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Untreated tooth decays affect nearly one third of the world and is the most prevalent
disease burden among children. The disease progression of tooth decay is multifactorial
and involves a prolonged decrease in pH, resulting in the demineralization of tooth
surfaces. Bacterial species that are capable of fermenting carbohydrates contribute to
the demineralization process by the production of organic acids. The combined use of
machine learning and 16s rRNA sequencing offers the potential to predict tooth decay by
identifying the bacterial community that is present in an individual’s oral cavity. A few
recent studies have demonstrated machine learning predictive modeling using 16s rRNA
sequencing of oral samples, but they lack consideration of the multifactorial nature of tooth
decay, as well as the role of fungal species within their models. Here, the oral microbiome
of mother–child dyads (both healthy and caries-active) was used in combination with
demographic–environmental factors and relevant fungal information to create a
multifactorial machine learning model based on the LASSO-penalized logistic
regression. For the children, not only were several bacterial species found to be caries-
associated (Prevotella histicola, Streptococcus mutans, and Rothia muciloginosa) but also
Candida detection and lower toothbrushing frequency were also caries-associated.
Mothers enrolled in this study had a higher detection of S. mutans and Candida and a
higher plaque index. This proof-of-concept study demonstrates the significant impact
machine learning could have in prevention and diagnostic advancements for tooth decay,
as well as the importance of considering fungal and demographic–environmental factors.

Keywords: machine learning, statistical approaches, dental caries, multiplatform analysis, candida,
oral microbiome
INTRODUCTION

Poor maternal and child oral health is a public health crisis with potential intergenerational health
impacts. With oral disease affecting 50% of the global population (3.9 billion) and untreated tooth
decay (dental caries) impacting almost half of the world’s population (44%), oral disease has become
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the most prevalent of all the 291 conditions included in the
Global Burden of Disease Study (FDI World Dental Federation.
https://www.fdiworlddental.org/oral-health/ask-the-dentist/
facts-figures-and-stats. Accessed September 5, 2020).
Significantly, children younger than 5 years and their mothers,
who together comprise 22% of the whole population, are
profoundly affected by dental caries. Unmet oral health needs
worsen among minority women and children who are from low-
income families (Marchi et al., 2010; Thompson et al., 2013;
Singhal et al., 2014).

Dental caries is multifactorial infectious disease, initiated
from the virulent dental biofilms/plaque formed on tooth
surfaces (Tanzer, 1995). Within dental biofilms/plaque, oral
cariogenic bacteria metabolize dietary carbohydrates resulting
in acid production and initiating demineralization of tooth
enamel (Bowen, 2016). Remineralization, or restoration of
mineral ions, is mediated through salivary calcium, phosphate,
and fluoride ions. In a healthy (caries-free) mouth, the
remineralization and demineralization rates are at equilibrium;
when the demineralization rate exceeds the remineralization
rate, tooth decay occurs (Takahashi and Nyvad, 2011; Abou
Neel et al., 2016). Often, this shift from equilibrium is caused by a
disruption in the ecology of the oral microbiome from a largely
commensal community to a community dominated by
cariogenic bacteria.

Recognizing the essential contribution of oral microorganisms
to dental caries, the development of effective predictive models
that utilize sensitive microbial markers would offer substantial
opportunities to predict and prevent caries. However, because of
the multifactorial etiology of dental caries, developing effective
predictive models is also challenging. The current dental caries
prediction model falls into two categories: 1) one utilizing classical
statistical models that assess the contribution of demographic and
environmental factors, either without consideration of microbial
factors or only including a limited number of traditional caries risk
markers, e.g., Streptococcus mutans and Lactobacillus (Caufield
et al., 1993; Klein et al., 2004; Li et al., 2005; Kanasi et al., 2010;
Slayton, 2011; Zhan et al., 2012; Klinke et al., 2014); 2) the other
utilizing statistical/machine learning models that identify caries-
related taxa and its differential abundance based on caries status,
with limited adjusting of demographic, environmental, and other
contributing factors (Teng et al., 2015; Grier et al., 2020). The
approaches mentioned above do not take caries multifactorial
etiology into account. Furthermore, in the past decade, studies
have also indicated the potential cariogenic role of Candida
albicans in children, together with S. mutans (Hossain et al.,
2003; de Carvalho et al., 2006; Rozkiewicz et al., 2006; Raja
et al., 2010; Srivastava et al., 2012; Yang et al., 2012; Klinke
et al., 2014; Qiu et al., 2015; Alkhars et al., 2021). However, the
existing caries prediction models have not assessed the
contribution of Candida. Therefore, developing a statistical/
machine learning model that assesses all caries-related risk
factors, including bacteria, Candida, and demographic-
environmental factors, is urgently needed.

