low cost, ease of derivatization, biocompatibility, and biodegradability
(Figure 1). They present distinct similarity to the ECM, which is rich in glycosaminoglycans,
glycoproteins, and glycolipids. The ability of polysaccharides to generate biological cues has been
linked to their glycan units [53]. Cell-selective interaction has further been improved in recent years
through advances in purification techniques and backbone modification [48,54–57]. Moreover, the high
charge density of some polysaccharides enables the development of scaffolds using straight forward
electrostatic interactions [52].
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Figure 1. Schematic structure of polysaccharides. Active centre in the repeating unit of each
polysaccharide is shown in red font.

Despite these merits, the application of natural polysaccharides for scaffold preparation is
associated with certain limitations. Their molecular weight distribution, branching, and sequence
may not be consistent. In addition to influencing rheology, these variations may be detrimental
to biorecognition events. Another noteworthy obstacle is the inferior mechanical strength of
polysaccharide gels. It leads to quick hydrolysis and displacement of the formulation away from
the injection site. For instance, deterioration in the viscoelasticity of hyaluronic acid occurs through
the production of oligosaccharides and low molecular weight fragments [52]. Loss of viscoelasticity
at physiological temperatures can be circumvented through age-old crosslinking methods [58,59].
Besides, gel strength has been improved through the incorporation of additives and/or polymers
of a desirable molecular weight [60–63]. Gelatin is a good choice as a blend component (Table 2).
With the presence of arginine, glycine, and aspartic acid (RGD) tripeptide in the backbone, gelatin
acts as a fibroblast-attractant. Simultaneously, it promotes epithelialization and granulation tissue
formation [64–67]. It has been shown to undergo proteolytic degradation without producing antigenic
fragments [38].

In this review, we discuss the developmental and biological aspects of scaffolds prepared from
four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran
(DEX). An emphasis is placed on scaffolds developed through physical/chemical modifications using
crosslinking, grafting, polyion complexation, and blending (Table 2). Clinical studies on these scaffolds
are also covered (Table 3).
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Table 2. Polysaccharide based tissue scaffolds.

Components Formulation Application Suggested Merits Reference

CHI, PCL and
polypyrrole

Electrospun
nanofibres neural tissue substitute enhanced attachment and proliferation of

PC12 cells [20]

GEL and carboxymethyl
CHI Lyophilization dermal tissue

engineering
adhesion, growth, and proliferation of

3T3 mouse fibroblasts [22]

maleiated CHI and
thiol-terminated PVA

photocrosslinkable
hydrogel

engineering of
chondrocytes

rapid gelation, improved mechanical
properties, and higher proliferation of

L929 cells
[68]

CHI and COL solvent casting hepatocyte attachment fetal porcine hepatocytes survived at least
14 days [69]

ALG and some
surfactants Lyophilization delivery of mesenchymal

stem cells

sustained mesenchymal stem cell
proliferation up to 14 days and improved

release of growth factors
[14]

ALG Lyophilization soft tissue repair
differentiation of adipose-derived stem

cells into adipocytes along with
angiogenic action

[5]

ALG and SWCNTs
multinozzle

deposition of the
components

proliferation of
endothelial cells

improved adhesion and proliferation of
rat heart endothelial cells due to

incorporated SWCNTs
[19]

Quaternized CHI
polyaniline and oxidized

DEX

lyophilized
hydrogel

in situ forming
antibacterial and

electroactive hydrogels

high antibacterial activity and enhanced
proliferation of C2C12 myoblasts in

comparison to quarternized CHI
hydrogel

[23]

PUL-DEX Lyophilization adherent cell growth zero-order release of BSA and VEGF [70]

RGD peptide
functionalized DEX

crosslinked
hydrogel cell-homing scaffold

0.1% of RGD-modified DEX was
sufficient to support HUVEC cells

adhesion
[24]

Maleiated
HA/thiol-terminated

PEG
mould-casting in-situ formable

scaffolds

quick gelation, porous structures, tunable
degradation, and cytocompatibility with

L929 cells
[71]

CHI, HA and
andrographolide Lyophilization wound care scaffold enhanced wound healing and improved

tissue quality [72]

Thiophene ethylamine
modified HA Lyophilization hepatocytes culture

improved expression of hepatic
functional genes in primary mouse

hepatocytes
[73]

Thiolated HA Lyophilization culture of fibroblasts and
chondrocytes

improved density of living cells during
culture for 28 days in vivo [25]

