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Abstract

Background: One of the major goals of genomic medicine is the identification of causal genomic variants in a
patient and their relation to the observed clinical phenotypes. Prioritizing the genomic variants by considering only
the genotype information usually identifies a few hundred potential variants. Narrowing it down further to find the
causal disease genes and relating them to the observed clinical phenotypes remains a significant challenge, especially
for rare diseases.

Methods: We propose a phenotype-driven gene prioritization approach using heterogeneous networks in the
context of rare diseases. Towards this, we first built a heterogeneous network consisting of ontological associations as
well as curated associations involving genes, diseases, phenotypes and pathways from multiple sources. Motivated by
the recent progress in spectral graph convolutions, we developed a graph convolution based technique to infer new
phenotype-gene associations from this initial set of associations. We included these inferred associations in the initial
network and termed this integrated network HANRD (Heterogeneous Association Network for Rare Diseases). We
validated this approach on 230 recently published rare disease clinical cases using the case phenotypes as input.

Results: When HANRD was queried with the case phenotypes as input, the causal genes were captured within
Top-50 for more than 31% of the cases and within Top-200 for more than 56% of the cases. The results showed
improved performance when compared to other state-of-the-art tools.

Conclusions: In this study, we showed that the heterogeneous network HANRD, consisting of curated, ontological
and inferred associations, helped improve causal gene identification in rare diseases. HANRD allows future
enhancements by supporting incorporation of new entity types and additional information sources.
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Background
The success of genomic medicine is crucially dependent
on rapid, comprehensive and accurate assessment of a
patient’s genomic variants and the relation of these vari-
ants with the observed clinical phenotypes. Variant prior-
itization identifies a few hundred variants by considering
the genotype. Narrowing the variant list further down to
find the genes harboring these variants that are responsi-
ble for the observed clinical phenotypes remains a signif-
icant challenge [1]. This is particularly challenging in the
context of rare Mendelian genetic diseases. Availability of
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comprehensive and precise phenotypic data of the patient
can significantly aid in solving this problem [2].
One of the major goals of computational deep phe-

notyping [3] is to aid the analysis of genomic data for
personalized genomic medicine [2]. Existing tools for this
include Phenomizer [4], Phenolyzer [5] and PCAN [6],
amongst others. There also exist composite gene and vari-
ant prioritization tools that combine phenotype analysis
and variant analysis identified by whole exome sequenc-
ing (WES) or whole genome sequencing (WGS) for the
study of human disease. These include OMIM Explorer
[7], VarElect [1], Exomiser[8], OVA [9], Phevor [10],
Phen-Gen [11], eXtasy [12] and the Phenotype-Driven
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Ranking (PDR) algorithm in Ingenuity Variant Analysis
[13]. Smedley and Robinson [2] have reviewed many of
these tools. These tools often require as input a set of
genes known as ’seed genes’ that are already known to be
associated with specific phenotypes [9]. This is a major
limitation when dealing with novel associations between
phenotypes and genes. Tools that can infer phenotype-
genotype associations when presented with a set of input
phenotypes are better placed to overcome this limitation.
Phenomizer relies on a semantic network between

