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Abstract: Accurate rainfall observation data with high temporal and spatial resolution are essential
for national disaster prevention and mitigation as well as climate response decisions. This paper
introduces a field experiment using an E-band millimeter-wave link to obtain rainfall rate information
in Nanjing city, which is situated in the east of China. The link is 3 km long and operates at 71 and 81
GHz. We first distinguish between the wet and the dry periods, and then determine the classification
threshold for calculating attenuation baseline in real time. We correct the influence of the wet antenna
attenuation and finally calculate the rainfall rate through the power law relationship between the
rainfall rate and the rain-induced attenuation. The experimental results show that the correlation
between the rainfall rate retrieved from the 71 GHz link and the rainfall rate measured by the raindrop
spectrometer is up to 0.9. The correlation at 81 GHz is up to 0.91. The mean relative errors are all
below 5%. By comparing with the rainfall rate measured by the laser raindrop spectrometer set up at
the experimental site, we verified the reliability and accuracy of monitoring rainfall using the E-band
millimeter-wave link.

Keywords: electromagnetic wave propagation; E-band millimeter-waves; rain-induced attenuation;
rainfall observation

1. Introduction

Due to the variety of climates in different regions of China, rainfall has always been
a key meteorological element monitored by the meteorological department. The uneven
distribution of rainfall over space and time can cause floods and droughts, which have a
great impact on human production and life. Therefore, the accurate real-time monitoring
of precipitation is essential [1].

Traditional rain gauges do not have high spatial resolution due to in situ measure-
ment [2]. In addition, weather radars are easily affected by ground echoes at low elevation
angles, and their measurement results are limited [3]. Studies have shown that millimeter-
waves are affected by many factors such as scattering, reflection, and atmospheric ab-
sorption in the process of space propagation. Among them, the influence of rainfall is
the most obvious. The attenuation of the millimeter-wave signal becomes greater with
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increasing frequencies [4–6]. Based on this feature, meteorological experts have proposed a
method of using communication links to monitor near-ground rainfall and retrieve rainfall
rate data [7]. This is a complement to traditional rainfall monitoring methods and adds
significantly more observation data to the existing network. In addition, the near-ground
rainfall monitoring of the microwave link is an advantage compared to the radar and
raindrop spectrometer. The microwave link transmitter is an active sensor, and a power
law model relating the rainfall rate and attenuation can be adopted for rainfall estimation.

At present, many countries have carried out research on using the rain-induced
attenuation characteristics of microwave links to retrieve rainfall, mainly in the frequency
range of 15–40 GHz [8–11]. For example, in Israel, Messer et al. studied the estimation
of rainfall rate by commercial microwave links and analyzed various error sources that
affect the estimation accuracy, including signal changes caused by antenna wetting and
the uncertainty of the attenuation baseline [11,12]. Making use of the existing commercial
wireless networks is equivalent to deploying a very high density of weather monitoring
sensors and forming wireless environmental sensor networks (WESNs) [13] all over the
world. Chwala et al. used attenuation data from commercial microwave links in the
high mountains of southern Germany to estimate the near-surface rainfall rates and used
spectral time series analysis to detect wet and dry periods [14]. In South Africa, Ahuna et al.
evaluated the rainfall rate measurement of 10 locations with a 5 min integration time to
obtain its cumulative distribution [15]. These studies have all contributed to the estimation
of rainfall rate using microwave links, but they are all based on data collected from low-
frequency links. With the rapid development of fifth-generation wireless communication
technology (5G), more spectra and wider bandwidth are required. However, the global
bandwidth shortage has prompted the exploration of the underutilized millimeter-wave
frequency band. Among them, E-band millimeter waves have recently attracted attention,
and research on the use of links in this frequency band for rainfall monitoring has gradually
increased [16–18]. Al-Samman et al. used a 1.8 km 73.5 GHz E-band link to analyze the
rainfall rate and rain-induced attenuation in tropical areas [19]. Luini et al. used two
325 m long links in the E-band (73 GHz and 83 GHz) to collect power data, identify rainfall
events and eliminate wet antenna effects, as well as provide a higher-precision prediction
model [20]. Their experiment also evaluated the accuracy of the statistical prediction
model for terrestrial links currently recommended by the ITU-R in predicting rain-induced
attenuation along short-distance and high-frequency links in 5G networks.