HA and COL Lyophilization brain tissue engineering improved mechanical properties through
complexation of HA with COL [74]

HA, GEL and CS Lyophilization retinal regeneration
favored differentiation of stem cells into
retinal cell types and elicited a minimal

immune response in mouse
[75]

DEX and PLGA electrospinning fibroblast/
macrophage co-culture

synergistic coordination of macrophages
and fibroblasts stimulated the

degradation rate scaffolds in comparison
to counterparts incubated with a single

type of cells

[76]

DEX and CHI solvent casting wound healing deposition of ordered collagen and
fibroblast migration [77]

Abbreviations: Poly(ε-caprolactone), PCL; chitosan, CHI; gelatin, GEL; xanthan gum, XG; collagen, COL; alginate,
ALG; pullulan, PUL; dextran, DEX; chondroitin sulphate, CS; poly(lactic acid-co-glycolic acid), PLGA; basic
fibroblast growth factor, bFGF; bovine serum albumin, BSA; polyvinyl alcohol, PVA; matrix metalloproteinase,
MMP; single-walled carbon nanotubes, SWCNT; arginine-glycine-aspartate, RGD; poly (ethylene glycol), PEG;
vascular endothelial growth factor, VEGF.

2.1. Chitosan

Chitosan (CHI) is obtained from the partial or full deacetylation of chitin (the second most
abundant biopolymer after cellulose, found in the exoskeleton of crustaceans and endoskeleton of
molluscs). The protonation of amine groups during dissolution imparts a positive charge, following
which it quickly adheres to negatively charged substrate surfaces. Readers are referred to some
earlier reviews on biochemistry and biomedical applications of CHI [78,79]. Depending on the
source, chitin exists in α- or β- crystallographic forms. As against to anti-parallel chain organization
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of α-form, β-chitin exhibits parallel organization. The latter configuration though allows limited
probability of intermolecular hydrogen bonds, but it improves accessibility to chemical modification or
deacetylation [80,81]. This is evident in the findings of Reys et al. [82], who investigated the influence
of freezing temperatures (−80 and −196 ◦C) upon scaffold formation behavior of α- and β-chitin, with
a deacetylation degree (DD) of 76.6% and 91.2%, respectively. Although both the scaffolds exhibited
stability against lysozyme up to 4 weeks, those prepared at −196 ◦C displayed a compact structure
and smaller pores. The β-chitin scaffold presented similar morphological features and swelling profile,
but superior mechanical properties attributable to its higher DD [82].

Tissue engineering applications of CHI emerge from the properties, such as hydrophilicity,
polyelectrolyte behavior, mucoadhesion, hemostatic action, and structural similarity to native
extracellular proteoglycans. Its polar groups and physicochemical properties provide a favorable
non-protein environment for cell adhesion and proliferation [83]. It easily forms a blend with
other polymers through electrostatic interactions and confers antimicrobial properties to the final
composition [1,21,84].

Mechanical properties of CHI hydrogels can be modulated through a variety of crosslinking
approaches. A common approach is photo-crosslinking, achieved through the derivatization with
photoactive methacrylate [85–87], azido [88,89], or maleic [68,90,91] groups. Such hybrid scaffolds
can be conveniently produced via freeze-drying. Physical properties (rheology, absorbing capacity,
morphology, crystallinity, and compressive modulus) can be tailored by controlling the degree of
substitution. Studies have shown that CHI scaffolds support the attachment and proliferation of
fibroblasts [21,22], chondrocytes [68], hepatocytes [69], and nerve cells [20].

2.2. Alginic Acid

Alginic acid or alginate (ALG) is a biocompatible and non-immunogenic polysaccharide obtained
from kelp, brown algae, and some bacteria [14]. It is composed of two alternating blocks, α-L-guluronic
acid (G) and β-D-mannuronic acid (M), linked via α-(1–4) and β-(1–4) glycosidic bond, respectively
(Figure 1). Methods have evolved to obtain high purification grade ALG at a low cost, with
negligible traces of contaminants, such as polyphenols and endotoxins [92,93]. Stable hydrogels can
be developed in mild conditions by adding divalent metal cations (Ca2+, Sr2+, and Ba2+) to aqueous
ALG solution [94,95]. Its sol-gel transition is ascribed to the formation of an “egg-box” structure upon
selective binding of cations to G-blocks; a phenomenon which explains the higher elastic modulus for
ALG gels richer in G blocks [96].