phenotypic terms to find potential candidate diseases and
corresponding genes when presented with a set of input
phenotypes. Similar network-based approaches such as
GeneMANIA [14] and GUILD [15] require (1) a network
of known associations between various biological entities
such as genes and phenotypes, and (2) an algorithm for
inferring and scoring associations using the underlying
network. The associations could be ontological associ-
ations, biological interactions, or ‘associations by guilt’
where the participating entities co-occur in some context
[16]. Algorithms for inferring and scoring associations
include CIPHER [17], PRINCE [18], Random walk
with restart on heterogeneous network (RWRH) [19],
Bi-Random Walk (BiRW) [20] and MAXimum Infor-
mation Flow (MAXIF) [21]. CIPHER connects protein
interaction networks and the phenotype network to try
and predict disease genes. PRINCE uses label propagation
on networks for association scoring. The RWRH algo-
rithm, when applied to gene prioritization, ranks genes
and phenotypes simultaneously in a network built using
phenotype-gene associations from the Online Mendelian
Inheritance in Man (OMIM) catalog. BiRW computes
novel phenotype-gene associations by exploring special
sub-graph structures called circular bigraphs in the
underlying network. A circular bigraph is defined in [20]
as consisting of a phenotype only path and a gene only
path whose endpoints are connected by phenotype-gene
links. These structures capture the biological intu-
ition that a new phenotype-gene link would ideally be
present in the current network as a path comprising of a
phenotype subpath followed by a gene subpath. The phe-
notype subpath captures the onotological relations and
gene subpath captures a sequence of known gene-gene
associations. MAXIF uses network flow for association
scoring. BiRW has been shown to outperform other
network-based algorithms such as PRINCE, CIPHER and
RWRH [20].
Identifying causal genes that best explain a set of

clinical phenotypes using network-based prioritization
approaches remains a challenging task [22], especially
for rare diseases. We describe the construction of a het-
erogeneous network consisting of entities such as genes,
phenotypes, diseases and pathways as nodes while associ-
ations between these entities are represented as weighted

edges. The weight of an edge represents the score of
the association between the entity pairs. Existing asso-
ciation networks usually view ontological associations as
distinct from the network of other heterogeneous associ-
ations [22]. We instead combine pairwise ontological and
curated associations into a single heterogeneous associa-
tion network. Motivated by the recent progress in spectral
graph convolutions [23, 24], we develop an information
propagation algorithm GCAS (Graph Convolution-based
Association Scoring) that performs information propaga-
tion on the initial ontological and curated association
network and infers novel binary associations between the
entities of the network. These inferred associations are
added to the aforementioned initial network, and the
resulting network of ontological, curated and inferred
associations is called HANRD for Heterogeneous Associa-
tion Network for Rare Diseases. We built HANRD to solve
the specific problem of phenotype-driven rare disease
gene prioritization wherein the input is a set of pheno-
types from clinical cases and the output a ranked list of
possible causal genes.

Methods
In this section, we describe the construction of an ini-
tial heterogeneous network consisting of ontological and
curated associations. We then describe in detail our asso-
ciation inference algorithm GCAS. GCAS is applied to
the initial network to obtain inferred associations, which
are added to the initial ontological and curated associ-
ations to create HANRD. A series of comparisons are
then performed to analyze the performance of GCAS and
HANRD. We validated the use of HANRD for gene pri-
oritization on a dataset of 230 solved rare disease clinical
cases reported in recent publications. The performance
of HANRD on these cases was compared to that of Phe-
nomizer (Orphanet) and BiRW. We also examined the
impact of the inferred associations by excluding them
from HANRD i.e., performing gene prioritization for the
230 cases on the initial network of ontological and curated
associations. The performance of GCAS with an adapta-
tion of GCN (Graph Convolutional Network) [24] was also
compared using the 230 solved clinical cases.

HANRD network construction
Entities of type disease, phenotype, gene and pathway
are the nodes of our heterogeneous network HANRD.
Human Phenotype Ontology (HPO) [3] was the pri-
mary source for phenotypes. HPO names and synonyms
were augmented with additional synonyms from the
Medical Subject Headings (MeSH) resource via cross-
references provided by HPO and HPO-UMLS mappings
[25]. Orphanet was used as the primary source for dis-
eases. Each Orphanet record contains the rare disease
name, synonyms, descriptions, associated phenotypes
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(including association strength), associated genes as well
as MeSH mappings. Additional disease synonyms were
obtained through MeSH mappings, wherever provided by
Orphanet. Gene names were derived from the HUGO
Gene Nomenclature Committee (HGNC) database [26]
(accessed 15th Feb, 2017). Names of biological pathways
were extracted from Wiki Pathways [27, 28]. The final set
of phenotype, disease, gene and pathway terms were used
as nodes in HANRD. The main term was propagated as
the node label, while other terms were propagated as node
synonyms.
The associations between the above nodes are rep-