In general, most of the published experimental studies are based on low-frequency
link measurement data, and some are based on E-band link data collected in a few
regions [21–24]. However, the research on rainfall rate retrieval based on practical E-band
millimeter-wave links in China is rare. It is necessary to conduct experiments to provide in-
sightful information for the research on the rainfall rate inversion of millimeter wave links
in China. We have previously studied the propagation characteristics of low-frequency mil-
limeter waves and the influence of the atmosphere on millimeter wave transmission [5,9,17].
Compared to existing work, the major contributions of this paper are (1) using the data
collected by the E-band millimeter wave link built in Nanjing to evaluate the performance
of the link to monitor rainfall; (2) overcoming the difficulty that the attenuation baseline is
not constant over time by dynamically determining the baseline; and (3) estimating the
rain attenuation error caused by the wet antenna effect.

The rest of this paper structure is as follows. Section 2 introduces the system equipment
used to build the E-band millimeter-wave link, the auxiliary equipment for collecting
rainfall data, and the propagation characteristics of the link. Section 3 introduces the
method of processing the experimental data collected by the link, including wet–dry
classification and real-time attenuation baseline calculation. Section 4 introduces the
estimation method of the wet antenna effect, and finally obtains rain-induced attenuation
to retrieve the rainfall rate. Section 5 presents the analysis and discussion of experimental
results. Section 6 gives the conclusion.
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2. Experimental Equipment and Link Propagation Characteristics

Figure 1a shows the E-band radio transceiver that we used. This device works in the
frequency range of 71–76/81–86 GHz, adaptive modulation, and can directly configure
local and remote devices through the network graphical user interface. The details of the
microwave link and system operating parameters are described in Table 1.
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Figure 1. (a) E-band radio transceiver; (b) the CLIMA laser precipitation monitor.

Table 1. System parameters of the E-band link [25].

Parameter 71–76/81–86 GHz

Transmit power +7 dBm
Level resolution 0.1 dB

Tx and Rx antenna gain 50 dBi
Antenna polarization vertical

Antenna size 0.65 m
Bandwidth 250 MHz
Throughput 1 Gbps full duplex

Link budget (BER (Bit Error Rate) = 10−6) 196 dB (including 2ft antennas’ gain)
Modulation QPSK (Quadrature Phase Shift Keying)

Figure 1b shows the CLIMA laser precipitation [26] monitor (also called raindrop
spectrometer). The time resolution of the data recorded by this instrument is 1 min, which
is very suitable for measuring and detecting different types of rainfall, such as drizzle,
rainfall, hail, snow and mixed rainfall. The observed particles are divided into 22 diameter
categories and 20 velocity categories. We can use this information to calculate the rainfall
rate and rain-induced attenuation.

On a rainy day, the transmitted wireless signal is attenuated by raindrops due to
scattering and absorption, which causes the signal level at the receiver to attenuate, so we
can estimate the rainfall rate on the path. Figure 2 shows the schematic diagram of the
E-band millimeter-wave signal transmission link composed of a transmitter and a receiver.
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The received power PR (dBm) can be expressed as

PR = PT + GT + GR − PL− AL−OL (1)

where PT (dBm) is the transmitted signal power, GT (dBi), GR (dBi) are the antenna gains
of the transmitter and receiver, PL (dB) is the propagation path loss, AL (dB) is the at-
mospheric loss, and OL (dB) for other losses. PL can be expressed by the following
formula [27]:

PL( fc, d) = 32.4 + 20 log 10( fc) + 10n log 10(d/d0) + χσ, d ≥ 1 m (2)

where fc (GHz) is the carrier frequency, d (m) is the distance between the transmitter and
the receiver, the reference distance d0 is 1 m, and n is the path loss index. χσ is a zero-mean
Gaussian random variable with σ standard deviation, and the unit is dB.

The attenuation model of AL is as follows:

AL = Ar + Av + Ao + Ap (3)

Atmospheric loss mainly includes the attenuation effects of dry air (including oxygen),
water vapor, fog and rainfall. Ar (dB) is the attenuation caused by rainfall, Av (dB) is the
attenuation caused by water vapor, Ao (dB) is the attenuation caused by dry air, and Ap
(dB) is the attenuation caused by non-rainfall, such as fog, sleet and snow.