Despite these merits, ALG is not a preferred biomaterial as it lacks cell binding motif and, therefore,
exhibits poor cell adherence [97]. This has been demonstrated through a comparison between scaffolds
developed from RGD-immobilized and unmodified ALG. Immobilization of the peptide promoted
cell adherence to the matrix, prevented cell apoptosis, and accelerated cardiac tissue regeneration. The
cardiomyocytes reorganized their myofibrils and reconstructed myofibers within six days (Figure 2).
These effects were well reflected in the expression levels of α-actinin, N-cadherin and connexin-43
in cells cultured within RGD-seeded scaffolds [98]. Enhanced cell adherence upon the attachment
of RGD is explained as follows. Cellular integrins link the intracellular skeleton with ECM via the
RGD peptide. It initiates the cascade for cell survival and proliferation [31]. A similar argument is
applicable tothe incorporation of bone-forming peptides (derived from bone morphogenetic protein-7)
into scaffolds for driving osteogenesis and osteo-differentiation [99,100].

Incorporation of poly ε-caprolactone (PCL) [101,102], CHI [103], halloysite nanotubes [104], and
carbon nanotubes (CNTs) [19] has been investigated to tune the mechanical properties, bioactivity,
and proliferation rate of surface cells. Herein, the specific blending ratio of components eliminates the
possibility of phase separation.

Acellular macroporous ALG scaffolds have shown to promote the stabilization of hepatocytes,
both in vitro [105,106] and in vivo [107]. Shteyer et al. [107] demonstrated that ALG scaffolds, without
implanted cells, significantly improved the survival rate of partially hepatectomized mice (87%).



Polymers 2019, 11, 1 6 of 23

The animal manifested normal and prolonged aspartate- and alanine aminotransferase serum levels
as compared to 2- to 20-fold increase in control groups (non-treated and collagen-treated mice).
The authors correlated these findings to the non-adhesive and macroporous structure of the ALG
matrix. Macroporosity enabled rapid confinement of cells within the remnant liver and caused a
pronounced increase of cell polarity. Together with complimentary secretion of ECM components,
growth factors, and chemokines, it created a specialized niche favorable to differentiation of remnant
cells as functional hepatocytes [107]. The formation of scaffolds is dependent on pH, ion concentration,
and ALG composition. Destruction of the gel network and un-controlled degradation may occur in
biological buffers containing chelators or monovalent electrolytes [104,108,109]. However, scaffolds
developed from covalently cross-linked ALG have shown a shape memory effect, an exploitable
property while contemplating the repair of damaged annulus fibrous tissues. The formulation
supported cell penetration, proliferation, and ECM deposition when cultured in intervertebral disc-like
niche (low oxygen and glucose level) [110].
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were immune stained for a-actinin (green) and nuclei (red-propidium iodide). Adjacent 
cardiomyocytes joined to form striated myofibers (Figure 2A, day 6), an occurrence that increased in 
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Figure 2. Confocal microscopy and immune histochemistry images of cardiac cells cultivated
in RGD-immobilized (A,B) and unmodified ALG scaffolds (C,D) for 6 (A,C) and 12 (B,D) days.
The constructs were immune stained for a-actinin (green) and nuclei (red-propidium iodide). Adjacent
cardiomyocytes joined to form striated myofibers (Figure 2A, day 6), an occurrence that increased
in frequency as cultivation proceeded (Figure 2B, day 12). In contrast, cardiomyocytes cultivated
within the unmodified ALG scaffolds revealed unorganized myofibrils; there were fewer interactions
between adjacent cardiomyocytes and myofibers were not detected (Figure 2C and D, days 6 and
12, respectively). The lower panel shows relative locations of cardiomyocytes and nonmyocyte cells
(NMCs) in (E) RGD-immobilized and (F) unmodified ALG scaffold; (G) the native adult cardiac tissue.
In E and F, only cardiomyocytes were stained for α-actinin (green), while all cell nuclei were stained
with propidium iodide (Red). Arrow heads denote cell nuclei of NMCs. Twelve-day constructs were
fixed, fluorescently stained, and examined using confocal microscopy. In G, native adult cardiac tissue
was stained for troponin-T (brown). The NMCs surrounding cardiomyocyte bundles were negatively
stained. Adult rat ventricles were paraffin-fixed, cross-sectioned, and immunostained for troponin-T.
Reproduced and modified with permission from Elsevier (2011) [98].
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2.3. Dextran

