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Abstract

Phylogenetic trees from real-world data often include short edges with very few1

substitutions per site, which can lead to partially resolved trees and poor accuracy. Theory2

indicates that the number of sites needed to accurately reconstruct a fully resolved tree3

grows at a rate proportional to the inverse square of the length of the shortest edge.4

However, when inferred trees are partially resolved due to short edges, “accuracy” should5

be defined as the rate of discovering false splits (clades on a rooted tree) relative to the6

actual number found. Thus, accuracy can be high even if short edges are common.7

Specifically, in a “near-perfect” parameter space in which trees are large, the tree length ξ8

(the sum of all edge lengths) is small, and rate variation is minimal, the expected false9

positive rate is less than ξ/3; the exact value depends on tree shape and sequence length.10

This expected false positive rate is far below the false negative rate for small ξ and often11

well below 5% even when some assumptions are relaxed. We show this result analytically12

for maximum parsimony and explore its extension to maximum likelihood using theory13

and simulations. For hypothesis testing, we show that measures of split “support” that rely14

on bootstrap resampling consistently imply weaker support than that implied by the false15

positive rates in near-perfect trees. The near-perfect parameter space closely fits several16

empirical studies of human virus diversification during outbreaks and epidemics, including17

Ebolavirus, Zika virus, and SARS-CoV-2, reflecting low substitution rates relative to high18

transmission/sampling rates in these viruses.19

Key words : Perfect phylogeny, Homoplasy, Yule-Harding model, Virus, Epidemic,20

SARS-CoV-2, Ebolavirus, Mumps virus, HIV, West Nile virus, Zika virus21
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Introduction22

A “perfect phylogeny” is an evolutionary tree constructed from discrete character23

data in which no character state evolves more than once (Gusfield, 1997; Fernandez-Baca24

and Lagergren, 2003). Homoplasy (Wake et al., 2011) is absent. Real-world datasets rarely25

allow reconstruction of perfect phylogenies, but algorithms can be modified to search26

efficiently for “near-perfect” trees when a small amount of homoplasy is present27

(Fernandez-Baca and Lagergren, 2003; Awasthi et al., 2012). In this paper, we address how28

best to measure accuracy in such “near-perfect” trees, what factors guarantee accuracy is29

high, and whether real datasets with such minimal levels of homoplasy even exist.30

The concept of perfect and near-perfect phylogenies played a key role in early31

attempts to understand the connections among phylogenetic tree reconstruction methods,32

such as maximum likelihood (ML), maximum parsimony (MP), and maximum33

compatibility. In a landmark paper, Felsenstein (1973) showed that a sufficient condition34

for ML and MP to infer the same tree was for the expected number of substitutions on35

edges of the tree to be very small. Then, “[i]f our assumption were true that evolutionary36

change is improbable during the relevant period of time, most characters should be37

uniform over the group. A few would show a single change of state during the evolution of38

the group. But only very rarely would we find more than one change of state, so that few39

or no characters would show convergence.” This last statement may have been the first40

hint of a probabilistic description of “near-perfect phylogeny”. This condition can be41

stated more formally as ξ 6 1, where ξ is the expected number of substitutions per site42

summed over the entire tree (i.e., the tree length per site). Homoplasy is rare but has a43

non-zero probability of occurring.44

Felsenstein’s concluding comment on near-perfect phylogenies was skeptical: “Real45

data is certainly not like this...” (Felsenstein, 1973). Homoplasy has since been viewed as a46

commonplace feature of phylogenetic datasets (Wake et al., 2011) and, reasonably enough,47

most phylogenetic theory has been developed with this sentiment as an implicit48
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assumption. However, extensive surveys of genetic diversity in RNA viruses have revealed49

that some viral phylogenies, particularly those associated with outbreaks and epidemics,50

do exhibit small per site total tree lengths consistent with near-perfect phylogenies (Dudas51

and Bedford, 2019). These datasets often comprise full-length viral genomes from RNA52

viruses, which are typically 10–30 kb in length and have a substitution rate of around 10−353

substitutions/site/year.54

The potential of these data to yield fully resolved phylogenies has been of particular55

interest in epidemiology, because internal nodes in viral trees represent transmission events56

(Campbell et al., 2018; Grubaugh et al., 2019; Dudas and Bedford, 2019). This objective57

motivates placing a premium on minimizing false negatives (i.e., on deciphering all such58

transmission events) and thereby maximizing resolution. Increased phylogenetic resolution59

is achievable by analyzing longer genomic fragments from viruses with faster evolutionary60

rates (Dudas and Bedford, 2019). However, understanding the false positive rate remains a61

key issue in characterizing phylogenetic accuracy (Felsenstein and Kishino, 1993),62

particularly in the special case of a poorly resolved tree with few—but63

well-supported—clades.64

Here we explore what assumptions comprise “near-perfect” phylogenies and65

decouple the false-positive and false-negative components of accuracy in such trees. In66

particular, by focusing on a mathematically tractable case in which tree size is large yet67

tree length is small, we will show that the false positive rate can be very good, even when68

the false negative rate is not: most of the clades inferred are probably correct, even though69

the tree may be only partly resolved. We also survey a set of viral phylogenies that have70

many properties of this near-perfect space and estimate their accuracy. Finally, we briefly71

consider phylogenetic “support” measures in relation to accuracy in near-perfect data.72

Whereas accuracy relates to the overall performance of a tree estimator relative to the true73

tree, support relates to the probability of making a mistake in deciding about some aspect74

of that tree—typically the presence of a particular split—using a statistically based75
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decision rule such as the bootstrap support value or a posterior probability (Felsenstein,76

1985; Felsenstein and Kishino, 1993; Hillis and Bull, 1993; Efron et al., 1996; Susko, 2008,77

2009; Alfaro and Holder, 2006; Simmons and Norton, 2014).78

This paper is organized as follows. “Materials and Methods” are divided into two79

parts: first, mathematical theory (with proofs in the Supplement), and second, simulation80

protocols, data, and data analysis. “Results” begin with a more expository description of81

the theory, illustrated with simulation results, and then describes results from analyses of82

robustness and support, and data analyses. Following these is the Discussion.83

Materials and Methods I. Theory84

Definitions of Accuracy85

Given a true unrooted binary tree, T , and an estimated tree, T̂ , a strict measure of86

accuracy is just Prob(T̂ = T ) (Huelsenbeck and Hillis, 1993; Erdös et al., 1999). In large87

trees it is useful to measure partial agreement, such as the proportion of nontrivial splits88

on T̂ that are also on T , out of a possible n− 3 (Yang, 1998).89

A still more nuanced definition of accuracy is useful when either T or T̂ is only90

partially resolved (not binary), that is, when the number of nontrivial splits, C(T ), is less91

than n− 3 (Warnow, 2013). Let NFP be the number of splits on T̂ but not T (false92

positives), and let NFN be the number of splits on T but not T̂ (false negatives). When93

both trees are binary, NFP = NFN (Berry and Gascuel, 1996; Smirnov and Warnow, 2021);94

otherwise they can contribute differentially to error. The Robinson–Foulds (RF) distance95

