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With the advancement of new high throughput sequencing technologies, there has
been an increase in the number of genome sequencing projects worldwide, which
has yielded complete genome sequences of human, animals and plants. Subsequently,
several labs have focused on genome annotation, consisting of assigning functions to
gene products, mostly using Gene Ontology (GO) terms. As a consequence, there is an
increased heterogeneity in annotations across genomes due to different approaches used
by different pipelines to infer these annotations and also due to the nature of the GO
structure itself. This makes a curator’s task difficult, even if they adhere to the established
guidelines for assessing these protein annotations. Here we develop a genome-scale
approach for integrating GO annotations from different pipelines using semantic similarity
measures. We used this approach to identify inconsistencies and similarities in functional
annotations between orthologs of human and Drosophila melanogaster, to assess the
quality of GO annotations derived from InterPro2GO mappings compared to manually
annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase
dataset and human, and to filter GO annotation data for these proteomes. Results
obtained indicate that an efficient integration of GO annotations eliminates redundancy
up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation
datasets, respectively. Furthermore, we identified lack of and missing annotations for
some orthologs, and annotation mismatches between InterPro2GO and manual pipelines
in these two proteomes, thus requiring further curation. This simplifies and facilitates
tasks of curators in assessing protein annotations, reduces redundancy and eliminates
inconsistencies in large annotation datasets for ease of comparative functional genomics.
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1. INTRODUCTION
The development of fast and relatively inexpensive sequenc-
ing technologies has yielded complete genome sequences of
thousands of organisms. Several sequence databases store
these sequences, including GenBank Benson et al. (2009),
Ensembl Flicek et al. (2010); Fernández-Suárez and Schuster
(2010); Spudich and Fernández-Suárez (2010), NCBI (Pruitt
et al., 2005; Sayers et al., 2009) and the UniProt database,
which is an integrated repository of protein sequence and func-
tion created by joining the information contained in the Swiss-
Prot, TrEMBL, and PIR proteins databases (Jain et al., 2009;
UniProt-Consortium, 2010). In these databases, an increased
deficiency in functional annotation was observed for many
sequenced proteins as approximately 20–50% of proteins within
a genome were still labeled “unknown,” “uncharacterized” or
“hypothetical” (Mazandu and Mulder, 2012). Thus, several
annotation pipelines, including experimental and electronic,
were developed to functionally characterize these proteins.

Subsequently, the Gene Ontology (GO) (GO-Consortium, 2012)
arose to organize and unify biology and information about
genes and proteins shared by different organisms, and emerged
as one of the dominant and most popular functional classi-
fication schemes for functional annotation of genes and their
products.

Many annotation pipelines were developed to predict or
assign functions to proteins using GO terms from the three
different ontologies of GO, namely Biological Process (BP),
Molecular Function (MF), and Cellular Component (CC).
These include electronic annotation methods, such as Ensembl
Compara, InterPro, UniProtKB/Swiss-Prot Keywords (SPKW),
UniProtKB-Subcellular Location (SPSL), UniPathway, Enzyme
Commission (EC), and High-quality Automated and Manual
Annotation of Microbial Proteomes (HAMAP), and manual
annotation efforts, such as the Gene Ontology Annotation
project, the Reference Genome Annotation Initiative (The
Reference Genome Group of the Gene Ontology Consortium,
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2009), and Cardiovascular (www.ebi.ac.uk/GOA/CVI) and Renal
(www.ebi.ac.uk/GOA/kidney) Gene Ontology Annotation
Initiatives. The Gene Ontology Annotation (GOA) project
at the European Bioinformatics Institute (EBI) commits to
integrating these protein annotations into a single set of high-
quality electronic and manual associations (annotations) of GO
terms to UniProt Knowledgebase (UniProtKB) entries. Most
of the data is generated from the conversion maps, namely
SPKW2GO, SPSL2GO, EC2GO, HAMAP2GO, UniPathway2GO
and InterPro2GO, which themselves are manually curated to
ensure high-accuracy annotations from the electronically inferred
GO annotation set.