Rain-induced attenuation Ar and equivalent path-averaged rainfall rate R (mm/h)
have a power–law relationship. We can calculate rain-induced attenuation through the
simple formula provided in ITU-R P.838-3 [28]. The model is as follows:

AITU−R
r = γITU−R

r l = kRαl (4)

In the formula, γITU−R
r is the rain-induced attenuation, l is the link length, which is

3 km in this experiment, and k and α are the frequency compliance coefficients, which
are related to the millimeter-wave operating frequency, rainfall temperature, polarization
mode and raindrop size distribution. In [28], the power–law coefficient corresponding to
the 71 GHz link is [k = 1.0409, α = 0.7193], and the power–law coefficient corresponding
to the 81 GHz link is [k = 1.1793, α = 0.7004]. Assuming that the rainfall rate is constant
along this path, if we obtain rain-induced attenuation, we can also calculate the rainfall
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rate based on this model. Then, we will introduce the steps and methods for obtaining
rain-induced attenuation from the link data.

3. Data Processing
3.1. Post-Processing

Nanjing has a subtropical monsoon climate with abundant rainfall, which will help
us collect more data on rainfall events. Compared with other cities, such as Shanghai and
Hangzhou. The humidity in Nanjing area is higher and the wind speed is lower, which
has less influence on the antenna, so the experimental equipment is more stable. Therefore,
we built an E-band millimeter-wave link in the Nanjing area and collected the received
power data from December 2019 to March 2020. The receiver sampled every 1 min with a
resolution of 0.1 dB. The link is 3 km long and operates at 71 and 81 GHz. First, the level
signal received by the millimeter-wave link is processed. Because the software recording
interface of the data acquisition system is frequently updated, if the page is being updated
at our sampling time point, the data may not be recorded and be lost. To ensure that the
experimental results are not affected, we excluded rainfall events with missing values. We
consider 10 rainfall events of different intensity and duration in the filtered experimental
data. The dates, duration, total rainfall amounts and maximum rainfall rates (as estimated
by the raindrop spectrometer set up at the experimental site) of these events are given in
Table 2.

Table 2. Date, duration (in hours), rain amount (in millimeters), and maximum rainfall rate (in
millimeter per hour) of the considered rain events.

Date Duration (h) Accumulated Rainfall Rates (mm/h) Maximum Rainfall Rates (mm/h)

7 January 2020 6.5 196.7 7.7
22 January 2020 4.5 274 3.6
24 January 2020 5.5 20 0.4
25 January 2020 9 154 1

28 February 2020 17 407 9.4
29 February 2020 7 248 3.6

9 March 2020 8 337 4.2
10 March 2020 3 64 2.7
13 March 2020 7 13 0.4
21 March 2020 5 220 5.6

The total attenuation value on the link path is obtained by subtracting the transmit
power from the received power. This link is a dual-polarization link. The equipment we
use can be set to vertical polarization or horizontal polarization. Since the two polarization
modes cannot work at the same time, we set the link to be vertically polarized during
the experiment. The raindrop spectrometer we use has a time resolution of 1 min for
measuring the rainfall rate, which is consistent with the time resolution of path attenuation.
Figure 3a shows the signal strength PR received by the E-band link on 7 January 2020. The
frequencies are 71 and 81 GHz, respectively. The fluctuation of the receiving level in the
dry period in Figure 3a is due to the adaptability of the equipment, and this change is
related to its own adjustment [29]. This also greatly increases the difficulty of our data
processing. Figure 3b shows the rainfall rate Rout output by the raindrop spectrometer set
up at the experimental site. It can be seen that after a rainfall event occurs, the received
signal intensity is attenuated accordingly, and the rainfall rate is positively correlated with
the signal attenuation.
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Figure 3. (a) The received signal intensity on 7 January 2020; (b) the rainfall rate output by the
raindrop spectrometer.