Dextran (DEX) is a bacterially-derived uncharged, linear polysaccharide composed of α-1,6
linked D-glucopyranose residues with a few percent of α-1,2-, α-1,3-, or α-1,4-linked side chains [49].
It is available in a wide range of molecular weights and undergoes enzymatic degradation in
the spleen, liver, and colon [111]. Crosslinked DEX hydrogel beads have been used for aslong
as low protein-binding matrices in column chromatography [112] and in microcarrier cell culture
technology [113,114]. Soft tissue-engineering applications of DEX stem from its resistance to protein
adsorption and cell adhesion [115]. Porous DEX hydrogels can be prepared through crosslinking
mediated by hydroxyl groups present on α-1,6-linked D-glucose residues [116]. The polymer has
three hydroxyl groups in each repeat unit, and the reactivity of these groups follows the order of
C2>C4>C3 [117]. Several chemical modifications have been explored, yielding DEX derivatives with
tailored physicochemical and functional characteristics [118–120] (Figure 3).
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Figure 3. Scheme showing the crosslinking approaches for oxidized DEX. DEX can be oxidized
via periodate treatment. Oxidized DEX can be crosslinked through the attachment mono-, bi-, and
multi-armed amines [111,121–123]. Alternatively, glycidyl methacrylate (GMA) can be attached to
oxidized DEX and the latter can be crosslinked with dithiothreitol (DTT) [120].
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Some groups have investigated surface grafting and co-polymerization as a tool of improving the
cell-adhesion of DEX [24,124,125]. Levesque et al. [125] developed scaffolds of methacrylated-DEX
copolymerized with aminoethyl methacrylate. Herein, primary amine groups served as handles to
covalently link RGD peptide. The adhesion and neurite outgrowth of primary embryonic chick dorsal
root ganglia increased upon copolymerization. A further improvement was noticed upon peptide
immobilization. Notably, direct coupling between peptide (amine) and hemiacetals of oxidized DEX
destructed the conformation of peptides. At the same time, the presence of amine-pendants in the
side-chain of constituent amino acids impaired the scaffold-cell interactions [124]. This has been
minimized through the development of sulfhydryl-terminated peptides [125].

A recent study of Noel et al. [126] questioned the cell-selective response of ECM peptides using
DEX scaffolds. Investigators illustrated the role of four ECM peptides (RGD, YIGSR, REDV, and CAG)
upon adhesion and proliferation of HUVEC and AoSMC cells. A library of vinylsulfone-modified
DEX was tethered with the peptides. RGD (Arg-Gly-Asp), YIGSR (Tyr-Ile-Gly-Ser-Arg), and SGIYR
(Gly-Ile-Tyr-Arg) were able to enhance both HUVEC and AoSMC adhesion (showing no selectively for
HUVEC over AoSMC), whereas REDV (Arg-Glu-Asp-Val) and CAG (Cys-Ala-Gly) failed in improving
the cell adhesion. Interestingly, co-immobilization of vascular endothelial growth factor and RGD
resulted in selective proliferation of HUVEC cells. It thus highlighted the scope of changing the
conformation, sequence tuning, and lengthening of peptides as tactics to impart a cell selective
response in the scaffold.

2.4. Hyaluronic Acid

Commercial hyaluronic acid (HA) is extracted from rooster combs, but it has also been produced
using genetically engineered bacteria. Highly pure HA is available in a range of molecular weights
at relatively low costs. HA and its derivatives are widely used in the cosmetics industry, medicine,
and surgery. Physiochemical and biological properties, methods of modification, and drug delivery
applications of HA have been described in other comprehensive reviews [52,127,128]. Its biological
activity is molecular weight-dependent [129]; high molecular weight HA has anti-inflammatory
and anti-angiogenic properties, whereas low-molecular weight HA possesses pro-inflammatory
and pro-angiogenic activities [130–132]. Besides, studies show that HA promotes macrophage
differentiation into the M2 phenotype [133]. Improved cellular proliferation and tissue regeneration
have been demonstrated by blending with biodegradable materials [134–136] and coating the scaffolds
with HA [137,138] and non-covalent binding [139]. These events are most likely mediated through
selective interaction of HA with cell surface receptors, such as CD44, ICAM-1, and RAHMM [52,140].