(Robinson and Foulds, 1981), dRF = NFP +NFN , combines both errors in one measure of96

overall accuracy. Here we distinguish between these errors explicitly by defining false97

positive and negative rates (Smirnov and Warnow, 2021):98

FPT = E[NFP/C(T̂ )],

FNT = E[NFN/C(T )].
(1)

Both error rates are expectations over some generating model for the data, described next.99
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Evolutionary Model100

Let B(n) denote the set of unrooted binary phylogenetic trees with leaf set101

[n] = {1, 2, . . . , n}. Note that a tree T ∈ B(n) has 2n− 3 edges. Consider a Jukes-Cantor102

model (JC69; Felsenstein, 2004), with rate parameter λ, in which the probability of a103

state change between the endpoints of an edge e, denoted pe, is given by pe = p, where104

p = 3
4
(1− exp(−4λ/3)). Assume further that all edges have the same value of λ. Let ξ105

denote the expected number of state changes per character in T . Thus ξ = λ · (2n− 3).106

A character refers to the assignment of states to the taxa at a given site of an107

alignment.108

We will say that a character evolves ‘perfectly’ on T if there is a single change of109

state across one interior edge (say e) and no change of state on any other edge of T . Thus, a110

character that evolves perfectly on T is homoplasy-free, and the two notions are equivalent111

for binary characters. However, for multi-state characters, the notion of a perfectly evolved112

characters is stronger than that of being being merely homoplasy-free. We deal here with113

this stronger notion for two reasons: firstly, it simplifies the mathematical analysis, and114

second, the expected proportion of homoplasy-free characters that are not perfectly115

evolved under the models we consider tends to zero as the number of taxa becomes large.116

We will say that a character f evolves on T with c edge changes on e1, . . . , ec if117

state changes occur on edges e1, . . . , ec and on no other edge of T . More briefly, we say that118

f evolves on T with c edge changes if f evolves with c edge changes for some set of c119

distinct edges of T (mostly we will deal with the case c = 2).120

Recall that a split refers to a bipartition of the leaf set [n] into two nonempty subsets121

(and splits are induced by binary characters). A character that has evolved perfectly on T122

produces a split, and these splits (across a set of perfectly evolved characters) are123

compatible and so form a (generally unresolved/non-binary) tree on leaf set [n].124
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Fig. 1. How a false positive split is inferred by maximum parsimony (MP). On true tree (top) sites 1–3 are binary
and “perfect”; that is, they have only a single change (locations marked by black circles), but site 4 is binary and
homoplastic, changing twice (open circles), on edges e1 and e2. The dotted line is the path between the two
homoplastic changes in site 4. If no perfect sites change along the dotted line path on the true tree, a false positive
split is inferred on the MP tree (bottom).

Probability of False Splits125

Suppose that m characters evolve on T and that, of these m characters, k of them126

are perfectly evolved on T (note that more than one of these characters may correspond to127

the same split of T ). Next, consider a single additional character f which has evolved on T128

with 2 edge changes, on e1, e2 (there is no restriction that these must be interior edges).129

Under certain conditions, the MP tree for these characters will include a false split (false130

positive)—a split not on T (Fig. 1). In particular, a false split occurs if no perfect131

character changes state along the path between e1 and e2 (see Lemma 1 in the132

Supplementary Information).133

Let Φ
(k)
T be the probability that a character f that has evolved on T with 2 edge134

changes generates a false split under MP, which means:135

(C-i) it is a binary character,136

(C-ii) the corresponding split is not a split of T , and137



8 WERTHEIM, STEEL, AND SANDERSON

(C-iii) the split described by f is compatible with k characters that are perfectly evolved138

on T (by the Markovian process described above).139

In other words, we are interested in ‘false splits’ (i.e., splits in the reconstructed MP tree140

that are not present in the—underlying and unknown—true tree T ). The split141

corresponding to f (by condition C-i) should not be in T (condition C-ii); however,142

condition C-iii would lead MP to add this false split into the reconstructed tree based on143

the other ‘true splits’ since the false split is compatible with all of the latter.144

Given a tree T ∈ B(n), let dT (e1, e2) denote the number of edges of T that lie145

strictly within the path between e1 and e2 (i.e., excluding e1 and e2). Thus, e1 and e2 are146

adjacent if and only if dT (e1, e2) = 0. In addition, let ϕT = (ϕT (0), ϕT (1), . . . , ϕT (n− 3)),147

where ϕT (i) is the number of (unordered) pairs of edges {e, e′} of T for which dT (e, e′) = i.148

Finally, for i between 1 and n− 3, let149

ϕ̃T (i) =
ϕT (i)(
2n−3

2

) . (2)

The probability of a false split is then given by the following theorem (see SI for150

proof).151

Theorem 1 For each T ∈ B(n), and k > 1 we have:

Φ
(k)
T =

1

3
·
n−3∑
i=1

ϕ̃T (i)

(
1− i

(n− 3)

)k
.

Theorem 1 shows that for fixed k and n, the shape of T plays a significant role in152

determining Φ
(k)
T ; in particular, unbalanced trees (such as caterpillars) will have a smaller153

value of Φ
(k)
T than more balanced trees. Indeed, it is possible to calculate the value of Φ

(k)
T154

exactly for the two extreme cases of caterpillar trees and fully-balanced trees to determine155

the extent of this dependence (see SI).156
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Estimating the Expected False Positive Rate157

Given a binary phylogenetic tree T , and m characters evolved randomly on T by158

the model described earlier, the false positive rate (FPT ) is the expected value of the ratio159

of false splits to all splits in the estimated tree (Eqn. 1; here we assume that if the160

reconstructed tree is a star, this proportion [which is technically 0/0] is zero). Recall that ξ161

is the expected number of state changes in the tree T per character, under the model162

described earlier. FPT is a function of the three parameters T (specifically, its shape and163

number of leaves), m, and λ (equivalently, FPT is a function of T , m, and ξ).164