resented by undirected edges with non-negative edge
weights. The first set of associations incorporated were
the phenotype-phenotype edges constructed from the
HPO ontology. Weights for phenotype-phenotype edges
were calculated using the standard Lin similarity score
for ontological associations [29]. The Lin similarity score
s(p1, p2) between two phenotypes p1 and p2 is given by
2IC(p′)/(IC(p1) + IC(p2)), where p′ is the most specific
common ancestor of p1 and p2 in the ontology hierarchy
while IC(p) is the information content of phenotype p. We
used IC(p) = − ln(f (p)/N)) as in HPOSim [29], where
f (p) is the frequency of p and its descendants in a corpus
and N the total frequency. Disease data from Orphanet

was used to build phenotype-disease edges, with the
frequency qualifiers from Orphanet used to calculate the
edge weights. The frequency qualifiers include terms such
as “obligate”, “very frequent” and “frequent”. Orphanet
data was also used as the source for disease-gene pairs,
with the edge weights for these pairs were set to 1. A
high-quality curated interaction dataset called Lit-BM-
13 (downloaded on January 11th, 2017) was the source
of curated gene-gene associations and the corresponding
edges were assigned weight 1 [30]. Wiki Pathways was
used for pathway associations, wherein every gene present
in a pathway was linked to the corresponding pathway
node with a separate edge having weight 1 [27, 28].
Figure 1 shows the various curated and ontological asso-
ciation types in HANRD.
The network of curated associations was augmented

with a set of inferred associations obtained by perform-
ing GCAS on this initial network. The motivation behind
using GCAS was to use graph convolution to propagate
information between entity pairs in a network and use this
propagated information to determine association scores
between entity pairs having no direct links. For GCAS,
the initial curated network is assumed to be static and
given as input. The mathematical description of GCAS is
as follows:

Fig. 1 The figure shows the various curated, ontological and inferred association types in HANRD. The HANRD edges could be between Phenotypes,
Diseases, Genes and Pathways. The edges are undirected and weighted. The dotted lines indicate the inferred edges. Along with each edge type,
the weight assignment scheme and the information source for the edge is also shown
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Propagation of a signal x ∈ R
n on a given network G

consisting of n nodes can be viewed as the convolution of x
with a filter g on the networkG. LetAn×n be the adjacency
matrix of G and L be the normalized graph Laplacian of
G given by L = In − D− 1

2AD− 1
2 = U�UT where In is

the identity matrix, D is the diagonal degree matrix with
Dii = ∑

j Aij, U is the matrix of eigenvectors of L and �

is the diagonal matrix of eigenvalues of L. By [23], spec-
tral convolution of xwith the filter g on the networkG can
be equivalently represented as g� � x = Ug� UTx, where
UTx is the graph Fourier transform of x and g� = diag(�)

is a diagonal matrix corresponding to � ∈ R
n, which is

the graph Fourier transform of the filter g. Here, g� UTx
gives the pointwise multiplication of the Fourier trans-
forms of g and x. Multiplication ofU with g� UTx in g� �x
gives the Fourier inverse. We refer the reader to [23] for a
detailed treatment on graph Fourier transforms. Our aim
is to design the filter g� that achieves the desired signal
propagation on G.
To handle the computational overhead and numerical

instabilities, a first order approximation of g� � x based on
the Chebyshev polynomial approximation of g� has been
used [23, 24]. Under this approximation, g� � x ≈ θÂx,
where θ ∈ R is a single parameter, Â = D̃− 1

2 ÃD̃− 1
2 ,

Ã = A + In and D̃ is a diagonal matrix with D̃ii = ∑
j Ãij.