Kudryavtseva et al. [141] explored the effect of surface immobilized high molecular weight
HA upon survival of primary human monocyte-derived macrophages. The immobilization on
polylactic acid scaffolds was accomplished through atmospheric pressure cold plasma treatment.
HA attachment enhanced the biocompatibility of the scaffold and stimulated its pro-angiogenic
action. Interestingly, dip coating of HA (1 wt% solution) has been shown to enrich the attachment of
MCF7 cells onto poly(lactic acid-co-glycolic acid) (PLGA) scaffolds [137]. Depending on the process
parameters, deposited HA may have configurations ranging from thin disconnected aggregates to a
thick continuous layer on the pore surface (Figure 4). Besides, layer topography may affect the swelling
of scaffold and may be of interest in applications wherein resistance to normal stress is desirable [138].
For other specific applications, hybrid nanofibres can be used as reinforcement alternative [142].

While the majority of investigations have focused on exploiting the direct biological effects of
HA, its incorporation intriguingly improved the mechanical strength of scaffolds and may, therefore,
inhibit the cell-induced contractions. Davidenko et al. [143] investigated the influence of increasing the
amount of HA upon mechanical characteristics of collagen scaffolds. Together with supporting the
proliferation of 3T3-L1 preadipocytes, HA created additional crosslinks. Consequently, the scaffold
exhibited improved resistance to compression and in vitro dissolution.
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Figure 4. Scanning electron microscopic images of the dry poly(ethyl acrylate)(PEA) scaffolds:
(A and B) Bare scaffold, cross section, and frontal view, respectively; (C) 05HA1; (D) 05HA5; (E) 5HA2;
(F) 5HA5. The arrowheads point at the adsorbed HA. With one coating cycle, 0.5 wt% HA solution
produced aggregates on the pore surface (shown in C). These aggregates become more distinct as the
number of cycles increases, but a uniform layer is not obtained with 0.5wt% even after five cycles (D).
In contrast, coating with 5wt% HA produces a uniform continuous layer after the first coating cycle.
The effect of further cycles is to achieve the layer thickness. This is accompanied with a decreased pore
diameter and the clogging of some pores (E). After the fifth cycle (F), the channels are filled with HA to
a high degree. (05HA# and 5HA# designate the scaffolds coated, respectively, with 0.5wt% and 5wt%
HA solutions, # being the number of cycles). Reproduced and modified with permission from Elsevier
(2011) [138].

3. Approaches of Scaffold Preparation

Prototype scaffold preparations include three key components: Support material, cells, and
angiogenic factors. Typically, a blend of biopolymers is employed with the objectives, such as enhancing
mechanical properties, and tuning the porosity, loading property, swelling ratio, and degradation
kinetics of the scaffold. Cells and growth factors either adhere to the scaffold surface [144] or get
encapsulated within the matrix [145]. Formulations include hydrogel [5,91], fiber [142], film [69],
and de-cellularized matrices [146–148]. Electrospun microfiber bundles are suturable and often
exhibit an elastic modulus identical to that of native tissue [9]. Transplantation can be rendered
less aggressive by developing in situ gelling formulations, which later acquire the configurations of
damaged tissue [23,149]. Besides, self-crosslinking has been achieved in neat polysaccharide systems
via thiolation [25].

The preparation method must be selected on the criteria, such as a desired scale of operation,
controllability of steps, and batch-to-batch consistency. A general approach includes dissolving the
component(s) into an aqueous vehicle and subsequent processing via solvent casting, lyophilization,
electrospinning, or cryo-gelation. The weight ratio of components is adjusted to attain a desired
dispersibility [57]. This is essential with the consideration that cross-linkage between the constituents
may sometimes offset the hydrophilicity and pore size of polysaccharide scaffolds [74,150].
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The scaffold can be macro- or micro-patterned at a high accuracy using controlled
chemical manipulations to achieve desirable biophysical characteristics [151]. Photo-crosslinkable
interpenetrating (IPNs) and semi-interpenetrating networks (SIPNs) between COL and HA have been
shown to control the structural and biomechanical properties (Figure 5I). In contrast to IPN composed
of two un-crosslinked polymers exhibiting full interpenetration, SIPN consists of one crosslinked
polymer entangled in another un-crosslinked polymer and hence, is mechanically inferior [52]. Such
entangled networks retain the structural properties of component polymers while reinforcing the
scaffold. Scaffolds developed from the IPN-SIPN blend are anisotropic; showing region-specific
distribution of crosslinking density, viscoelasticity, water content, and porosity [151,152] (Figure 5II).
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Figure 5. Schematic for synthesizing IPNs, SIPNs, and photopatterned hydrogels (I). HA and collagen
solution were suspended in the silicone mold and collagen was permitted to undergo fibrillogenesis
at 37◦C (1). This resulted in the formation of a SIPN, which was then exposed to ultra-violet light to
yield a full IPN (2). Alternatively, photo patterning was performed using a photomask, which resulted
in SIPN and IPN patterns within a single hydrogel (3) (I). The lower panel (II) shows the macro-
and micro-patterned hydrogels formed due to differential crosslinking densities. A macropatterned
hydrogel is shown in which half was exposed to UV before (A) and after washing the un-crosslinked
fluorescein acrylate (B). In addition, (B) shows the interface between the macropatterned halves.
Micropatterning within a single bulk hydrogel of a 500 µm thickness is shown in C and D. (Scale
bar-150 µm). Reproduced and modified with permission from Elsevier (2009) [151].

