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The C3 enzymes from Clostridium (C.) botulinum (C3bot) and Clostridium limosum 
(C3lim) are single chain protein toxins of about 25 kDa that mono-ADP-ribosylate 
Rho-A, -B, and -C in the cytosol of mammalian cells. We discovered that both C3 
proteins are selectively internalized into the cytosol of monocytes and macrophages 
by an endocytotic mechanism, comparable to bacterial AB-type toxins, while they 
are not efficiently taken up into the cytosol of other cell types including epithelial 
cells and fibroblasts. C3-treatment results in disturbed macrophage functions, such 
as migration and phagocytosis, suggesting a novel function of clostridial C3 toxins 
as virulence factors, which selectively interfere with these immune cells. Moreover, 
enzymatic inactive C3 protein serves as a transport system to selectively deliver phar-
macologically active molecules into the cytosol of monocytes/macrophages without 
damaging these cells. This review addresses also the generation of C3-based molecular 
tools for experimental macrophage pharmacology and cell biology as well as the 
exploitation of C3 for development of novel therapeutic strategies against monocyte/
macrophage-associated diseases.

Keywords: C3, Rho, macrophage, cellular uptake, targeted drug delivery

introduction: Bacterial C3 Proteins

Various Gram-positive bacteria produce and secrete C3 proteins (~25 kDa, pI > 9) that selectively 
mono-ADP-ribosylate the small GTPases Rho-A, -B, and -C. C3 ADP-ribosyltransferases catalyze 
the covalent transfer of the ADP-ribose group from the cosubstrate NAD onto Asn-41 of Rho (1, 
2). In 1987, Aktories and co-workers described the first C3 protein (C3bot), which is produced 
from Clostridium botulinum C and D strains (3, 4). It became evident that there are two isoforms, 
C3bot1 and C3bot2 with 60% sequence identity. Further, C3 proteins were identified in Clostridium 
limosum (C3lim) (5), Bacillus cereus (C3cer) (6), as well as Staphylococcus aureus (C3stau) (7). 
C3stau alias epithelial differentiation inhibitor (EDIN) includes three isoforms (A, B, and C), 
which share ~35% sequence identity to C3bot1 and ADP-ribosylates RhoE in addition to Rho-A, 
-B, and -C (7).

The pathophysiological role of the clostridial C3 proteins is not clear so far, but it was suggested 
that C3stau might play a role as virulence factor, since more C3stau-producing S. aureus were 
isolated from patients with impetigo, diabetic foot ulcers, and other skin infections than from 
healthy carriers (8–11). In contrast to the clostridia, S. aureus enters mammalian cells and releases 
C3stau into the host cell cytosol, where the C3stau-catalyzed ADP-ribosylation of Rho results 
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in reorganization of the actin cytoskeleton (12). In tissues, this 
mode of action causes disruption of cell–cell contacts and barrier 
functions, which allows the dissemination of S. aureus through 
the disturbed tissue barriers into deeper tissues, as already dem-
onstrated in animal models (12, 13). Moreover, in endothelial 
cells, the C3stau-mediated reorganization of the actin cytoskel-
eton results in the formation of large transendothelial channels, 
so-called macroapertures (TEMs) (14–16), which increase the 
endothelial permeability and facilitate the dissemination of S. 
aureus from blood to deeper tissue layers.

C3 enzymes Mono-ADP-Ribosylate Rho 
and inhibit Rho Signaling

Up to date, C3 enzymes represent the only known specific Rho 
inhibitors and were widely used in biochemistry, cell biology, and 
experimental pharmacology as highly valuable molecular tools 
to investigate the role of Rho-signaling in vitro and in living cells 
(17, 18). However, it soon became evident that C3 proteins are 
not efficiently taken up into the cytosol of the tested cell types 
including epithelial cells and fibroblasts and it was suggested that 
C3 proteins might be exoenzymes rather than typical exotoxins, 
which become internalized only by non-specific mechanisms, such 
as pinocytosis, when cultured cells were treated for long incubation 
periods (>24 h) with high C3 concentrations (>10 μg/ml) in the 
medium (19). Therefore, C3 proteins were introduced into the 
cytosol of cells by artificial methods including microinjection, 
transfection, or by the use of molecular transporters like cell-
penetrating peptides, viruses, or portions of bacterial AB-toxins 
(18, 20).