Our algorithm for inferring associations uses this approx-
imation of the convolution operation and computes the
information propagated to the tth order neighborhood of
the network nodes by performing t consecutive applica-
tions of this convolution operation. After t consecutive
convolutions, the resulting values at the network nodes is
given by the vector Ct(x) = θ ′Âtx where θ ′ = ∏t

i=1 θi
and θi is the parameter for the ith convolution. We use
this information propagation model and fix θi = θ for all
i > 2 where θ is a parameter and use another parameter K
which bounds the convolution depth to compute the final
pairwise association score matrix S as:

S =
K∑

t=1
Ct(In)

where Ct(In) = θ t−2ÂtIn for t ≥ 2 and C1(In) = ÂIn.
We consider only the off-diagonal entries of matrix S.
The key parameters of the algorithm are thus K and θ .
Parameter K restricts the inferred associations to entity
pairs that are at most K links away in the network. The
parameter θ ∈ [ 0, 1] can be understood as the damping
or penalizing factor that dampens information flow along
longer paths. The damping increases by a multiplicative
θ for every additional link in path. By choosing θ t−2 as
the parameter in Ct(In), the damping is applied only for
information flow along paths having three or more links.
We refer to our inference algorithm as GCAS, for Graph
Convolution-based Association Scoring.

The values for parameters K and θ were selected by per-
forming a grid search across a range of values. For each
combination of K and θ values, GCAS was run on multi-
ple random sub-networks of the original network and its
performance for inferring missing associations in the sub-
network was analyzed. The final parameter values chosen
were K = 9 and θ = 0.25.
Inferred associations were obtained by running GCAS

on the initial curated network with these parameters.
These inferred associations together with the ontological
and curated associations form the heterogeneous network
HANRD. Figure 1 shows the various curated and inferred
association types present in HANRD. HANRD is used for
the gene prioritization task as follows. Given a set of input
disease phenotypes, their gene neighbors in HANRDwere
ranked based on their cumulative association score with
respect to the input phenotypes, where the cumulative
score is given by the sum of the association scores with
individual phenotypes.
As stated earlier, the first-order approximation of the

spectral convolution from [24] was used in our informa-
tion propagation model. In [24], a GCN (Graph Convolu-
tional Network), which is a convolutional neural network
based on spectral graph convolution, was proposed for
semi-supervised node classification in graphs. Each layer
of the GCN neural network is based on the same first
order approximation of the spectral graph convolution
together with point-wise non-linearity. Two-layer GCN
was used for node classification tasks in citation and
knowledge networks in [24]. GCAS shares resemblance to
GCN in the sense that both approaches are based on spec-
tral graph convolution [23]. However, the cross-entropy
based error model in GCN makes it more suitable for
inferring the cumulative association of a sufficiently large
set of related nodes in the graph to the remaining nodes
rather than inferring individual pair-wise associations.
Furthermore, realizing convolution with the Kth order
neighborhood require deeper networks in GCN which
leads to increase in the number of parameters and could
also lead to overfitting [24]. On the other hand, GCAS
performs direct spectral convolution (using the first order
approximation) successively with the chosen filter param-
eters to efficiently propagate the signal to the Kth order
neighborhood of a node. This allows efficient estimation
of long range associations from each single node to its Kth

order neighborhood for large K values.
The BiRW algorithm has previously been shown to

outperform other state-of-the-art network inference algo-
rithms [20]. We conducted an experiment to compare
the performance of BiRW and GCAS for inferring novel
associations. In the original BiRW implementation [20],
the nodes represent genes and disease phenotypes, while
the edges are phenotype-gene associations from OMIM
[31] as well as protein-protein interactions (PPI) and
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phenotype-phenotype associations. In order to perform
the experiment, we constructed an instance of HANRD
called HANRDtrunc consisting of only phenotype and gene
nodes and only the curated associations involving them.
This was done by removing all intermediate disease and
pathway nodes inHANRD and introducing direct connec-
tions between the genes and phenotypes nodes. Parame-
ters for BiRWwere assigned the same optimal values as in
the original implementation [20]. BiRW requires OMIM
disease phenotypes as input, using the corresponding
OMIM IDs. On the other hand, GCAS has been designed
to take HPO phenotypes (HPO IDs) as input. Hence, the
BiRW implementation was modified to handle HPO IDs
as input. The modified implementation is referred to as
BiRWmod.
For comparison, we performed 10-fold cross validation