Khoshakhlaghet al. [153] illustrated the effects of micro-patterning upon neurite growth using
a dual hydrogel, incorporating methacrylated HA and Puramatrix (PM, a self-assembling peptide
scaffold). Initially, IPN hydrogels were formulated using self-assembly of PM and photo-crosslinking
of HA. It was then surrounded by photo-crosslinkable polyethylene glycol (PEG). Integration between
the two compartments of hydrogel was mediated by the IPN. Crosslinkable substrates were exposed
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to UV radiations in geometries relevant to cover the entire gel thickness, thereby creating a desirable
micro-patterning. A range of mechanical properties could be achieved by controlling the degree of
methacrylation. Regions with a lesser degree of methacrylation (greater porosity) displayed better
neurite outgrowth [153] (Figure 6).
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Figure 6. A significant increase (p<0.05) in the swelling ratio can be noticed in IPN32, with a smaller
crosslinking density (A). Besides, a higher crosslinking density (IPN90) led to a significant increase
(p<0.05) in the compressive moduli (B). Comparative analysis of the length of neurite extension in
IPN90 and IPN32 constructs is shown in (C) and (D). A less stiff substrate allowed a longer growth,
with some neurites extending up to 3.3 mm after 7 days (C). Analysis of the amount of neurite growth
(average of five longest neurites) demonstrated that the more compliant substrate allowed superior
overall growth (D). Reproduced and modified with permission from Elsevier (2015) [153].

Techniques, such as embossing, micro-contact printing, and layer-by-layer assembly of planer
sheets, have been employed for the fabrication of micro-patterned scaffolds [154,155]. Scaffolds
with honeycomb, square, and rectangle patterns (needed for specialized applications) are obtainable
using these methods [156,157]. For instance, it is desirable from the cardiac scaffolds to offer
electrical cues, in addition to biomimicking mechanical and topographical features. Liu et al. [158]
fabricated micro-patterned cardiac patches using a tri-culture system, composed of cardiomyocytes in
combination with cardiac fibroblasts and endothelial cells.

3D printing technology is also gaining popularity for its high speed and continuous scaffold
design. Typically, a bioink containing cells, growth factors, and other biological solutions is printed
over acellular scaffolds. A highly customized architecture can be achieved with the help of a
motion-controlled multinozzle deposition system [19]. The process employs a low pressure extrusion
and is operated at room temperature, with benign processing requirements. Low pressure extrusion
with a large diameter nozzle helps in minimizing mechanical stress to the cells. It is, however,
important that the material is sufficiently viscous to be dispensed as free standing filaments exhibiting
desirable mechanical strength. The reader is referred to earlier reviews on the application of 3D
printing technology in tissue engineering [159–161].

4. Clinical Status of Polysaccharide Scaffolds

The evaluation of scaffolds in a clinical set-up is necessary to validate its efficacy. Clinical reports
on polysaccharide scaffolds are interesting, but the power of those findings is limited due to a small
sample size, lack of a randomized control group for comparison, and the unavailability of long-term
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studies [162,163]. With a limited sample size and smaller follow-up period, the investigators may miss
infrequent adverse events. In this landscape, the regenerative response with the test approach remains
obscure. On the other hand, long-term data, acquired in a broader population, provide important
indications if early risks associated with the intervention can be offset by future benefits [26,163].