In line with the observation of their very limited and non-
specific uptake in the tested cell types, no binding and transloca-
tion subunit was found in the C3 proteins, which could mediate 
their uptake into the host cell cytosol. Structure analysis of 
C3bot and C3stau revealed that these proteins consist of a single 
enzyme domain with a catalytic core containing the conserved 
NAD binding site and a catalytic pocket with an α-helix bent 
lying over two antiparallel β-sheets, which form a central cleft 
(21, 22) and show high structure similarity with the catalytic 
domains of binary actin-ADP-ribosylating toxins (18, 22, 23). 
Moreover, like the binary actin-ADP-ribosylating toxins, C3 
enzymes contain the highly conserved amino acids, which were 
also identified in other ADP-ribosyltransferases: the STS-motif 
174Ser-Thr-Ser176, which is flanked by Arg128 and Glu214 
(22) and the “catalytic glutamate” Glu214, which plays a central 
role in the covalent transfer of ADP-ribose onto Asn41 of Rho. 
Furthermore, the binary actin ADP-ribosylating toxins and 
the C3 enzymes contain the so-called ADP-ribosylating toxin 
turn-turn (ARTT) motif, two adjacent protruding turns, which 
play a role for the toxin-specific recognition of actin or Rho: at 
position 212 in turn 2, the Rho-modifying C3 enzymes have a 
Gln residue, the actin-ADP-ribosylating toxins a Glu residue (22, 
24). The precise molecular mechanisms of the ADP-ribosylation 
as well as the function of the individual amino acid residues of 
the ADP-ribosyltransferases is described in more detail in highly 
acknowledged reviews (18, 25).

Besides the Rho ADP-ribosylation, C3 acts on RalA, a member 
of the Ras GTPase family, in a non-enzymatic manner independent 
from its ADP-ribosyltransferase activity. C3 directly binds to RalA 
(6), which keeps RalA in its inactive GDP-bound conformation 
and prevents the activation of downstream RalA effectors (26, 27). 
However, the cellular consequences of this C3–RalA interaction 
are not known so far.

Molecular and Cellular Consequences of 
the C3-Catalyzed Rho ADP-Ribosylation

The C3 enzymes specifically mono-ADP-ribosylate the isoforms 
Rho A, -B, and -C at Asn-41 and prefer Rho–GDP as substrate 
(28, 29) because in this structure, Asn41 is accessible to C3 (30). 
As a consequence, the ADP-ribosylated Rho–GDP binds more 
efficiently to GDI, which traps Rho in the Rho–GDI complexes 
in the cytosol [Ref. (31), for review on Rho regulation see Ref. 
(32)]. This prevents the translocation of cytosolic Rho to the cyto-
plasmic membrane and consequently its activation to Rho–GTP 
and the subsequent activation of the various cellular Rho-effector 
molecules (33, 34). This disturbed Rho signaling is the reason 
underlying most of the cellular effects observed after treatment of 
cells with C3. However, it should be kept in mind that due to the 
very limited cellular uptake of C3 proteins, all the experiments with 
cultured cells or tissues summarized below, were performed either 
by incubating the cells for a long time with high concentrations 
of C3 protein, or by introducing C3 into the cytosol via artificial 
approaches.

In 1989, Chardin and co-workers described that C3-treatment 
of Vero cells results in a characteristic change of the cell mor-
phology with cell-rounding, formation of long protrusions, and 
reorganization of the actin filaments (35). Importantly, this was 
the first evidence that Rho signaling might be associated with the 
structure of actin filaments in mammalian cells. Due to its substrate 
specificity, C3 proved to be a very useful tool to unravel the role of 
Rho for the organization of the actin cytoskeleton and for actin-
dependent processes in various eukaryotic cell types. It was found 
that C3-treatment inhibited endocytosis, exocytosis, cytokinesis, 
cell cycle progression, modulated the neuronal plasticity, and 
induced apoptosis (25, 36, 37). In leukocytes, the C3-catalyzed 
Rho-inhibition inhibited migration (38–40), adhesion (41, 42), 
and phagocytosis (43), suggesting a pathophysiological role of 
C3 proteins toward such immune cells. However, the role of C3 
proteins remained unclear, mainly because of their limited cellular 
uptake.

The increasing knowledge on the C3-mediated effects resulted 
in the pharmacological exploitation of C3 for novel therapeutic 
strategies. The C3-catalyzed inhibition of Rho signaling has protec-
tive effects on neurons of the central nervous system because it pre-
vented the ephrin-A5-induced growth cone collapse of such cells 
in vitro (44). Moreover, independent of its ADP-ribosyltransferase 
activity, C3bot – but not C3lim – exhibits neurotrophic effects 
on cells of the central nerve system, as demonstrated for murine 
hippocampal neurons (45–48), but not on cells of the peripheral 
nerve system (49). The recombinant cell-permeable C3bot protein 
BA-210 (Cethrin™), which acts as Rho inhibitor, became a drug for 
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treatment of acute spinal cord injury in men. This Rho-inhibitor 
showed promising effects after local application in pre-clinical 
animal studies (50) and is evaluated by the U.S. National Institutes 
of Health in a phase IIb clinical trial for its efficacy and safety.