by running both GCAS and BiRWmod on HANRDtrunc. In
each fold, 10% (670) phenotype-gene links were removed
from HANRDtrunc at random. Both methods were run on
the remaining network to augment it with inferred asso-
ciations. The removed phenotype-gene associations were
used as test data. The AUCN (Area Under the Curve)
value of the ROC (Receiver Operating Characteristic)
curve [20, 32] was computed separately for each test phe-
notype. The ROC score was derived based on the ranks of
the target genes associated with the phenotype among all
its gene neighbors in the network. For AUCN , the number
of false positives are limited to be atmostN [20]. The aver-
age AUCN value was computed within a fold. Although
removal of several existing network edges can affect the
overall performance and thereby results in lower AUC val-
ues, these values can nevertheless be used for comparison
of the two algorithms.

Validation on rare disease clinical data
We built HANRD to solve the specific task of phenotype-
driven rare disease gene prioritization wherein the input
is a set of phenotypes from clinical cases and the out-
put a ranked list of possible causal genes. We validated its
application to this task using a dataset of solved rare dis-
ease clinical cases reported in recent publications [1, 33–
35]. This dataset, included in the Additional file 1, had a
list of clinical phenotype terms for each case along with
the diagnosed disease(s) and the corresponding causal
gene(s). The clinical cases from Stavropoulos et al. [33]
enforced HPO coding of the phenotypic terms using the
Phenotips tool [36]. Since we did not have access to this
HPO coding, we manually assigned HPO codes for the
clinical phenotypic terms using a verbatim search via the
HPO browser interface. For cases from the remaining
sources, we manually analyzed each phenotypic term and
assigned HPO codes. Any disease term mentioned in the
phenotype description was ignored. These HPO IDs rep-
resenting the clinical phenotype of a case served as the

input query to HANRD. For each HPO ID, HANRD was
queried resulting in a ranked list of genes. After iterat-
ing over all input HPOs, a single list of ranked genes was
obtained. We checked for the rank of the known causal
gene, if present, in this list.
We compared the performance of using HANRD for the

230 solved cases with that of Orphamizer. Since HANRD
uses Orphanet data, Orphamizer was chosen instead of
Phenomizer. Here, each case consists of a set of clinical
phenotype terms represented by HPO IDs while the cor-
responding output was a ranked list of associated genes.
We considered the cumulative distribution of the num-
ber of input phenotype-genotype pairs for different Top-
k values. For different Top-k values, the percentage of
phenotype-gene pairs where the gene appeared within the
Top-k of the ranked list of genes for the phenotype was
measured.
We also comparedGCASwith BiRW in the specific con-

text of these 230 real-world cases. Both GCAS and the
modified BiRW (BiRWmod) were run on HANRDtrunc for
these cases. For each of the 230 cases, we built an asso-
ciation pair for each phenotype and causal gene(s). Since
BiRWmod produces a separate ranked list of genes for each
phenotype term of the input phenotype list, each input
phenotype was analyzed separately.
Further, we evaluated the GCN implementation [24, 37]

on these 230 cases. The weighted graph constructed from
the initial curated and ontological associations formed the
input graph. GCN supports capturing the known asso-
ciations between entities using links in the network and
also using additional node level feature similarities. In our
case, the entity associations are already captured in the
initial network using link structures together with link
weights. However, no node level features were present
in the initial network. GCN is designed for node label
propagation under semi-supervised setting. For each des-
ignated clinical test case, the associated phenotypes were
all assigned the same label and this formed the labeled
input. GCN performed label propagation to other nodes
based on the cross-entropy error for the labeled input.
The final labeled scores for the genes were used for gene
ranking. We experimented with GCN under two different
settings for each designated clinical test case. In one set-
ting, only the phenotypes for the designated clinical test
case formed the labeled class. In the second setting, each
of the remaining 229 cases were also labeled with sepa-
rate labels and this labeled data was additionally provided
as support. Each of these additional labeled classes con-
sisted of both the case specific phenotypes and the causal
genes. The final gene ranking was based on their corre-
sponding scores with respect to the label associated with
the designated clinical test case.
In another experiment, we measured the effect of the