In general, it is mathematically complicated to describe FPT in terms of these165

parameters. However, when the number of leaves in a tree grows faster than the number of166

perfectly compatible characters, it is possible to state a limit result to provide an167

approximation to FPT for large trees.168

In the following theorem, we consider the following setting:169

(I) mξ = Θ(nβ) for some 0 < β < 1
2
, and170

(II) mξ2 = O(1),171

where O(1) refers to dependence on n (thus mξ2 is not growing with n). Note that172

Condition (I) implies that the number of perfectly evolved characters grows with the173

number of leaves, but at a rate that is slower than linearly. Conditions (I) and (II) imply174

that ξ decreases as n increases.175

In this setting, we show that the false positive rate is (asymptotically) of the form ξ
3

176

times a function Ω that involves T (via its shape), m, and ξ. If we now treat ξ as a177

variable, then for ξ = 0, the function Ω is close to 1 (for large n) and so FPT initially178

grows like ξ/3. However, as ξ increases, Ω begins to decline at an increasing rate, resulting179

in the false positive rate reaching a maximum value before starting to decrease.180

To describe this result, we need to define this function Ω. Let

Ω(Tn, ξ,m) =
n−4∑
i=1

ϕ̃Tn(i) · e
−iµ/(n−3) − e−µ

1− i/(n− 3)
,
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where:

µ =
1

2
mξ

and where ϕ̃Tn(i) is given in Eqn. (2). For example, for any caterpillar tree, we have181

ϕ̃Tn(i) = 4(n− 2− i)/
(
2n−3

2

)
).182

Notice that Ω(Tn, ξ,m) depends on Tn only via the coefficients ϕ̃Tn(i), and this183

dependence is linear. Thus, if D is a distribution on trees (e.g. the PDA or YH), then the184

expected value of Ω(Tn, ξ,m) is given by:185

ED[Ω(Tn, ξ,m)] =
n−4∑
i=1

ED[ϕ̃Tn(i)] · e
−iµ/(n−3) − e−µ

1− i/(n− 3)
. (3)

For the PDA distribution, the term EPDA[ϕ̃Tn(i)] has an explicit exact value,186

namely,187

EPDA[ϕ̃Tn(i)] =
(i+ 3)2i(2n− i− 4)!(n− 2)!

(2n− 4)!(n− i− 3)!
(
2n−3

2

) , (4)

for all i between 1 and n− 3 (see SI for proof).188

Theorem 2 For each n > 1, let Tn be a binary phylogenetic tree with n leaves, and189

suppose that Conditions (I) and (II) hold.190

(i)

FPTn =
ξ

3
· Ω(Tn, ξ,m) · (1 + o(1)),

where o(1) is a term that tends to 0 as n grows.191

(ii) If Tn is sampled from a distribution D (e.g. PDA, YH), then the expected value of

FPTn , denoted ED[FPTn ], satisfies

ED[FPTn ] =
ξ

3
· ED [Ω(Tn, ξ,m)] · (1 + o(1)).

Remarks: Note that FPTn depends only on the shape of the tree Tn (and not on192

how its leaves are labelled), thus for a tree distribution D on either the class of caterpillar193

trees, or symmetric trees, we have FPTn = ED[FPTn ].194
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Notice also from Fig. 3 that as ξ increases from 0 the estimate of ED[FPTn ] given by

ξ
3
· Ω(Tn, ξ,m) for the YH, PDA distributions and for symmetric trees initially increases

(approximately linearly) with ξ but then begins to decrease with increasing ξ. By contrast,

when Tn has the caterpillar tree shape, the estimate of FPTn appears to be constant as ξ

increases from 0 (see Fig. 3). Indeed, when Tn is a caterpillar tree, the expression for FPTn

in Theorem 2(i) reduces to the following remarkably simple expression as n becomes large:

FPTn ∼ 4/(3m),

which is independent of ξ (and n). Details are provided in the SI.195

Materials and Methods II. Simulations, Data, and Data Analyses196

Main Simulation Pipeline197

Simulations were run to assess goodness of fit and robustness of mathematical198

predictions under various regimes of model parameters and tree inference criteria (MP or199

ML), as well as to estimate expected accuracy in empirical datasets. Each of R simulation200

replicates (with r sub-replicate tree searches in each) consisted of the following sequence of201

steps: (i) generation of a random binary tree T with n leaves according to either a202

“proportional-to-distinguishable-arrangement” (PDA) or Yule-Harding (YH) model203

(Aldous, 2001) (as well as the two extreme cases of completely unbalanced caterpillar204

trees, and completely balanced symmetric trees); (ii) assignment of edge lengths of T205

according to a gamma distribution with shape parameter αe and mean λ̄; (iii) generation206

of a sequence alignment of m sites using Seq-Gen v. 1.3.4 (Rambaut and Grassly, 1997),207

with either JC69, HKY, or GTR models (and base frequencies and rate matrix parameters208

set or estimated from data), and with one of four across-site-rate (ASR) variation models:209

no variation, invariant sites model, gamma model, or free-rate model ranging from 2-10210

bins (Kalyaanamoorthy et al., 2017)—the free-rate model was implemented in Seq-Gen by211

using 2-10 site partitions; (iv) reconstruction of estimated tree T̂ [using PAUP 4.0a, build212
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166: Swofford (2003)) for MP with options ‘hsearch add=simple swap=no nreps=r;contree213

all/strict’; and using IQ-TREE 2 (v. 2.0.6) (Minh et al., 2020) for ML with options ‘-m214

JC+FQ -nt 1 -redo -mredo –polytomy -blmin 1e-9’, replicated r times, followed by strict215

consensus]; (v) tallying NFP and NFN from T and T̂ and computing error rates. Mean216

rates across replicates were then tallied. All steps except (iii) and (iv) used custom PERL217

scripts (available in the Dryad repository).218

A typical dataset size of n = 513 (chosen to allow perfectly symmetrical trees plus219

one outgroup, when such were needed), and m = 1000 was used to model trees large220

enough to potentially satisfy the near-perfect assumptions, and to have a sufficient number221

of sites to infer a range of accuracy when combined with λ̄ values ranging from 10−5 to222

0.316 substitutions per site. Gamma shape parameters were set at 0.1, 1.0, and 10.0, which223

encompasses distributions ranging from highly variable to nearly constant. For edge length224

variation this range encompasses what we observed in the empirical virus datasets. For225

ASR variation, it captures much of the range of inferred values we have seen in the226

literature. Finally, R was generally set to 1000 and r to 100.227

Support Simulations228

Phylogenetic support measures were estimated in trees simulated via the main229

pipeline described above with n = 513, m = 1000, a JC69 model with no rate variation,230

and PDA random trees. Ten values of λ in the interval [10−5, 0.31622] were analyzed.231