3.2. Attenuation Baseline Calculation

The network management system of the equipment we used has an adaptive mod-
ulation scheme, which is a transmission mode with better anti-interference and noise
immunity, which prevents the link from powering down. When the link is affected by
rain, the device will start an adaptive modulation scheme, which causes the reception
level before and after rain to not be consistent. From Figure 3a, it can be observed that
after the rainfall event ended (approximately at 12:00), PR did not return to the signal
strength during the dry period (before the rainfall event), but changed over time after the
rainfall event. In the dry period of this day, when the frequency is 71 GHz, PR fluctuates
between −72 and −70 dBm, and when the frequency is 81 GHz, PR fluctuates between −74
and −72 dBm. Therefore, the attenuation value during the dry period and the minimum
attenuation value cannot be directly used as the baseline. We use the method in [30] to
determine the attenuation baseline. Assuming that AT(t) (dB) is the total attenuation of
the link over time, expressed here as

AT(t) = Ab(t) + Ar(t) (5)

where Ab(t) (dB) represents the attenuation baseline, and Ar(t) (dB) represents rain-
induced attenuation. We define a moving window W = [t− w, t] with a width of w > 0:

AWt =
1

NW
∑

k∈Wt
A(k) (6)

S2
Wt =

1
NW

∑
k∈Wt

(
A(k)− AWt

)2 (7)

where NW represents the number of measurements in Wt. The choice of window size
has a great impact on wet and dry classification, and it should not be too large or too
small. The moving window between 15 and 30 min can fully represent the dynamics of
rainfall [30]. In this range, we compared the link data after wet and dry classification with
the raindrop spectrum measurement data. By testing different rainfall events, we found
that a 25 min moving window can capture most of the dynamics of rainfall and changes in
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the attenuation baseline. Therefore, we choose w = 25 min. According to the decision rule
in [30], for a given threshold σ0, SWt > σ0, it means a rainy period; if SWt ≤ σ0, it means a
dry period.

The value of σ0 is estimated from attenuation measurements collected during a dry
period (usually 24 h). In order to be more robust, we combined several dry periods before
the rain, because one dry day is not enough to represent all the variability that affects
the link signal during the dry period. Assuming that D represents a dry period and R
represents a rainy period, the value of σ0 is obtained by the following formula:

σ0 = q85{SWt|t ∈ D} (8)

Among them, q85 denotes the 85% quantile, which is the threshold obtained after we
analyzed the data of Nanjing from December 2019 to March 2020. Since the rainfall data
during our monitoring period accounted for about 15% of all data, we chose a quantile
of 85%. In addition, light rain and dry periods show similar variability, so choosing
the quantile is more helpful to distinguish them. When the window sizes w and σ0 are
determined, Ab(t) can be determined according to the method in [30]:

Ab(t) =
{

AWt, t ∈ D
Ab(t−m), t ∈ R

(9)

where m is the minimum value that makes t−m ∈ D. We calculate σ0 using the dry period
before the rainfall event, and the calculated values of AWt and σ0 at the quantile of 85% are
shown in Table 3.

Table 3. Calculated values of AWt and σ0 obtained from the data of the considered dry periods.

Date (Dry) Frequency ¯
AWt(q = 85%) σ0(q = 85%)

31 December 2019
71 GHz 69.2 0.03
81 GHz 70.5 0.05

19 January 2020 71 GHz 67.8 0.03
81 GHz 69.9 0.04

24 February 2020 71 GHz 68.6 0.08
81 GHz 70.1 0.08

7 March 2020
71 GHz 68.4 0.09
81 GHz 70.4 0.09

11 March 2020
71 GHz 67.9 0.05
81 GHz 69.9 0.06

18 March 2020
71 GHz 68.5 0.08
81 GHz 69.9 0.08

4. Rainfall Rate Inversion
4.1. Raindrop Size Distribution

For rainfall inversion, it is very necessary to find the rainfall rate and related atten-
uation of the actual rainfall event. We need to know the change of the raindrop size
distribution (DSD) in the rainfall of a given intensity. We use the raindrop shape and size
function to calculate the rainfall rate RDSD (mm/h) [31] and use RDSD to compare with the
inverted rainfall rate in subsequent experiments. According to the DSD data of raindrops,
the raindrop density distribution is calculated as follows [32]:

N(Di) =
20

∑
j=1

Nij

Vj × S× T × ∆Di

[
m−3 ·mm−1

]
(10)

where Nij represents the number of raindrops with a diameter at level i and speed at level
j, and Di is the diameter of raindrops. S is the sampling area of the raindrop spectrometer,
where the value of S is 0.0044 m2. T is the sampling time of 60 s, ∆Di is the diameter interval
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between two adjacent levels i and (i + 1), and Vj is the falling speed of the raindrop with a
speed of j. The rainfall rate RDSD can be calculated using the formula proposed in [33]:

RDSD = 6π × 10−4
22

∑
i=1

20

∑
j=1

Vj × D3
i × N(Di) ∆Di[mm/h] (11)