convolution depth parameter K on the performance of
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HANRD. Larger K values result in convolution with
higher order neighborhood of the network nodes. We ran
GCAS on a range of K values. In each case, the input
network was augmented with the inferred associations to
create a K value specific HANRD instance. The resulting
HANRD instances were then used to solve the 230 clini-
cal cases discussed above. For each HANRD instance, we
measured the cumulative distribution of the total number
causal genes found in the Top-k of the ranked gene lists
from all the 230 cases.

Results
Comparison with BiRW algorithm
Figure 2 shows the comparison of GCAS with BiRWmod,
based on the 10-fold cross validation described in
“HANRD network construction” section. The AUCN val-
ues and the full AUC value averaged over all folds
are shown here for both BiRWmod and GCAS. Fold-
wise values along with mean and standard deviation are
given in the Additional file 2. A candidate implementa-
tion for AUC computation is available at [38]. The plot
shows marginally improved performance of GCAS over
BiRWmod for larger Top-k. BiRW explores domain spe-
cific short range connections in a network involving only
genes and phenotypes. GCAS on the other hand explores
both long range and short range connections in a domain-
independent fashion. We note that AUC values are shown
only to compare the performance of the two algorithms

and not to quantify the performance of any one algorithm
in isolation.

Validation on rare disease clinical data
Figure 3 show the comparison of HANRD and
Orphamizer. For different Top-k values, the percentage of
cases where the causal gene(s) appeared within the Top-k
of the ranked list of genes for the input set of phenotypes
was plotted. The Orphamizer output was ranked disease-
wise, wherein a gene could occur in the list for more than
one input phenotype associated with the disease. In such
cases, we assign the highest rank for the causal genes. As
seen in the figure, HANRD could capture causal gene(s)
for more than 31% of the cases in Top-50 and more
than 56% of the cases in Top-200, when compared with
Orphamizer which got 19 and 32% respectively.
Figure 4 shows the comparison of GCAS and BiRWmod

for all the phenotype-gene pairs derived from the clinical
cases. It shows the cumulative distribution of the num-
ber of phenotype-gene pairs whose genes appear in the
Top-k of the ranked list of its phenotype. Figure 5 shows
the distribution after excluding from the Top-k calcula-
tion those phenotype-gene pairs that are already linked in
HANRDtrunc with non-zero association scores. This was
done to avoid any performance bias due to the overlap
between input pairs and inferred associations. Figures 4
and 5 show that GCAS performs considerably better than
BiRWmod in both evaluations. As shown in Fig. 4, BiRW

Fig. 2 Average AUCN with N = 50, 100, 300, 500, 1000 and the full AUC value for the 10-fold cross validation of GCAS and BiRWmod
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Fig. 3 Cumulative percentage of the 230 clinical cases where the causal gene(s) appeared within the Top-k of the ranked list of genes. The
candidate methods are GCAS, Phenomizer(Orphanet) and GCN

Fig. 4 Cumulative percentage of all the phenotype-gene associations from the 230 clinical cases that appeared within the Top-k of the ranked gene
list. The candidate methods are GCAS and BiRWmod
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Fig. 5 Cumulative percentage of all the phenotype-gene associations from the 230 clinical cases that appeared within the Top-k of the ranked gene
list. The phenotype-gene associations that are already present in Orphanet are excluded from the calculation. The candidate methods are GCAS and
BiRWmod

and GCAS exhibit similar performance at k = 50 while
GCAS outperforms BiRW after k = 50. In other words,
GCAS identifies the causal genes for more cases if we
allow a larger Top-k. However, as seen in Fig. 5, GCAS
outperforms BiRW even at k = 50 after excluding the
phenotype-gene pairs present in HANRDtrunc.
Figure 6 compares the GCN performance under the