PAUP (Swofford, 2003) was used for MP bootstrapping (same heuristic search as above232

but with 100 replicates × 10 subreplicates); IQ-TREE 2 (Minh et al., 2020) was used (50233

random tree replicates) for SH-aLRT (‘-alrt 1000’), aBayes, and ultrafast bootstrapping234

(‘-B 1000’), with additional options enforcing minimum branch lengths of 10−9 and235

collapsed polytomies. Mean support across replicates was computed.236

Perfect four-taxon alignments were generated in which each of the five branches had237

a single, non-homoplastic nucleotide substitution in the alignment and all other sites were238
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constant. Alignment lengths ranged between 40 nt and 30,000 nt. ML trees were inferred in239

IQTree2 with a JC69 model, minimum branch lengths of 10−9, and collapsed polytomies.240

Clade support was determined using Felsenstein’s bootstrapping (1,000 replicates),241

ultrafast bootstrapping (10,000 replicates), transfer bootstrap exchange (TBE; 1,000242

replicates), SH-aLRT (10,000 replicates), and aBayes. Full Bayesian inference was also243

performed in MrBayes v3.2.7 (Ronquist and Huelsenbeck, 2003) with a single run per244

replicate of 2.5 million generations, with the first 10% of generations discarded as burnin.245

Alignments for larger perfect symmetrical and asymmetrical (caterpillar) trees were246

generated with 8, 16, 32, 64, and 128 taxa. Each branch, including terminal branches, had247

a single nonhomoplastic nucleotide substitution in the alignment with all other sites248

constant. Alignment lengths ranged from 236 to 32,768 nt. ML trees were inferred as249

described above for the four-taxon alignments, and support was assessed by Felsenstein’s250

bootstrap, ultrafast bootstrapping, TBE, SH-aLRT, and aBayes.251

All Python scripts related to perfect tree simulations are available in the Dryad252

repository.253

Virus Datasets254

Viral phylogenies were obtained from the NextStrain (Hadfield et al., 2018) website255

(accessed 05 May 2020) (Table 1). Phylograms were downloaded for dengue virus, dengue256

virus serotype 1, Ebolavirus (Dudas et al., 2017), Enterovirus 68 (Dyrdak et al., 2019),257

measles morbillivirus, mumps virus, respiratory syncytial virus, West Nile virus (Hadfield258

et al., 2019), and Zika virus. In addition, we also analyzed an iatrogenic HIV-1 outbreak in259

Cambodia (Rouet et al., 2018) and the first wave of the SARS-CoV-2 epidemic in China260

(Pekar et al., 2021). The SARS-CoV-2 phylogeny is the ML tree used in Pekar et al. (2021)261

(see Data S1 on Dryad [https://doi.org/10.6076/D12S3M] for list of GISAID Accession262

IDs). Publicly available genomic sequences (or genetic sequences for HIV-1) were263

downloaded from GenBank and aligned with mafft v7.407 (Katoh and Standley, 2013)264
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(accession numbers can be found in Data S2 on Dryad).265

False positive rates for the virus phylogenies were estimated with our simulation266

pipeline, setting parameters to values estimated from published trees and publicly available267

sequences used to construct them (Table 1, Table S1). For each virus, we used IQ-TREE 2268

to infer the six rate parameters of a GTR substitution model with empirical base269

frequencies. The optimal site-to-site rate variation model, including free-rate models, was270

determined using the Bayesian Information Criterion (BIC) in IQ-TREE 2271

(Kalyaanamoorthy et al., 2017). These models were used to parameterize sequence272

simulation in Seq-Gen, as described above.273

Edge length (per site) variation was assumed to follow a gamma distribution:274

λ ∼ Γ(αe, αe/λ) having mean λ and variance λ
2
/αe. The distribution of substitutions is a275

mixture of Poisson and gamma distributions, which is a negative binomial with a variance276

to mean ratio of277

1 +
mλ

αe
(5)

which was shown by Bedford and Hartl (2008) for an equivalent parameterization. Virus278

trees were preprocessed, setting any edge lengths < 1.1× 10−6 to zero, assuming these279

reflected ML numeric artifacts. Then, λ was estimated from the observed sum of per site280

edge lengths divided by 2n− 3, and Eqn. 5 was then used to estimate αe.281

Ideally, we would fit the data to the random tree model, but standard methods282

either assume binary trees or model polytomies with an a priori assumption about the tree283

model itself (e.g., Bortolussi et al., 2006). Therefore, we repeated simulations using both284

PDA and YH models.285
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Results286

Overview of Results on Accuracy287

Simulations of tree inference with MP over a large range of tree lengths, ξ, and288

other parameters, illustrate several known results (Fig. 2) and perhaps a few less well289

known ones. First, resolution of the inferred tree increases with tree length. Second,290

“overall” accuracy, as measured by the RF distance, is optimal at an intermediate tree291

length, ξ∗ (Yang, 1998; Bininda-Emonds et al., 2001; Steel and Leuenberger, 2017).292

Moreover, when ξ >> ξ∗, the false positive error rate, FPT , is similar to the false negative293

rate, FNT , as might be expected because the true and estimated trees are nearly binary;294

therefore NFP
∼= NFN .295

However, when ξ << ξ∗, then FPT << FNT , and the false positive error rate can296

remain quite good (< 0.05) over a large range of ξ even when the false negative error rate297

is very high. However, the range of tree lengths for which this result holds depends298

critically on rate variation across edges and sites. When ξ 6 1, the false positive rate is low299

and insensitive to the presence of rate variation; but, when ξ > 1, the false positive rate is300

much more sensitive to rate variation—high when variation is present and low when absent301

(contrast Fig. 2A and Fig. 2B). In real-world data, as ξ increases, we expect that evidence302

of rate variation will become more apparent.303

Key elements of these findings can be shown analytically in a “near-perfect” zone304

described by a simple evolutionary model.305

Overview of the Mathematical Theory306

First we define “near-perfect” more formally. Assume the data consist of an307

alignment of m independent and identically distributed nucleotide sites that have evolved308

according to a Jukes-Cantor model (JC69; Felsenstein, 2004) on an unrooted binary tree309