The raindrop shape and size function can be used to not only calculate the rainfall
rate, but also express the specific attenuation γ (dB/km) [31]. Mie theory [34,35] is used
to calculate the extinction coefficient of a single particle at millimeter-wave frequencies,
expressed in integral form as follows:

γDSD
r = 4.343 × 103

∫
D

Cext(D, f ) N(D) dD (12)

where Cext(D, f ) (m2) is the Mie extinction cross-section with a raindrop diameter of
D, which depends on frequency and temperature. It characterizes the scattering and
absorption characteristics of each raindrop at a given frequency f and polarization, and
determines the attenuation caused by a single raindrop. The application of Mie theory to
calculate the extinction cross section also requires a complex refractive index. We use the
dielectric function proposed by Liebe et al. [36] which covers the frequency range from 1 to
1000 GHz.

The propagation experiment of Hansryd [37] et al. showed that compared with the
low frequency band, the E-band millimeter-wave has a higher scattering efficiency for
smaller raindrops and has a stronger dependence on DSD. The model provided in ITU-R
P.838-3 shows that there is a power law relationship between the specific attenuation and
the rainfall rate, therefore:

γDSD
r = kDSDRDSDαDSD

(13)

This is a good approximation of the relationship between attenuation and rainfall rate.
Our link length l is 3 km, so the rain-induced attenuation ADSD

r calculated by DSD can be
expressed as

ADSD
r = γDSD

r × l = kDSDRDSDαDSD
l (14)

Figure 4 is the first rainfall event that occurred in the 71 GHz band on 7 January 2020,
comparing the three methods outlined above for estimating the rain-induced attenuation.
The blue line represents the measured rain-induced attenuation based on the method
presented in Section 3, the red line represents the attenuation calculated from the measured
DSD data based on Equation (12), and the green line represents the attenuation estimation
using the method recommended by ITU-R P.838-3 based on the rainfall rate given by the
raindrop spectrometer. It can be seen from Figure 4 that the trends of the three curves
are similar. However, the attenuation Ar measured by the link, is higher than the other
two methods during the rainy period. This deviation directly affects the accuracy of rain-
induced attenuation measured by link data. Under normal circumstances, the relative
humidity level and temperature level in the environment before and after the rain are
similar and will not cause significant attenuation. After excluding the influence of humidity
and temperature, the wet antenna effect is the main reason for the difference between the
measured rain-induced attenuation and the actual attenuation of the link [38]. We will
study methods to eliminate this effect in the following section.
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4.2. Wet Antenna Correction

When it rains, the water layer adheres to the surface of the reflector, radome and
horn cap. In this case, it will cause significant signal attenuation [39–41]. Since they are
almost vertical surfaces made of hydrophobic materials, the amount of water attached to
the surface of the radome may have a maximum value, which will cause the attenuation
caused by it to reach a saturated value.

An exponential relationship between the measured attenuation value Ar and the
attenuation Awa caused by the wet antenna is proposed in [42]. There are two models of
dual-frequency model and single-frequency model. The experimental results in [43] show
that the single-frequency model we are using is more accurate, as follows:

Awa = C · (1− exp(−d · Ar)) (15)

where C (dB) and d (dB−1) are model parameters. Tests have proved that the wet antenna
attenuation increases with the lowest value of measured attenuation and rainfall rate, and
finally it reaches the saturation value. In this case, C is selected as the representative of the
largest difference between the forecast and the measurement observed in the time series. d
is calculated by nonlinear regression of the model during the observation period [43].

We used the rainfall event data in January in Table 2 for fitting. It can be seen from
Figure 5 that at 71 GHz, when Ar is 5.5 dB, the wet antenna attenuation is expected to reach
a plateau value. Therefore, the wet antenna attenuation Awa can be expressed as

Awa =

{
2.5283

(
1− e−0.3757Ar

)
, Ar ≤ 5.5 dB

2.25, Ar > 5.5 dB
(16)
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Similarly, as shown in Figure 6, at 81 GHz, when Ar is 4.5 dB, the wet antenna
attenuation is expected to reach a plateau value. Therefore, Awa is expressed as follows:

Awa =

{
1.1270

(
1− e−0.7265Ar

)
, Ar ≤ 4.5 dB

1.1, Ar > 4.5 dB
(17)
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We applied the wet antenna correction model to the link data to predict rain-induced
attenuation, and the corrected attenuation level A′r can be obtained from A′r = Ar − Awa.