To address this research gap, as a proof-of-concept study, we
developed statistical/machine learning (ML) models to identify
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
caries-related oral microbes in cross-sectional mother-child
dyads from a low-income underserved background.
MATERIALS AND METHODS

Study Population, Sample Collection, and
16S Ribosomal RNA Sequencing Data
A cohort of mother-child dyads with a balanced distribution of
children with or without early childhood caries (ECC) was
enrolled at the Eastman Institute for Oral Health, University of
Rochester, detailed previously (Xiao et al., 2018a). Ethical
approval of the study was obtained from the University of
Rochester Research Subject Review Board (RSRB00056870).
Children were younger than 6 years. Subjects who had severe
systematic diseases or antibiotic treatment within the previous 3
months were excluded. Non-stimulated whole saliva was
collected from subjects through a saliva jet connected to a
suction pump at least 2 h after any tooth brushing, eating, or
drinking. Supragingival dental plaque was collected from the
whole dentition with a standard dental scaler. Previous
established methods were used to isolate and identify Candida
species (Xiao et al., 2016), and to perform oral microbiome
sequencing and related bioinformatics analysis (Merkley et al.,
2015; Grier et al., 2017). The results of the 16S ribosomal RNA
(16s rRNA) sequencing data were detailed previously (Xiao et al.,
2018a). Sequencing data that passed quality controls were
included in this study to develop caries predictive model and
were assigned to operational taxonomic units (OTUs) using the
2014 release of the closed reference OSU CORE database (Griffen
et al., 2011). DESeq2-negative binomial Wald test was used to
compare the microbial differential abundance at species level
between caries and caries-free groups among the children and
their mothers.

Variables
The primary outcome is caries status (Y/N). The independent
variables were as follows: (1) race (Black/African American or
other), (2) years of age (ordinal), (3) ethnicity (Hispanic or
non-Hispanic), (4) tooth brushing frequency (0, not every
day; 1, once per day; 2, two times per day), (5) daycare
attendance (Y/N), (6) inhaler use (for children only), (7)
Plaque index (ordinal), (8) oral Candida status (Y/N), (9)
relative abundance of taxa. Demographic-socioeconomic
and oral hygiene behavior characteristics were collected
through questionnaires.

Transformation of Relative Abundance
The centered log-ratio (CLR) transformation was applied to the
relative abundance of taxa, where for each subject, the sample
vector undergoes a transformation based on the logarithm of the
ratio between the individual elements and the geometric mean of
the vector. CLR removes the value-range restriction of
percentages (relative abundance is a percentage) but keeps the
sum constraint of compositional data.
August 2021 | Volume 11 | Article 727630
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LASSO-Penalized Logistic Regression
Our goal is to build a model that could explain and predict the
probability of having caries based on a small set of factors.
Therefore, logistic regression model was fitted for the response
variable whether the subject has caries or not, on a large pool of
candidate input variables, including demographic and clinical
factors and CLR-transformed relative abundance of taxa.
Because the number of candidate variables (~360) far exceeds
the number of subjects (~40 in each model), regularization is
needed to avoid overfitting and to identify a small set of relevant
variables. Variable selection technique, specifically LASSO
penalty, was applied. K-fold cross-validation (K=4) was used to
determine the optimal value of the tuning parameters for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
LASSO penalty, i.e., the strength of the selection. Using this
tuning parameter, the model was fitted and the solution path was
calculated to show the order of variables entering the model.
RESULTS