T , with n leaves. Each of the 2n− 3 edges of T have length λ, and thus the total tree310

length is ξ = λ(2n− 3). When n is large and ξ 6 1, the expected number of substitutions311
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Fig. 2. Accuracy of maximum parsimony phylogeny reconstruction in simulations over a wide range of per site tree
length, ξ, and other parameters. Solid and dashed curves are mean false positive and negative error rates,
respectively (log scale left); dashed sigmoidal curve is fractional resolution of estimated tree (linear scale right).
Trees are generated by a random proportional-to-distinguishable-arrangement (PDA) model for 513 taxa, from
which a sequence alignment length of 1000 sites is generated. The dotted horizontal line is placed at an error rate of
0.05. Asterisk marks the location of the optimal tree length with best overall Robinson–Foulds accuracy, ξ∗. Each
point is mean of 1000 replicates × 100 sub-replicates (see Methods). “Near-perfect” values (ξ 6 1.0) are shaded. a)
JC69 model with no edge length or across-site-rate variation [because of y-axis log scaling, two y values of zero
were set to 0.0001]. b) JC69 model with substantial edge length and across-site-rate variation, both modeled as a
gamma distribution with shape parameters αe = αASR = 0.25).

per site is 6 1; the number of edges on which a site changes state is approximately Poisson312

distributed with mean ξ; and the probability of more than one change on an edge is low,313

meaning multiple changes at a site occur on distinct edges. Though these conditions will314

generate alignments dominated by “perfect” sites exhibiting no homoplasy, a few sites may315

exhibit homoplasy even with ξ 6 1, which motivates the term “near- perfect”. Under these316

conditions, tree reconstruction methods will tend to infer relatively unresolved trees unless317

the number of sites is very large.318

Rare sites that exhibit homoplasy can introduce false positive splits on the inferred

tree (Fig. 1). A näıve argument using Equation 1 might suggest that FPT would depend on

ξ roughly as O(ξ2)/O(ξ) = O(ξ), namely the ratio of the expected numbers of sites having

changes on two edges (i.e., those that are potentially homoplastic and misleading) to those
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sites having only a single change (those that are reliable), for sufficiently small ξ. But

because only one-third of those two-edge sites are actually homoplastic in a JC69 model,

FPT
∼= ξ/3,

which implies FPT is small when ξ is small enough (e.g., FPT < 0.05 whenever ξ < 0.15).319

This approximation can be improved further by recognizing that not all two-edge320

homoplastic sites induce false positives, depending on their position in the true tree (Fig.321

1). Given the evolutionary model, the probability that k perfect sites, and another site f322

that has evolved with two edge changes will produce a “false positive” under MP is323

denoted Φ
(k)
T (Theorem 1 above). Because this probability is often less than one, FPT can324

remain below 0.05 at higher values of ξ than the näıve argument suggests.325

If the true tree were known with some precision, the first part of Theorem 2 could326

be used directly to calculate false positive rates. However, in the “near-perfect” parameter327

space of large n and ξ 6 1, estimates of the true tree are likely to be only partially resolved328

(Fig. 2). We therefore derive the expected false positive rate for a distribution, D, of329

randomly generated trees of size n, ED[FPTn ], generated from parameters based on the330

inferred tree. In the remainder of this paper, the “expected false positive rate” will331

generally refer to ED[FPTn ]. We assume that D is usually either a332

“proportional-to-distinguishable-arrangement” (PDA) or Yule-Harding (YH) distribution333

(Aldous, 2001), but also consider the two extreme cases of completely unbalanced334

(caterpillar) trees, and completely balanced (symmetric) trees. Unlike PDA and YH trees,335

these last two have a constant tree shape (with random leaf labels). From the second part336

of Theorem 2, we see that, for a JC69 model and trees inferred with MP, the following337

approximation holds increasingly well as n increases:338

ED[FPTn ] ∼=
ξ

3
· ED[Ω(Tn, ξ,m)] (6)

given the assumption that ξ is sufficiently small and the number of sites does not grow too339

quickly with the size of the tree. The function Ω(Tn, ξ,m), defined in Materials and340
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expression of 4/3m for caterpillar trees: see Methods) are shown by dashed lines. Each point is mean of 1000
replicates × 100 sub-replicates. Simulation conditions were n = 513,m = 1000, with a JC69 model. Predicted
values are not known for YH model.

Methods I, is monotonically decreasing in ξ and m, and depends on the shape of T .341

Simulations indicate that the approximation is close for ξ 6 1 (Fig. 3), but if many equally342

parsimonious trees are present, the search algorithm should take a strict consensus of a343

broad sample of those solutions (Fig. S3). ED[FPTn ] is better on average for PDA than YH344

trees, and both are bounded between a theoretical worst case error rate for symmetric and345

best case error rate for caterpillar trees. In fact, the expected false positive rate for the346

latter is just 4/(3m) in the limit of large n, which is independent of ξ.347

Robustness to Violation of Assumptions348

Violations of assumptions tend to increase the expected false positive rate above the349

predictions of Equation 6. For example, adding edge length (EL) variation or350

across-site-rate (ASR) variation increases ED[FPTn ] (Figs. 2, 4 and Fig. S4). The difference351
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between predicted ED[FPTn ] based on Eqn. (6), with no edge length variation, and352

simulation-based estimates with edge length variation included is small when ξ << 1 but353

increases substantially as ξ increases. When edge length variation is large (gamma shape354

parameter αe = 0.1), there is no longer a local maximum value of ED[FPTn ] around355

ξ = 0.1; instead, ED[FPTn ] increases monotonically with ξ and eventually exceeds 5% for356

the simulated dataset sizes. The impact of ASR variation is deleterious at all values of ξ,357

but even when ASR variation is large (gamma shape parameter αASR = 0.1), the false358

positive rate remains slightly below 5% for simulated dataset sizes in the absence of EL359

variation (Fig. S4).360

Departure of the substitution model from the JC69 model assumed in the361

“near-perfect” zone can also increase the expected false positive rate. For example, a362

strong transition–transversion bias increases ED[FPTn ] substantially, though it still remains363

well below 5% under our typical simulation conditions when ξ 6 1 (Fig. S5).364

Thus, the near-perfect tree length of ξ 6 1 is a region in which rate variation365

appears to have less of an impact on false positive rates than when tree lengths are longer.366

This suggests that the definition of near-perfect zone in practice can include substantial367

rate variation.368

Expected False Positive Rates in Virus Phylogenies369

We estimated key parameters from the trees and underlying data for 11 empirical370

virus phylogenies (Table 1, Table S1) and used simulation to estimate expected false371

positive rates (Figs. 5). The studies span a wide range of tree size and resolution and372

alignment length, and their tree lengths span three orders of magnitude. Seven of these373

viruses fell within the “near-perfect” tree length zone of ξ 6 1.0, and six of those had374