Figure 7 shows the first rainfall event that occurred in the 71 GHz band on 7 January
2020. The rain-induced attenuation after correcting the influence of the wet antenna shows
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a better fitting effect than before the correction and is closer to the result estimated from
the DSD data and estimated using the ITU-R P.838-3 recommendation.
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4.3. Rainfall Rate Inversion Result

We used the millimeter-wave link to collect data from December 2019 to March 2020
and analyzed the rainfall events in these four months. We then applied the above model
to invert the rainfall rate, and evaluated the inversion effect by calculating the Pearson
correlation coefficient and the mean relative error. The formula is as follows:

rk(Xi, Yi,k) =
1

N − 1

N

∑
i=1

(
Xi − µX

σX

)(
Yi,k − µY

σY

)
(18)

MREk =
100%

N
×

N

∑
i=1

∣∣∣∣Xi −Yi,k

Xi

∣∣∣∣ (19)

Among them, Xi represents the rainfall rate RM estimated by the link data. When
k is 1, Yi,1 represents the rainfall rate Rout the output by the raindrop spectrometer, and
when k is 2, Yi,2 represents the rainfall rate RDSD calculated by the DSD. µX and σX are
the mean and standard deviation of Xi, respectively, and µY and σY are the mean and
standard deviation of Yi,k, respectively. A higher correlation coefficient and lower mean
relative error is desired. This means that there is better similarity between the two data
sets, indicating that the rainfall rate estimation from the millimeter-wave link can represent
the true rainfall rate well. Figure 8 shows the total attenuation and baseline and rainfall
rate results. AT71 GHz and AT81 GHz represent the total attenuation of 71 and 81 GHz
received signals, and Ab71 GHz and Ab81 GHz represent the attenuation baseline. Table 4
lists the 6-day rainfall rate correlation coefficient and mean relative error value.
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Figure 8. The total attenuation and baseline of 71 and 81 GHz on different days. The comparison result of the link retrieved
the rainfall rate R71 GHz and R81 GHz, raindrop spectrometer output rainfall rate Rout and DSD data to calculate rainfall
rate RDSD.
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Table 4. Correlation (r1 and r2) and mean relative error (MRE1 and MRE2) of the estimated rainfall
rate (based on the 71 and 81 GHz link) and the rainfall rate recorded by raindrop spectrometer.

Date Frequency
Rout RDSD

r1
(-)

MRE1
(%)

r2
(-)

MRE2
(%)

28 February 2020 71 GHz 0.90 4.02 0.89 3.44
81 GHz 0.91 0.99 0.89 0.68

29 February 2020 71 GHz 0.88 0.57 0.86 0.40
81 GHz 0.89 3.69 0.87 2.21

9 March 2020
71 GHz 0.59 2.94 0.61 1.95
81 GHz 0.57 0.78 0.60 0.53

10 March 2020
71 GHz 0.55 0.35 0.53 0.26
81 GHz 0.67 0.24 0.65 0.23

13 March 2020
71 GHz 0.59 0.58 0.61 0.47
81 GHz 0.63 0.48 0.63 0.40

21 March 2020
71 GHz 0.87 0.52 0.87 0.36
81 GHz 0.84 3.14 0.84 2.22

5. Discussion

From the experimental results, the accuracy of the rainfall rate retrieved from millimeter-
wave link data is relatively high. As shown in Table 4, the mean relative errors are all below
5%, and the correlations for five days in the 81 GHz link are above 0.6, which shows that the
millimeter-wave link in the E-band can monitor rainfall well. Figure 8 shows the received
signal strength and rainfall rate of the day. It can be seen that as the rainfall event occurs,
the signal strength is attenuated accordingly. The R71 GHz and R81 GHz shown in Figure 8
are the results of eliminating the wet antenna effect. The retrieved rainfall rate is lower than
the raindrop spectrometer output rainfall rate Rout and the DSD data to calculate rainfall
rate RDSD when the rainfall is heavy. The determination of the attenuation baseline allows
the influence of humidity and temperature to be excluded, so this may be related to the
excessive elimination of attenuation when removing the effect of the wet antenna, which
means that part of the attenuation caused by the wet antenna will be eliminated when the
method in Section 3.2 correctly extracts the rain-induced attenuation. The same conclusion
is mentioned in [20].