Caries Prediction Models for Children
For the children’s model, species-level sequencing data of 37 salivary
samples and 36 plaque samples were used. The salivary and plaque
microbial profiling is shown in Figure 1. Veillonella
atypica_dispar_parvula and Streptococcus ET_G_4D04 are the
A

B

FIGURE 1 | Early childhood caries-associated and caries-free–associated oral microbiome in children. Based on relative abundance, the salivary (A) and plaque (B)
microorganisms were clustered into ECC-associated and caries-free–associated groups, as shown by the dendrogram on the left. Relative abundance is indicated
by a gradient of shades from pink to green. Black spots indicate no detection of the species.
August 2021 | Volume 11 | Article 727630
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most abundant species in children’s saliva and plaque. Not
surprisingly, S. mutans is more abundant and with a higher
detection among children with ECC.

Saliva Model
Using 37 children’s saliva taxa data (relative species abundance),
we ran a LASSO-penalized logistic regression model on having
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
caries (1) or not (0) on a pool of candidate variables including
353 species in the microbiome data, four demographic variables
(age, gender, race, ethnicity), four medical–dental–behavior
characteristics (frequency of toothbrushing per day, attending
daycare, inhaler use, and plaque index), and one fungal-related
parameter (Candida detection status). Seven variables were
identified to be associated with caries. The LASSO solution
FIGURE 2 | Identified factors associated with child’s caries risk using machine Learning model. LASSO-penalized logistic regression modeling was used for caries
predictor selection for children’s saliva and plaque samples. Specifically, seven variables for models using salivary microorganisms (A) and eight variables for models
using plaque microorganisms (B) were identified as predictive factors for dental caries in preschool children. The LASSO solution path above shows how the model
is built sequentially by adding one variable at a time to the active set.
August 2021 | Volume 11 | Article 727630

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


e

Wu et al. Machine Learning and Caries Prediction
path (Figure 2A) shows how the model is built sequentially by
adding one variable at a time to the active set (i.e., set of variables
with non-zero coefficients).

In a sequential order, Prevotella histicola (1.7% in ECC
children and 0.12% in caries-free children) was the first
variable that enters the saliva model, indicating that if a model
with only one variable is desired, P. histcola would be the one to
be used. As lambda decreases, Lautropia mirabilis entered the
model as the second variable. Then plaques index and Candida
were selected into the model, followed by an unclassified
Bacteroidales oral taxon 274, Rothia dentocariosa, and
toothbrushing frequency.

Moreover, P. histicola, plaque index, Candida, and
Bacteriodales Oral Taxon 274 were predicted to be
associated with an increased risk for caries; whereas, L.
mirabi l is , toothbrushing, and R. dentocariosa were
associated with a decreased risk for caries in children. When
lambda reached an extremely small number (e.g., 10-7 in the
far left of the solution path), the coefficient estimates are
approximately the same as those in the unpenalized logistic
regression model. The predictive model using childrens’ saliva
samples is given by:

logit(p) = Xb = 0:641 + 0:174Candida − 0:170toothbrush+

0:072plaque − 0:048Rothia dentocariosa + 0:062Prevotella 

histicola + 0:094Bacteroidales oral taxon 274 − 0:069

Lautropia mirabilis,

where the probability of having caries can be estimated by

p(caries) =
exp (Xb)

1 + exp (Xb)

Using the variable “toothbrush” as an example, the
interpretation of the coefficient is that for individuals who
brush their teeth for one or more times per day, the odds of
having caries will be exp(−0.170)=0.84 times the odds for those
who do not, which will result in an approximately 16%
reduction. Similarly, individuals who brush their teeth twice
per day will have an odds of 30% lower than those who do not
brush teeth every day.

Furthermore, the differential abundance of three selected
species (L. mirabillis, R. dentocariosa, P. histicola) was
statistically significant (p<0.05) (see Figure 3A).