ED[FPTn ] 6 0.05 irrespective of random tree model. ED[FPTn ] was generally lower for PDA375

vs. YH models. As expected, ED[FPTn ] increased roughly with ξ, despite the large376

differences in these datasets.377
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Epidemics with young crown group ages on the order of years or decades (e.g., Zika378

virus, West Nile virus, and mumps virus) had expected false positive rates below 5%, even379

though West Nile virus had a ξ slightly above 1. Viruses encompassing single epidemics380

(e.g., SARS-CoV-2 in China, EBOV in West Africa, and HIV-1 in Cambodia) also had381

expected false positive rates below 5%. Remarkably, HIV-1 had a low expected false382

postive rate even though the tree was constructed using the fewest number of sites in our383

sample (from only a single partial gene). Number of site affects accuracy through the384

Ω(Tn, ξ,m) term in Eqn. 6.385

Trees with lowest levels of resolution (Table 1) had the highest expected false386
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Table 1. Parameters of 11 empirical virus phylogenies

Abbreviation Study Leaves Sites Resolution

DENV Dengue virus 1197 10264 0.8795

DENV-1 Dengue virus serotype 1 1067 10264 0.8160

EBOV Ebolavirus 1610 18164 0.3632

EV-D68 Enterovirus 68 824 7293 0.8029

HIV-1 Human immunodeficiency virus type 1 189 1038 0.2193

MeV Measles morbillivirus 109 15782 0.7009

MuV Mumps virus 458 15154 0.2961

RSV Respiratory syncytial virus 997 14986 0.6121

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 583 29668 0.2324

WNV West Nile virus 2512 10395 0.5960

ZIKV Zika virus 543 10320 0.5453

positive rates. For example, dengue virus serotype 1, which does not represent a single387

epidemic, had low phylogenetic resolution, a ξ > 1, and a correspondingly high expected388

false positive rate. The phylogenetically more diverse dengue virus tree representing all389

four DENV serotypes had an even higher tree length and expected false positive rate.390

The measles virus tree was an outlier with ED[FPTn ] above 5%, even though its tree391

lengths was below one. Notable, MeV had the fewest taxa of any virus analyzed (Table 1)392

and subsequently lower phylogenetic resolution. This combination of factors implies393

sensitivity to the assumption of large n in our results.394

Extension to Maximum Likelihood (ML) Inference395

Theoretical results hint that ML and MP should reconstruct the same tree under396

“near-perfect” assumptions. For example, ML provably converges to MP when there are397

enough constant characters in an alignment, a condition similar to ξ << 1 (Tuffley and398

Steel, 1997, Thm. 3). Further arguments presented in the SI support this conjecture.399

We used simulation to check how well Equation 6, derived for MP, predicted the400

expected false positive rate under ML inference in the near-perfect zone. Simulations with401
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ξ 6 1, a JC69 model, and no edge length or ASR variation, with trees inferred by402

IQ-TREE 2 (Minh et al., 2020) under the same model, are close to the equation’s403

predictions (Fig. S6). Nonetheless, some differences were observed, which tended to imply404

better accuracy for MP. These differences could largely be attributed to technical or405

implementation issues in ML software. First, the computational expense of ML searches406

makes it tempting to undertake fewer replicate searches for local optima, but this was as407

critical to improve the fit to Equation 6 for ML as it was for MP (Fig. S6). Second, ML408

programs set hard numerical lower bounds strictly greater than zero on edge lengths, often409
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(by default) on the same order as λ̄ for the virus datasets, so these must be reset downward410

to obtain correct tree likelihoods (Morel et al., 2021). Finally, inferred edge lengths that411

are larger than these programs’ lower bounds but still smaller than about 1/m tend to be412

included in the ML tree despite weak evidence (IQ-TREE 2 issues a warning about this).413

We saw this in ML searches roughly when ξ > 0.1, when three-state sites become more414

common in alignments than they were at lower values of ξ. Even without homoplasy, ML415

tends to over-resolve trees in a way that elevates ED[FPTn ]. By collapsing short edge416

lengths inferred by ML to be less than 1/m, this behavior can be mitigated (Fig. S6).417

In general, ML is expected to be more accurate than MP under more realistic418

model conditions and higher rates, something we observed commonly in simulations in419

which ξ > ξ∗. However, simulations also suggest that in the near-perfect zone, MP can420

achieve an ED[FPTn ] comparable with ML but with much faster running times.421

Accuracy and Support in Near-perfect and Perfect Trees422

False positive “accuracy”, defined as 1− ED[FPTn ], is very high in the near-perfect423

zone of small tree lengths, whereas conventional support values are quite variable in this424

zone under the same simulation conditions (Fig. 6). At very low ξ, the average bootstrap425

support for MP is about the theoretically expected 64% for a single nonhomoplastic426

substitution supporting an edge (Felsenstein, 1985). Model-based support measures had427

higher values, with aBayes (Anisimova et al., 2011) being greater than ultrafast bootstrap428

(Hoang et al., 2018), which, in turn, was greater than SH-aLRT (Guindon et al., 2010),429

but only aBayes was close to our 1− ED[FPTn ] false positive accuracy across the range of430

tree lengths in the near-perfect zone. Notably, aBayes is the only one of the metrics that is431

not based on resampling.432

We explored other factors impacting support in the boundary case of perfect trees.433

For sequence length, we computed standard support metrics in an ML framework in434

perfect four-taxon datasets, in which each branch was defined by a single change, and435
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alignments range between 40 nt and 30,000 nt (Fig. S7). As observed for MP, Felsenstein’s436

ML bootstrap support is approximately 63%, regardless of sequence length, in accordance437

with theoretical predictions (Felsenstein, 1985). Transfer bootstrap exchange (TBE)438

(Lemoine et al., 2018; Lutteropp et al., 2020) values were indistinguishable from439

Felsenstein’s bootstrap. Of the other ML model-based support metrics, aBayes provided440

higher values than ultrafast bootstrap and SH-aLRT, both of which rely on bootstrap441

resampling. The aBayes support reached >95% for alignments as short as 100 nt, which442

tracked the full Bayesian posterior support estimates that had support >95% in443

alignments as short as 60 nt. The discrepancy between the Bayesian estimates and those444

that use bootstrap resampling, in light of our other results, suggests that resampling445

methods used in the presence of splits defined by only a single informative site may fail to446

integrate relevant information about low tree lengths.447

On the other hand, in perfect trees from 8–128 taxa, in which the mean edge length448

remained the same (but therefore ξ grew with n), mean SH-aLRT and aBayes support was449

unchanged, but mean ultrafast bootstrap support increased (Fig. S8). The TBE method450

was developed to correct for a downward bias of bootstrap values often seen in large trees.451