Stillaert et al. [164] investigated HA-based preadipocyte-seeded scaffolds for adipo-conductive
potential and efficacy in humans. Autologous cells, isolated from lipoaspirate material and seeded
on HA scaffolds, were implanted subcutaneously. The scaffold displayed superior cellularity and
progressive tissue integration within eight weeks of implantation. It, however, lacked angiogenic
penetration since the cells were located more than 100 µm away from the native micro vasculature;
beyond the diffusive capacity of oxygen [164]. The adherence of the scaffold to the lesion can be
monitored by analyzing the polysaccharide content in biopsy samples [165].

Other clinical studies have employed esterified HA (HYAFF®). Esterification of carboxyl groups
involved the preparation of a quaternary HA salt and its subsequent reaction with an esterifying
agent (aliphatic, alicyclic, or aromatic alcohol) in an aprotic solvent [166]. Scaffolds based on benzyl
ester (HYAFF®11) have been widely tested for cartilage repair (Table 2). The treatment minimizes
pain and counteracts the development of arthritis [167]. It is agreed that the autologous cell-based
repair technique results in the generation of hyaline-like repair tissue. It shows a lower probability of
failure in comparison to fibrous repair tissue [168]. This might be the reason for the greater clinical
acceptability of scaffold-based cell seeding over bone-marrow stimulating techniques for cartilage
repair [165,167].

Table 3. Summary of human clinical studies exploring the efficacy of polysaccharide scaffolds.

Scaffold Composition Application Study Design Major Findings Reference

Calcium-ALG hydrogel
composed of Na+-ALG

and Ca2+-ALG
suspended in 4.6%
aqueous mannitol

improvement of cardiac
function in patients with

heart failure

11 patients (males, age 44 to 74) with
symptomatic heart failure; New York

Heart Association class III or IV

scaffold placement along with coronary
artery bypass grafting successfully

induced
remodeling and local stress reduction in

the myocardial wall

[162]

improvement of exercise
capacity and symptoms in

chronic heart failure

multi-centre, prospective,
randomized trial involving 40

patients, 63 ± 10 years

ALG-hydrogel in addition to standard
medical therapy was more effective in

advanced chronic heart failure
[26]

1% ALG and 0.3%
calcium gluconate

(IK-5001)

reversal of left ventricular
remodeling and dysfunction

27 patients (24 males, 03 females) with
ST-segment–elevation myocardial

infarctions; (mean age 54 ± 9 years)

provided initial proof on the tolerability
of IK-5001 and the use of catheter-based

strategy after myocardial infarction
[163]

ALG beads containing
human mature allogenic

chondrocytes

treatment of chondral
lesions

21 patients (13 male, 8 female); mean
age

-33 years (12–47 years); mean lesion
area-2.6 cm2; mean duration of
symptoms-33.20 months (6–73

months)

clinical improvement in patients during
24 months of follow-up; histological
analyses showed hyaline-like tissues

(15.3%), mixed tissue (46.2%),
fibrocartilage (30.8%), and fibrous (7.7%)

[15]

esterified HA seeded
with autologous

chondrocytes

knee cartilage defects 67 patients; mean follow-up time
from implantation - 17.5 months

improvement in knee conditions (97%),
quality of life (94%), surgeons’ knee

functional test (87% of patients with the
best scores), and cartilage repair (96.7%

biologically acceptable)

[169]

treatment of chondral knee
lesion

16 patients (14 men, 2 women); mean
age-31.5 years (range 16–42)

avoidance of open surgery, reduced
surgical morbidity and operative time;
functional capacity comparable to the

standard techniques

[165]

articular cartilage
engineering

multicenter study on the cohort of 141
patients; follow-up time-2 to 5 years

(average 38 months)

improvement in 91.5% of patients; 76%
and 88% of patients had no pain and

mobility problems; 95.7% patients
showed normal knee with hyaline-like

tissue

[168]

treatment of full-thickness
chondral defects

53 patients, mean age -32 ± 12 years,
mean body mass index-24.5 ±

3.8kg/m2; mean defect size-4.4 ±
1.9 cm2

improvement of clinical outcome up to 7
years in healthy young patients with

single cartilage defects; less complicated
surgery and lower morbidity

[170]

at a mean follow-up of 9.07 ± 2.9 years,
treatment failure occurred in 22.6% cases

at an average of 2.99 ± 1.40 years of
surgery; significant clinical improvements

[167]

hyaline cartilage
regeneration

multicenter study 23 patients (18 men,
5 women), mean age-35.6 years, mean
follow-up -16 months (range, 6–30);