Plaque Model
In the plaque model (Figure 2B), eight variables were selected,
with five of them being the relative abundance of bacterial taxa,
one fungal-related (Candida status), one oral hygiene index,
and one behavior parameter. In sequential order, S. mutans
entered the model as the first variable with an increased risk for
caries (11.14% in ECC and 0.47% in caries-free children).
Tannerella BU063 entered the model as the second variable
with a reduced caries risk, more abundant in caries-free
children (0.18%), and less abundant in ECC children (0.04%).
Candida (increased caries risk) was the third variable selected,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
followed by Granulicatella elegans (increased caries risk),
plaque index, Cardiobacterium hominis (reduced caries risk),
Rothia mucilaginosa (increased caries risk), and daycare
attendance (reduced caries risk). The differential abundance
of four selected species (T. BU063, R. mucilaginosa, C. hominis,
and G. elegans) was statistically significant (p<0.05)
(see Figure 3B).

The predictive model that used children’s plaque samples is
the follows:

logit(p) = Xb

= 0:459 + 0:098Candida − 0:231daycare attendance + 0:125plaqu

+0:020Rothia mucilaginosa − 0:110Tanneralla BU063

+0:024Granulicatella elegans + 0:039Streptococcus mutans

−0:063Cardiobacterium hominis

Caries Prediction Model for Mothers
For the mothers’ model, species-level sequencing data of 32
plaque samples were used. The plaque microbial profiling of each
sample is shown in Figure 4. For the mothers, the LASSO
solution path that demonstrates how the model is built
sequentially is shown in Figure 5. Nine taxa, one fungal
parameter (Candida status) and oral hygiene index were
selected into the model. Streptococcus intermedius_constellatus
(increased caries risk) and Neisseria AP085 (decreased caries
risk) entered the model closely as the top 2 variables. Plaque
index (increased risk) was selected as the third variable in the
model. The remaining variables were selected in an order as
follows: Peptococcus OT 075 (increased risk), Streptococcus
GU045364 (increased risk), Anaeroglobus BS073_CS025
(increased risk), Catonella GQ106843 (decreased risk),
Candida (increased risk), Corynebacterium durum (decreased
risk), Streptococcus cristatus (increased risk), and Tanneralla
forsythia (decreased risk).

The predictive model that used mothers’ plaque samples is
the following:

logit(p) = Xb

= 0:459 + 0:006Candida + 0:012plaque

−0:022Corynebacterium durum − 0:002Tannerel forsythia

+0:018Streptococcus GU045364 + 0:003Streptococcus cristatus

+0:033Streptococcus intermedius _ constellatus

−0:023Catonella GQ106843 + 0:052Peptococcus oral taxon 075

+0:014Anaeroglobus BS073 _CS025 − 0:009Neisseria AP085

Performance of Caries Prediction Model
The caries prediction models achieved desirable performance that
was assessed by area under the ROC curve (AUC), see Figure 6. The
average AUC over 20 random four-fold cross-validation was 0.82
for the child’s saliva model, 0.78 for the child’s plaque model, and
0.73 for the mother’s plaque model.
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FIGURE 3 | Differential abundance of taxa in children’s saliva and plaque. Relative fold change in abundance of species in saliva (A) and plaque (B) from children
with ECC vs. caries-free. All species plotted with a p value <0.05.
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DISCUSSION

MLmodeling of the oral microbiome has the potential to identify
microbial biomarkers and aid in the prediction of dental caries.
This proof-of-concept study is the first study to our knowledge
that used an enhanced ML approach to incorporate multi-source
variables with microbial data for dental caries prediction. The
developed models have the following features:

1. The models considered the multifactorial etiology of dental
caries by incorporating demographic-medical-dental
characteristics, oral hygiene practice, daycare attendance,
together with 16s relative species abundance, and oral
Candida status. A meta-analysis indicates that children with
oral C. albicans have (>5 times) higher odds of having ECC
compared with those without C. albicans (Xiao et al., 2018b) and
children with early-life oral Candida colonization are at higher
risk for S. mutans emergence in the mouth by 1 year of age
(Alkhars et al., 2021). However, no caries risk models have
reflected the potential contribution from Candida. Our study
demonstrated the consistent contribution from Candida in both
child’s and mother’s prediction model.

2. The sequential order of the variables that entered themodel reflects
the contribution of the variables to predicting dental caries.