Clostridial C3 Toxins Selectively enter 
Monocytes/Macrophages and Allow for Targeted 
Pharmacological Modulation of Rho-Dependent 
Processes in these Cells
Based on reported inhibitory effects of C3 on basic leukocyte func-
tions, a potential pathophysiological role of C3 toward immune 
cells was suggested and in 2010, Barth and co-workers identified 
monocytes/macrophages as target cells for C3bot and C3lim 
(19). It was demonstrated that within short incubation periods 
(e.g., 3 h), comparatively low concentrations of C3bot or C3lim 
(e.g., 0.5–1 μg/ml) were efficiently taken up into the cytosol of 
cultured monocytes and macrophages, such as murine (J774A.1, 
RAW 264.7) and human cell lines, and primary cultured human 
macrophages after their differentiation from blood monocytes, 
while under comparable experimental conditions, no relevant 
uptake of clostridial C3 toxins into the cytosol of cultured epi-
thelial cells and fibroblasts was observed. Most likely, C3bot and 
C3lim enter the cytosol of monocytes/macrophages by a specific 
endocytotic mechanism because their uptake was decreased after 
pretreatment of cells with bafilomycin A1 (19, 51), which inhibits 
endosomal acidification. Taken together, these results suggest that 
the clostridial C3 proteins might act on monocytes/macrophages 
like fully functional bacterial exotoxins but the precise molecular 
mechanisms underlying their cellular uptake and intracellular 
transport are not known so far. However, Just and co-workers, who 
confirmed and extended the studies on the interaction of clostridial 
C3 proteins with macrophages, got experimental evidence that C3 
binds to proteinaceous structures on J774A.1 macrophages, which 
exhibit significantly more C3-binding sites compared to other cell 
types (52). Moreover, vimentin might be involved in the uptake of 
C3 protein into macrophages (52).

The C3-treatment of macrophages resulted in characteristic 
morphological changes due to a reorganization of the actin 
cytoskeleton (19), as shown in Figures 1A,B. Importantly, this 
effect strictly depended on the C3-catalyzed ADP-ribosylation of 
Rho in the cytosol of the macrophages as enzymatically inactive 
C3botE174Q had no effect on cell morphology but was taken 
up into macrophages comparable to wild-type C3 (19). The 
C3-mediated impairment of Rho-signaling inhibits essential 
macrophage functions, such as phagocytosis (53) and migration 
[Ref. (54), Figure 1C], suggesting an immunosuppressive mode 
of action of the clostridial C3 proteins.

Moreover, treatment of RAW264.7 macrophages with recom-
binant C3bot and C3lim proteins prevented their differentiation 
to osteoclast-like cells and C3-treatment of already differentiated 
and fully active osteoclast-like cells, which can be considered 
as “specialized macrophages,” inhibited their resorbing activity 
in vitro (55). Interestingly, a recombinant C3lim fusion protein 
(C2IN–C3lim), which contains C2IN, an enzymatically inactive 
portion of C2I, the enzyme component of the binary actin ADP-
ribosylating C. botulinum C2 toxin (56), was much more efficient 

then C3bot and C3lim regarding the targeted pharmacological 
manipulation of osteoclast formation and activity in vitro (55); 
most likely, this fusion protein is more efficiently internalized into 
the macrophages then the wild-type C3 proteins. Taken together, 
the recombinant C3 proteins and fusion proteins represent 
attractive candidates for targeted pharmacological manipulation 
of osteoclast formation and activity with great potential for the 
development of novel anti-resorptive therapies in low bone mass 
diseases, such as osteoporosis.