As expected, TBE exceeds conventional bootstrap support as taxon number increases.452

However, this increase is modest in perfectly symmetrical trees compared with perfectly453

asymmetric trees and only surpasses 95% in the largest asymmetric trees (Fig. S8).454

Discussion455

In this paper, we study a “near-perfect” parameter space for phylogenetic inference456

on large trees with small tree lengths and no rate variation within or between sites or457

edges. The “near-perfect” tree length of ξ 6 1 means that few sites exhibit homoplasy and,458

for MP inference, the false positive rate can be much better than the false negative rate459

and well under 5% for typical datasets with thousands of sites. The near-perfect conditions460

defined here to allow mathematical derivations appear to be sufficient but not necessary.461
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For example, with no rate variation, the false positive rate can be very good even when462

ξ > 1 (Fig. 2A, S5), and, if ξ < 1, a substantial level of rate variation can be present463

without elevating the false positive rate by nearly as much as when ξ > 1 (Fig. 2,4, S4).464

The second case is clearly more relevant in real-world data. The 11 empirical virus465

datasets all had substantial rate variation and showed a general increase in false positive466

rate with ξ, with almost all rates below 5% occurring when ξ 6 1, much like the predicted467

patterns seen in Fig. 2B and Fig. 4. This observation accords with our simulation results468

suggesting that the good “near-perfect” false positive rates may emerge even when relaxing469

the strict near-perfect assumption of no rate variation—as long as ξ 6 1.470

These and many other empirical findings about RNA virus phylogenies sampled471

intensively in epidemics postdate much of the extensive body of other work on accuracy472
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and support in phylogenetics. Not surprisingly, little note has been made about the stark473

contrast between false positive and false negative rates in phylogenies in which tree length474

is well below the optimal tree length for “overall accuracy”, since published examples have475

been relatively rare. The goal of much of the field of phylogenetics is, after all, to maximize476

tree resolution, even if this effort requires adding (or switching to) sequence data with477

more variation and thus longer tree lengths.478

Because “near-perfect” datasets reflect a combination of the number of taxa and479

sites, evolutionary rate and time parameters, and assumptions about the substitution480

model, they also implicitly reflect sampling of the true tree, which is particularly relevant481

in epidemic trees in which sampling is far below disease incidence. Sampling can continue482

over time, increasing n, and the viruses continue to evolve over time, increasing the depth483

of the tree. Both of these increase ξ but in different ways; therefore, it is possible for the484

same RNA virus to have near-perfect and not near-perfect datasets depending on the485

study. For example, the SARS-Cov2 dataset we included had n = 583 and ξ = 0.02, well486

within the “near-perfect” zone, but a much more intensively sampled tree over a longer487

period of time (Lanfear, 2020) with n = 147156 has a tree length of ξ = 3.89 (after488

collapsing any edges with λ 6 1.1× 10−6), which is remarkably small for such a large tree489

but lies just outside our definition of near-perfect. This finding suggests that large-scale490

phylogenetic approaches for SARS-CoV-2 surveillance are appropriate (Ferreira et al.,491

2021; Turakhia et al., 2021) and that such approaches are unlikely to falsely suggest close492

relatedness (i.e., transmission clusters) where none exists.493

Other mathematical results on phylogenetic accuracy have largely focused on either494

the limiting case of infinite sequence length (“consistency”), or the number of sites needed495

for accurate inference (the “sequence length requirement”). For MP, for example, the496

shortest edge length is critical and limm→∞ Prob(T̂MP = T ) = 1 as long as497

λmin > ξ2/(1− ξ) (Steel, 2000, Thm. 1(A)). More generally, let m′ be the number of sites498

needed for Prob(T̂MP = T ) to exceed some fixed required accuracy. For the499
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neighbor–joining method m′ grows exponentially with n (Lacey and Chang, 2006); for ML,500

m′ is polynomial or better in n, depending on edge lengths (Roch and Sly, 2017). Moreover,501

m′ also grows as O(1/λ2min) for ML and some more ad hoc estimators (Erdös et al., 1999;502

Roch, 2019), implying again that short edges tend to degrade accuracy when accuracy is503

defined in terms of total agreement between T and T̂ , in contrast to our findings here.504

A cryptic factor affecting the false positive rate is tree shape. Highly asymmetric505

trees have better expected false positive rates than highly symmetric trees, because506

expected path lengths are longer and it is harder to induce false positive splits by chance507

(Fig. 1). Thus, a random sample of PDA trees will have a better ED[FPTn ] than more508

symmetrical YH trees. Differences in tree shape among RNA virus phylogenies have long509

been noted (Grenfell et al., 2004), such as the typically more asymmetric influenza trees.510

Perfect and near-perfect phylogenies have been studied as discrete optimization511

problems (Gusfield, 1997; Fernandez-Baca and Lagergren, 2003) in which the goal is to512

find an optimal tree when, at most, some small number of sites exhibit homoplasy. Little of513

this work has considered accuracy per se, but Gronau et al. (Gronau et al., 2012)514

highlighted the connection between short edge lengths and false positives, and developed a515

“fast converging” algorithm (i.e., having an O(poly(n)) sequence length requirement) that516

returns a tree with short edges collapsed when they do not meet a threshold probability of517

being correct, thus minimizing false positives. The connection between this tree and those518

built by more conventional methods is unclear, but it may be a promising approach for519

building trees in the near-perfect zone.520

Model-based phylogenetic inference methods such as ML and Bayesian inference are521

generally regarded as theoretically superior to MP, especially for datasets that fit522

substitution models much more complex than our “near-perfect” JC69 model with no rate523

variation. Though our mathematical results for expected false positive rates were derived524

for MP, there is both relevant theory and considerable simulation evidence to suggest that525

in the near-perfect zone, the ML expected false positive rate is approximated by the MP526
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theory, both in terms of its absolute value and its shape as a function of tree length. As ξ527

increases, especially above ξ∗, ML consistently has better accuracy than MP, but we528

conjecture that the false positive rates of MP and ML differ much less as ξ gets very small.529

Further work is needed to test this conjecture.530

The connection between the false positive rate as a measure of accuracy and531

conventional measures of phylogenetic support appears to be sensitive to the choice of532

support method when ξ << 1 (Fig. 6). The aBayes method corresponds well to what is533

implied by 1− ED[FPTn ], but resampling methods using either likelihood or parsimony534

correspond less well. The connection between phylogenetic accuracy and support in535

frequentist and Bayesian settings has been studied in detail (Felsenstein, 1985; Hillis and536