The link adaptive feature of the wireless transceiver can increase the transmission
power and can also use a most robust modulation scheme to maintain the link when
the channel quality is poor. As shown in Figure 8e, this feature may have caused the
rain-induced attenuation to be lower than its level during dry period. As discussed in [44],
the millimeter-wave link is designed for effective communication services and not for
monitoring rainfall. Therefore, link instability increases the difficulty for our research.
From Table 4, we can also see that the mean relative error of R71 GHz, R81 GHz and RDSD is
about 0.01–1.48 % lower than the mean relative error of Rout, and this difference is relatively
small. This shows that the difference between Rout and RDSD will not have a great impact
on the results of rainfall retrieval. However, in order to retrieve rainfall more accurately,
this cannot be easily ignored.

Taking the rainfall event on 29 February 2020 as an example, it can be seen from the
data of Rout and RDSD in Figure 8d that there is some drizzle since 00:00 on this day. We
found that for small rainfall, the received signal strength of millimeter-wave has small
fluctuations, which can be seen from Figure 8c. However, this is a fluctuation lower than
the attenuation baseline, and the retrieved rainfall rate is not reflected. From the 81 GHz
signal receiving strength in Figure 8c, it can be seen that the small fluctuations from 00:00 to
01:00 are higher than the attenuation baseline, which is also reflected in the rainfall retrieval
results. This may be related to the size of the time window selected in Section 3.2, which
affects the determination of the attenuation baseline. As shown in Figure 9, if we choose
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a small window, this attenuation will be reflected. However, the disadvantage is that it
will overestimate the rain-induced attenuation, thereby reducing the accuracy of rainfall
retrieval result. The correlation r2 in Figure 9 is highest when w = 25 indicates that the
window size we choose is appropriate, which also shows that this rainfall retrieval model
is accurate and effective.
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6. Conclusions

Microwave backhaul links in commercial communication networks are installed
and operated all over the world. They can be treated as millions of virtual weather
sensors for rainfall monitoring with no extra costs for installation and maintenance. This
network based on microwave backhaul links can provide supplementary information
on important environmental variables in areas with low traditional monitoring network
density, especially in developing countries. This article introduces the research results
of the E-band millimeter-wave link built in Nanjing, located in Eastern China. Signals
at E-band experiences greater attenuation by rainfall. We use a 3 km-long link to collect
measurement data with high time resolution within 1 min sampling interval. Therefore,
the link’s ability to accurately quantify the rainfall rate during light rainfall is stronger than
that of the traditional microwave links operating at 15–40 GHz. The measurement data are
collected with a high time resolution at a 1 min sampling interval.

The experimental results show that the method of separating rain-induced attenuation
and eliminating wet antenna attenuation studied in the low frequency band is also applica-
ble to the E frequency band. The mean relative errors are all below 5%, and the correlations
for five days in the 81 GHz link are above 0.6. The correlation between the retrieved rainfall
rate and the rainfall rate measured by the raindrop spectrometer at 71 GHz is up to 0.9. The
correlation at 81 GHz is up to 0.91. This further confirms the high sensitivity of the E-band
millimeter-wave link to light rainfall. The determination of the attenuation baseline is very
important for accurately separating the rain-induced attenuation. This article uses a simple
wet and dry classification and then determines the baseline method. Compared with the
model provided by ITU-R P.838-3, the rain-induced attenuation estimated by this method
is closer to the calculation result of DSD data, indicating that this method is accurate and
effective. In our research, the attenuation caused by the wet antenna is estimated through
DSD data and an effective model. The attenuation caused by the wet antenna in a rainfall
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event is about 2 dB, which is a relatively small value, indicating that the impact of the
wet antenna attenuation on the rainfall rate retrieval in the E-band is less than the low
frequency band of 15–40 GHz. For a long E-band millimeter-wave link, since we cannot
always assume that the rainfall rate along its path is uniformly distributed, this may cause
some errors, which is also a factor that affects the experimental results. In a sufficiently long
link, it is also possible to separate the attenuation caused by water vapor, which of course
is challenging in practice. Since we are currently mainly studying rainfall inversion, there
is no solid precipitation in the rainfall event we are considering, so we have not classified
the precipitation type. In future research, we plan to build two other links for precipitation
classification or consider using machine learning methods to classify precipitation for a
single link.
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