Clostridial C3 Proteins for Targeted Monocyte/
Macrophage-Selective Drug Delivery
Due to the fact that comparatively low concentrations of the 
clostridial C3 proteins are much more efficiently taken up into 
monocytes and macrophages then in other cell types, such as 
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FiguRe 1 | effects of clostridial C3 toxin on macrophages. The uptake 
of clostridial C3 toxin into the cytosol of macrophages causes the  
C3-catalyzed ADP-ribosylation of Rho and inhibition of Rho signaling, which 
results in a reorganization of the actin cytoskeleton [schematically depicted in 
(A)], a dramatic change of the cell morphology (B) and an inhibition of the 
migration of cultured macrophages, as shown by the scratch test experiment 
(C). NAD, nicotinamide adenine dinucleotide; con, untreated J774A.1 
macrophages, which were grown for 24 h after the removal of a portion of 
the cells by a scratch; C3, J774A.1 cells treated for 24 h with 300 nM 
C3bot1 after removal of some cells by a scratch. After treatment with 
C3bot1, the scratch remains open, indicating less macrophage migration of 
C3-treated macrophages compared to untreated control cells.
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FiguRe 2 | Recombinant fusion proteins based on enzymatically 
inactive C3bote174Q for the targeted delivery of pharmacologically 
active molecules into the cytosol of macrophages and modulation of 
macrophage functions. (A) Schematic representation of the recombinant 
C3botE174Q-C2I fusion toxin, which specifically ADP-ribosylates G-actin in 
macrophages, resulting in depolymerization of the actin filaments and 
inhibition of actin-dependent cell functions. (B) Schematic representation of 
the recombinant C3botE174Q-Streptavidin (indicated as C3botE174Q-SA) 
fusion protein, which serves as transporter for the targeted delivery of 
biotinylated (indicated as B-) pharmacologically active cargo molecules into 
the cytosol of macrophages, which are alone not taken up, in order to 
specifically modulate macrophage functions (left panel). Right panel: the 
enzyme domain of diphtheria toxin (DTA), which ADP-ribosylates elongation 
factor 2 in cells and triggers cell death, was biotinylated and used as a model 
cargo for proof-of-concept. J774A.1 macrophages incubated with 
biotin-labeled DTA (B-DTA) or with B-DTA, which was previously bound to the 
transporter molecule C3botE174Q-SA. When B-DTA was delivered into the 
cytosol by C3botE174Q-SA the cells died, while cells treated with B-DTA 
alone stayed viable [modified from Christow et al. (58)].
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epithelial cells or fibroblasts, enzymatically inactive C3 protein 
should represent an optimal transporter for the targeted deliv-
ery of pharmacologically active (macro)molecules including 
therapeutic proteins and peptides into the cytosol of monocytes/
macrophages. Therefore, Barth and co-workers developed and 
characterized novel transport systems based on enzymatically 
inactive C3bot1E174Q (57), which is efficiently taken up into 
monocytes/macrophages (19), but does not exhibit adverse 
effects or induces macrophage activation (51). For proof-of-
concept, a pharmacologically active enzyme, namely, the actin 
ADP-ribosylating C. botulinum C2I, was genetically fused as a 
reporter enzyme to C3botE174Q and the uptake of the resulting 
recombinant C3botE174Q-C2I (see Figure 2A) into the cytosol 
of cultured macrophages was investigated. Indeed, C3bot1E174Q 
served for delivery of C2I into the cytosol of macrophage-like 
cell lines and primary human macrophages derived from blood 
monocytes. Incubation with C3bot1E174Q-C2I in the culture 
medium resulted in the ADP-ribosylation of actin in the cytosol 
of the macrophages and consequently in the depolymerization 
of F-actin (51), a clear indication that enzymatically active C2I 
reached the cytosol. Importantly, C3bot1E174Q-C2I had no effect 
on epithelial cells or fibroblasts, indicating the cell-type selectivity 
of this fusion toxin (51). Moreover, an application of C2I alone 
into the medium had no effect on the macrophages because C2I 
is not taken up into cells. In conclusion, enzymatically inactive C3 
protein was established as a novel macrophage/monocyte-selective 
transport system. The generated recombinant actin-inhibitor 
C3bot1E174Q-C2I can serve for the targeted modulation of 
actin-dependent processes in monocytes and macrophages, such 
as the inhibition of migration and phagocytosis in the context of 
macrophage-associated diseases.

Prompted by this first successful exploitation of C3 for protein 
delivery, novel modular transporters based on biotin/streptavidin 
technology were developed (58, 59), as depicted in Figure 2B. Here, 
the C3botE174Q moiety mediates the specific transport of strepta-
vidin into the cytosol of monocytes/macrophages. Streptavidin 
was either coupled to C3botE174Q by chemical crosslinking (59) 
or by genetic fusion (58) and serves as a delivery platform for 
biotin-labeled cargo molecules, which are then released in the host 
cell cytosol to elicit their pharmacological effects, as demonstrated 
for the enzymatic domain DTA of diphtheria toxin (58), which 
triggers cell death by inactivating the elongation factor EF-2, 
which is essential for protein biosynthesis (60) (see Figure 2B). 
In conclusion, enzymatically inactive C3 protein serves as a 
transport system for delivery of “foreign” proteins including 
pharmacologically active enzymes into the cytosol of cultured 
monocytes/macrophages.

Conclusion

Recombinant C3 toxins and C3 fusion toxins proved to represent 
valuable tools to modulate Rho- and actin-associated cell functions 
in monocytes and macrophages and the novel C3-based transport 
systems are attractive carriers for targeted drug delivery into these 
cells. The detailed characterization of the cellular uptake and the 
cellular consequences of the C3-based molecules in clinically 

relevant animal models, for example, after local application of 
C3 molecules coupled to tailored supramolecular nanocarriers 
(61, 62), will show whether the very promising results obtained 
in vitro and ex vivo can be exploited for the targeted pharmacologi-
cal modulation of cellular functions in the context of monocyte/
macrophage-associated diseases in  vivo, such as inflammation, 
infection, or low bone mass diseases.
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