two settings discussed in “Validation on rare disease
clinical data” section. GCN performs slightly better in the
setting where only the test case is provided as labeled data
(GCNa) in comparison to the setting where additional
labeled information related to the remaining clinical cases
(GCNb) was also provided as support. The GCN perfor-
mance is not improved by the additional support data.
On the contrary, the performance degradation of GCNb
could possibly be attributed to the large number of labels
that are simultaneously considered while computing the
final label propagation. Hence, only GCNa is used in
the comparison given in Fig. 4. As seen in Fig. 4, GCAS
consistently outperforms GCN. For instance, GCN could
capture only 15% in the Top-500 while Orphamizer and
GCAS could capture 42 and 73% of the causal genes
respectively.
Figure 7 show the performance of HANRD in solv-

ing the 230 clinical cases for different values of the
convolutional depth parameter K. As discussed in
“Validation on rare disease clinical data” section, a

separate HANRD instance was created for each candidate
K value. Performance of each of these HANRD instances
was plotted separately as follows. For different Top-k val-
ues, the total number of causal genes that appeared within
the Top-k of the ranked gene lists from all the clinical
cases was plotted. GCAS showed improved performance
with increasing K values though the improvement was
marginal for K greater than 4.

Discussion
We presented a phenotype-driven approach for rare dis-
ease gene prioritization consisting of a heterogeneous
network HANRD as well as a spectral graph convolu-
tion algorithm GCAS for inferring pairwise associations.
HANRD was built using ontological and curated associ-
ations supplemented by inferred associations. Validation
on rare disease clinical cases showed improved perfor-
mance of our approach when compared to other state-of-
the-art tools. When the phenotypes associated with the
rare disease clinical cases were presented as input, the
causal genes were captured within Top-50 for more than
31% of the cases and within Top-200 for more than 56% of
the cases.
GCAS showed a superior Top-k recall than BiRW for

the rare disease clinical cases while also achieving com-
parable AUC scores in the cross-validation. The recall
performance of GCAS and BiRW are similar for small
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Fig. 6 Cumulative percentage of the 230 clinical cases where the causal gene(s) appeared within the Top-k of the ranked list of genes. The candidate
methods are GCNa and GCNb

Top-k (Top-50). BiRW relies on a rigid network structure
and it explores short range connections between entities.
As a result, BiRW exhibits comparable precision (smaller
Top-k) for a small subset of clinical cases. On the other
hand, exploring only rigid structures with short range

connections result in lower recall for BiRW for most other
cases. Since GCAS explores both short-range and long-
range connections, it is able to achieve a better balance
of precision and recall. Computing long-range associa-
tions suffers from noise since the neighborhood expands

Fig. 7 Performance of HANRD for convolution depth parameter K = 2, 3, 4, 5, 7 and 9. For each K, the cumulative distribution of the number of
causal genes appearing within the Top-k of the ranked gene lists from all the 230 clinical cases is plotted
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considerably for increasing k. As a result, causal genesmay
appear only in a larger Top-k range. Nevertheless, good
recall with reasonably large Top-k can still significantly
help in identifying causal genes in rare disease clinical
cases. This is especially true when the ranked gene list out-
put is combined with other similar lists arising from say
genotyping (WES orWGS) experiments. Though the can-
didate genes could have lower rank in a list in isolation,
combining its support from all ranked lists can produce a
list of significantly higher quality than any of the individ-
ual lists and thereby help in efficient identification of the
causal gene(s).
BiRW approach explores domain specific and rigid

sub-structures (circular bigraphs consisting of only genes
and phenotypes) in the network for inferring novel
associations. GCAS on the other hand uses a domain-
independent approach and it explores both short range
and long range connections to infer novel associations.
This makes GCAS better suited for adapting to other
domains.
GCAS and Orphamizer performed better than GCN in