Bull, 1993; Felsenstein and Kishino, 1993; Efron et al., 1996; Susko, 2008, 2009; Alfaro and537

Holder, 2006; Simmons and Norton, 2014), but remains somewhat fraught. We hesitate to538

draw firm conclusions without a formal analysis of support in the “near-perfect” parameter539

space, but we do note the variability in support estimates we found and suspect that540

Bayesian measures may be better reflections of false positive accuracy in practice (Fig. 6).541

If individual clade support needs to be invoked in near-perfect viral phylogenies, we542

recommend Bayesian approaches that do not rely on bootstrap resampling of sparse543

substitutions. In near-perfect trees, Bayesian approaches can make use of the limited544

amount of genetic diversity to draw strongly supported inference, as opposed to545

bootstrapping approaches which require multiple sites supporting a clade before inferring546

similarly strong support. When phylogenetically informative data are limited, as in547

near-perfect trees, the consistency of the data supporting a clade appears more relevant548

than their prevalence.549

The low false positive rate in near-perfect trees suggests that phylogenies describing550

viral epidemics in this zone can be interpreted directly without defaulting to identifying551

clades with strong support values. This finding supports the current practice in552

SARS-CoV-2 nomenclature, whereby clades (e.g., denoting variants or migration events)553



ACCURACY IN NEAR-PERFECT VIRUS PHYLOGENIES 29

are defined with reference to specific synapomorphies (Rambaut et al., 2020; O’Toole554

et al., 2021; Worobey et al., 2020). We acknowledge that frequent convergent evolution,555

and recombination in positive-strand RNA viruses, can complicate phylogenetic inference556

and may increase the false positive rate in real-world trees (Morel et al., 2021).557

The benefit of real-time viral genomic sequencing for public health action became558

apparent during the 2014–2015 West African Ebola epidemic (Gire et al., 2014), and is a559

critical component of tracking the COVID-19 pandemic (Oude Munnink et al., 2020;560

Grubaugh et al., 2021). Consequently, the viruses responsible for these diseases, Ebolavirus561

and SARS-CoV-2, epitomize near-perfect phylogenetic trees in our analysis. We can expect562

a greater intensity of genomic sequencing accompanying future viral outbreaks, increasing563

the importance and relevance of near-perfect phylogenies.564

In conclusion, we have shown that many RNA virus datasets satisfy assumptions565

used to derive results on near-perfect phylogenetic accuracy. These criteria include566

sufficiently low substitution rates across a large enough tree and no recombination. Any set567

of genomes sampled in a clade on a short enough time scale, or highly conserved regions of568

genomes sampled across a deeper clade, can also satisfy the first assumption, but569

recombination would remain problematic in many taxa. Springer et al. (2020), illustrate a570

potential path forward in their study of “low-homoplasy” retroelement characters in571

mammal genomes. They pursue a species tree inference approach to such data, which572

would likely be “near-perfect” were it not for recombination. It may be possible to derive573

additional results on accuracy when local near-perfect trees (or sub-alignments) are574

combined under the multi-species coalescent (Liu et al., 2019).575
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Figure Legends (Copied from inline figure legends)777

Fig. 1. How a false positive split is inferred by maximum parsimony (MP). On true778

tree (top) sites 1–3 are binary and “perfect”; that is, they have only a single change779

(locations marked by black circles), but site 4 is binary and homoplastic, changing twice780

(open circles), on edges e1 and e2. The dotted line is the path between the two homoplastic781

changes in site 4. If no perfect sites change along the dotted line path on the true tree, a782

false positive split is inferred on the MP tree (bottom).783

Fig. 2. Accuracy of maximum parsimony phylogeny reconstruction in simulations784

over a wide range of per site tree length, ξ, and other parameters. Solid and dashed curves785

are mean false positive and negative error rates, respectively (log scale left); dashed786

sigmoidal curve is fractional resolution of estimated tree (linear scale right). Trees are787

generated by a random proportional-to-distinguishable-arrangement (PDA) model for 513788

taxa, from which a sequence alignment length of 1000 sites is generated. The dotted789

horizontal line is placed at an error rate of 0.05. Asterisk marks the location of the optimal790

tree length with best overall Robinson–Foulds accuracy, ξ∗. Each point is mean of 1000791

replicates × 100 sub-replicates (see Methods). “Near-perfect” values (ξ 6 1.0) are shaded.792

a) JC69 model with no edge length or across-site-rate variation [because of y-axis log793

scaling, two y values of zero were set to 0.0001]. b) JC69 model with substantial edge794

length and across-site-rate variation, both modeled as a gamma distribution with shape795

parameters αe = αASR = 0.25).796

Fig. 3. Mean false positive rate in four tree models. Fit to theoretical predictions797

from Equation 6 (or the limit expression of 4/3m for caterpillar trees: see Methods) are798

shown by dashed lines. Each point is mean of 1000 replicates × 100 sub-replicates.799

Simulation conditions were n = 513,m = 1000, with a JC69 model. Predicted values are800

not known for YH model.801
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Fig. 4. Effect of edge length variation on expected false positive rate for different802

values of the shape parameter of the edge length gamma distribution, αe. Smaller values of803

αe correspond to higher rate variation. ASR variation is assumed absent. The dashed curve804

is the prediction from Eqn. (6), in which both sources of variation are absent. Simulation805

conditions assumed PDA trees with n = 513, m = 1000, 1000 replicates, 100 subreplicates.806

Gray rectangle shows “near-perfect” values of ξ 6 1.807

Fig. 5. Expected false positive rates, ED[FPTn ], for 11 empirical virus phylogenetic808

datasets (Table 1) for maximum parsimony (MP) inference, estimated by simulation using809

parameters estimated from the data (Table S1). Abbreviations given in Table 1.810

Simulation experiments used either a Yule–Harding random tree distribution (open circles)811

or PDA distribution (closed circles: some data points have indistinguishable differences812

between random tree models). Each point is mean of 500 replicates × 100 sub-replicates.813

The near-perfect zone of ξ 6 1.0 is shaded. Horizontal dashed line indicates a 0.05814

expected false positive rate.815

Fig. 6. Statistical support measures compared to expected false positive accuracy,816

as a function of tree length. The solid curve is the mean value of (1− ED[FPTn ])× 100 in817

simulations. The near-perfect parameter space is shaded.818