3. Intercept of the variables in the model would enable
quantification of caries risk assessment, which has
important clinical use implication.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Teng et al. (2015) used temporal patterns of the salivary and plaque
microbiome to predict onset of ECC among children followed up from
4 to 6 years of age. The most discriminate species in Teng’s predictive
model included S. mutans and P. histicola. Our model also included
P. histicola as a discriminate species with an increased abundance in
caries-active children, this is supported by previous findings of the
association of P. histicola and caries (Hurley et al., 2019). Although
P. histicola has been identified in several studies as being associatedwith
caries and lower pH values, its direct function and role in the oral
microbiome has not been elucidated. Additionally, Grier et al. (2020)
developed a ML model to identify species in saliva that is associated
with the onset of ECC among 56 preschool children. R. mucilaginosa,
Streptococcus sp. andVeillonella parvulawere selected as discriminatory
markers for ECC onset. Both Streptococcus sp. and Veillonella parvula
were highly abundant in the plaque and saliva samples of children with
caries in our study. The early colonizer R. mucilaginosa was not a
discriminatory microbe in our salivary model; this may be reflective of
the age of our cohort and demonstrates a need for studies at earlier
timepoints (and longitudinally).

Despite having a smaller sample size in our model, the
performance of our ML was comparable or better than models of
these studies. Potentially, this could be because of the advantages of
our multifactorial approach. This is exemplified by Candida
presence (increased risk) and toothbrushing frequency (decreased
risk) as strong discriminatory factors in our model, which would
have been otherwise missed if our ML relied solely on 16s rRNA
data. In addition, our model was able to utilize both cariogenic and
FIGURE 4 | Caries-associated and health-associated plaque microbiome in mothers. Based on their relative abundance, the supragingival plaque microorganisms
were clustered into caries associated and caries-free–associated groups, as shown by the dendrogram on the left. Relative abundance is indicated by a gradient of
shades from pink to green. Black spots indicate no detection of the species.
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protective bacteria as discriminatory markers. Lautropia mirabilis
and Rothia dentocariosa were found to be protective markers in the
salivary microbiome of the children in this study. In a comparison
of caries-free and caries-active children of 6 to 9 years old, L.
mirabilis was found to have a significantly higher abundance in the
caries-free children (Qudeimat et al., 2021). Future in vitro assays
would be helpful to determine whether L. mirabilis functions to
create a healthier (neutral pH) oral environment, or if a higher
abundance of L. mirabilis implies an indirect consequence of an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
already neutral pH. Additionally, a higher abundance of R.
dentocariosa has been found in children with caries in some
studies (Jiang et al., 2016; Inquimbert et al., 2019), which is
contrary to our results.

Using the proposed ML models, we identified specific caries-
related oral bacteria, Candida, together with other multi-source
factors for preschool children and their mothers. Prediction
models for both children and their mothers achieved desirable
performance. Fine-tuning and further validation are needed
FIGURE 5 | Identified factors associated with mother’s caries risk using machine Learning model. LASSO-penalized logistic regression modeling was used for caries
predictor selection for children’s saliva and plaque samples. Eleven variables for models using plaque microorganisms were identified as predictive factors for dental
caries in mothers. The LASSO solution path above shows how the model is built sequentially by adding one variable at a time to the active set.
August 2021 | Volume 11 | Article 727630
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using larger and longitudinal caries onset sample set. Future
models will consider incorporating more diverse biological and
environmental variables, including children’s diet, parent’s
education, oral hygiene, health, and oral microbiome.
Experimental and clinical confirmation of the predicted
microbial signatures for caries risk prediction and the
translation into clinically measurable parameters of antigen and
bacterial abundance will enhance our ability to identify at-risk
children and promote the development of preventative therapeutics.

The following limitations need to be considered when
interpreting the study results: (1) limited sample size;
(2) conducted in one US city. Thus, generalization to other
populations is unreliable because of the small convenient sample
size; (3) with the data set being cross-sectional data set, the
models are built upon the existing caries status, not through the
longitudinal onset of caries. Future validations of our models are
warranted using longitudinal data set.
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