the clinical case validation. The number of input pheno-
types associated with a clinical case is usually very low
(in the range of 3 to 5). GCN is perhaps not well suited
for such cases requiring information propagation from a
very small set of source nodes to the remaining nodes.
Due to this limitation, GCN has limited applicability in
augmenting a network with new inferred pair-wise asso-
ciations, which is of considerable value in several network
based studies. GCAS on the other hand is a definite can-
didate for this purpose. Furthermore, GCN performance
could suffer when information flow over longer paths are
required. One way to address this would be to add addi-
tional convolutional layers in GCN to realize convolution
with higher order neighbors. [24] showed that additional
layers (even up to 10 layers) in GCN did not improve
its performance. On the contrary, it degrades the perfor-
mance due to the increase in the number of parameters
and overfitting. It was shown in [24] that the performance
degradation with increasing depth could be prevented
if not improved by using a model variant with residual
connections between hidden layers.
HANRD in its current state is by no means complete.

New entity types can be incorporated into it allowing
for better interpretation of newly found associations. It
can also be expanded using associations from sources as
OMIM, Disease Ontology [39], Orphanet Rare Disease
Ontology (ORDO) [40] and GO (Gene Ontology) [41],
amongst other sources. When building the nodes of
HANRD, overlapping terms such as “submucosal cleft
palate” that occurs both as a HPO node (HP:0000176)
and an ORPHANET node (ORPHA:155878) were found.
We dealt with such ambiguity by letting both nodes exist
separately in HANRD, and connecting them with an edge

weight of ’1’ to imply that they are conceptually the same.
Another approach would be to merge the two nodes by
choosing either of the nodes. However, this would need
a consistent prioritization scheme. The edges of HANRD
such as gene-gene, disease-gene and phenotype-disease
represent either actual physical interactions between the
entities, or simply represent the co-occurrence of the pair
in a biomedical context such as a MEDLINE abstract
or cellular pathway. The entities of the pairs occurring
together are deemed associated by the principle of guilt by
association [16]. Further, existing approaches usually view
ontological associations as distinct from such pairwise
associations [22]. HANRD includes both types of associa-
tions in the same heterogeneous network while achieving
superior performance.
Curated rare disease databases such as OMIM and

Orphanet have a reasonable coverage of phenotype-
genotype associations. However, a significant number of
such associations continue to be found only in litera-
ture, primarily due to the inherent delay involved in
the manual curation of literature [42]. Approaches that
can comprehensively cover all known association pairs
can have a significant impact in identifying novel asso-
ciations for rare disease studies. We intend to extend
HANRD to include association pairs extracted from the
MEDLINE corpus.
Phenotypic analysis forms only one part of the solution.

Genotypic analysis in the form of variant prioritization
results in a list of ranked variants and the correspond-
ing genes [7]. Variant prioritization algorithms such as
SIFT [43] and POLYPHEN [44] assess the likelihood of
pathogenicity using information such as residue conser-
vation status or the effects the change is likely to have on
the protein [9]. Effectively combining the results of phe-
notypic and genotypic analysis can significantly improve
the ability to solve clinical cases.
We used the first order approximation of the graph con-

volution in GCAS. It would be worthwhile to study the
GCAS performance using higher order approximations,
albeit with increased computational cost. Experiments in
[24] however showed reduced performance for higher
order approximations in comparison to the first order
approximation for semi-supervised node classification,
possibly due to the increase in the number of parameters.
It is pertinent to note that GCAS is a domain-independent
algorithm while HANRD captures the domain specific
known network data. We believe that the GCAS algo-
rithm can also find applications in other domains due to
its domain-independent nature.

Conclusions
In this study, we showed that the heterogeneous network
HANRD, consisting of curated, ontological and inferred
associations, helped improve causal gene identification
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in rare diseases. Further, the improved performance
exhibited by our inferencing algorithm GCAS suggests
spectral graph convolution, or graph signal processing in
general, as a promising approach for biomedical network
analysis.
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