mean implant area-5.0 cm2

regeneration occurred in about 50% of
patients during 6 to 30 month follow-up [171]
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ALG has been clinically tested for improving cardiac function using Algisyl-LVR™ [162] and
IK-5001 technologies [163]. Lee et al. [162] employed a proprietary gel, which transformed to a scaffold
upon placement in the affected region. The formulation consisted of: (a) ALG component as 4.6%
aqueous mannitol, and (b) Ca2+-ALG component as insoluble particles suspended in 4.6% aqueous
mannitol. These solutions were extemporaneously mixed in one syringe prior to intramyocardial
administration [162] (Figure 7). On the contrary, IK-5001 comprises of 1wt% ALG containing
0.3% calcium gluconate and undergoes in situ crosslinking. Its intracoronary delivery is relatively
simple and does not require a unique device or complex imaging system. When injected, the
formulation selectively permeates to the infracted myocardial tissue and reversibly crosslinks to form
a temporary bioabsorbable cardiac scaffold in a Ca2+dependent manner. The scaffold then replaces
the damaged ECM, reduces myocardial wall thinning and strain, and ultimately attenuates infarct
expansion [163,172]. Herein, the selectivity of scaffold deposition is ascribed to abnormal microvascular
permeability and elevated extracellular Ca2+ concentrations within the infarct zone [173].
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Figure 7. Schematic of Algisyl-LVR™ injection in the left ventricle. (A) Short-axis view of the mid-
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size of the heart. Injections were separated by ≈0.5–1 cm and made at the mid-wall depth of 
myocardium. Reproduced with permission from Elsevier (2013) [162]. 
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remodeling is often constrained by limited diffusion of oxygen and growth factors in polymeric 
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and restoration of contractile functions. With these considerations, polymeric scaffolds appear 

Figure 7. Schematic of Algisyl-LVR™ injection in the left ventricle. (A) Short-axis view of the
mid-ventricle, half way between the apex and base. (B) Algisyl-LVR™ is injected at 10 to 15 locations at
the mid-ventricle free wall (excluding the septum). A left thoracotomy is performed to expose the heart
and the pericardium. The total number of injections for an individual patient depended on the size of
the heart. Injections were separated by ≈0.5–1 cm and made at the mid-wall depth of myocardium.
Reproduced with permission from Elsevier (2013) [162].

Altogether, clinical applications of polymeric scaffolds are challenging due to intricacies of
replicating the complex tissue environment without eliciting undesirable immunologic events. Tissue
remodeling is often constrained by limited diffusion of oxygen and growth factors in polymeric
scaffolds [174]. This has been demonstrated with reference to vascular restorative therapy in cardiac
tissues. Herein, the bioresorbable nature of scaffold stimulated positive blood vessel wall remodeling
and restoration of contractile functions. With these considerations, polymeric scaffolds appear superior
to metallic stents. The latter often lead to distorted vessel physiology, incomplete endothelialization,
and stent fracture [175,176]. At the same time, we cannot overlook the fact that behavior of polymeric
materials may not be identical under dry and submerged conditions. It is, therefore, suggestive to
preliminarily map the localized changes in structural integrity vis-a-vis macroscopic performance
of scaffolds under practical use conditions [177]. This can certainly minimize the clinical failure of
polymeric scaffolds.

5. Conclusions and Perspective

Preservation of local organ function via tissue regeneration is a definitive component of
post-operative care. Regenerative treatment leans over the development of advanced biomaterials,
processing thereof as 3D scaffolds, and investigating the manner in which scaffold material cooperates
with the seeded cells, proteins, and growth factors in order to augment the natural repair mechanisms.
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Polysaccharide based materials have shown endless promise for developing the tissue scaffolds.
Ongoing advancements in polysaccharide chemistry and nanotechnology have enabled the integration
of mechanical, topographical, and biological cues into these materials for stably recapitulating the
tissue-scale organization. Importantly, these recreated structures may act as customized tissue
surrogates for the screening of new drug molecules [178].

While debating the translational application of scaffolds, it is of interest to look forward to
upcoming technologies for mass production and setting quality control parameters. For instance,
studies illustrate that a polymer’s molecular weight and sterilization procedure affect biological and
microstructural attributes of the scaffold [179,180]. Therefore, in sync with the advances in polymer
modification approaches, investigations must equally focus on the way these modifications affect
the architecture and biological performance. This would enable the development of preparations
compatible with regulatory standards worldwide and those showing a lesser rejection in clinical
settings. Results on larger patient cohorts will indeed show the footprints of scaffold research on
clinical medicine in the future.
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