Producing high-quality and accurate GO annotations is chal-
lenging, as manual annotation is a slow and expensive process
and the number of manual annotations available for a partic-
ular genome is usually far fewer than those produced by elec-
tronic annotation pipelines. To improve the annotation quality,
the GOA project does manual GO curation following stan-
dards set by the GO Consortium (http://www.geneontology.org/
GO.annotation.conventions.shtml). However, different annota-
tion pipelines can differ widely in their specific procedures
(annotation algorithms, confidence thresholds, etc.) and this
increases the heterogeneity across a gene set, thus making cura-
tors’ tasks difficult. Furthermore, considering the structure of
GO, the set of associations produced by GOA is often redun-
dant and subjected to potential mismatches and inconsisten-
cies (Dolan et al., 2005). Fortunately, the hierarchical structure
of the GO enables the assessment of the GO term closeness
using semantic relationships between terms. These semantic rela-
tionships between terms have been used to set up semantic
similarity tools that enable efficient exploitation of the enor-
mous corpus of biological knowledge embedded in the GO
directed acyclic graph (DAG) structure by comparing GO terms
and proteins at the functional level (Mazandu and Mulder,
2013a).

The use of semantic relationships between GO terms enables
the quantification of GO term specificity through measurements
of information content (IC) values in the GO DAG (Mazandu
and Mulder, 2013b). These GO term IC values are used to
evaluate semantic similarity scores between GO terms and anno-
tated proteins, reflecting the closeness between two concepts in
the GO DAG. Several semantic similarity measures have been
introduced (Mazandu and Mulder, 2012, 2013a,b) and used in
different biological applications, such as gene clustering, gene
expression data analysis, prediction and validation of molecu-
lar interactions, and disease gene prioritization (Mazandu and
Mulder, 2013a). In the context of current high-throughput bio-
logical technologies, these measures may be used to set up
novel bioinformatics approaches that enable the efficient use
of the GO DAG structure for integrating annotations from
multiple sources. Here we use these semantic similarity mea-
sures as tools to develop an efficient, large-scale approach that
enables “optimal” integration of protein GO annotations from
heterogeneous annotation pipelines or different sources, thus
reducing redundancy and eliminating inconsistencies in the inte-
grated annotation datasets for ease of comparative functional
genomics.

2. MATERIALS AND METHODS
In order to compare different annotation pipelines, to filter an
annotation dataset or to integrate annotations from different
pipelines, we define GO annotation quality assessment mea-
sures based on GO semantic similarity scores. These measures
are applied to Drosophila melanogaster (fruitfly) and human GO
annotations as a demonstration of the variety of applications. We
assess GO annotations assigned by InterPro, which are electroni-
cally inferred with IEA (Inferred from Electronic Annotation) as
the evidence code, in comparison with the manual and experi-
mental annotation in FlyBase (Tweedie et al., 2008). In addition,
we compare annotations in Flybase to orthologous proteins from
human to assess the quality of GO annotation between differ-
ent annotation groups and we integrate electronically inferred
and experimental annotations for Drosophila melanogaster
proteins.

2.1. GO ANNOTATION QUALITY ASSESSMENT MEASURES
Currently electronic annotation pipelines dominate manual
annotation in terms of number of annotations available for a par-
ticular genome and this is the most likely future trend. The GO
annotations produced by these electronic annotation pipelines
represent more than 98% of the GOA dataset, but the map-
ping filters used are, in most cases, manually curated, which
increases confidence levels of these annotations, even though
they still receive the IEA evidence code. In this context, the
GO annotation quality for a proteome or a set of proteins
should mainly be measured by the specificity or the level of
detail of GO annotations used, the consistency of these anno-
tations in terms of similarity between terms used and the non-
redundancy of the annotation set. We used semantic similarity
measures between terms in the GO DAG to derive these dif-
ferent GO annotation quality assessment measures, as described
below.

2.1.1. Fuzzy non-redundant set of annotations for a gene
Given a gene g with TX

g its set of GO terms in the ontology X, a

term t ∈ TX
g is redundant in TX

g when it contributes to the spec-

ification of its descendant term s ∈ TX
g based on the semantic

similarity between them, in which case the score is greater than
a given threshold δ ≥ 0. This threshold score provides the seman-
tic similarity degree at which an ancestor term is considered to
semantically reflect in the specification of its descendant or a child
term consistently includes the ancestor term under consideration
in its specification. The set RX

g of redundant annotations for the
gene g is given by

RX
g = {

t ∈ TX
g : SGO(s, t) > δ for some s ∈ TX

g and t ∈ AX
s∗

}
(1)

where AX
s∗ denotes the set of ancestors of the term s in the ontol-

ogy X and SGO(s, t) is the semantic similarity score between GO
terms s and t retrieved from the following formula (Mazandu and
Mulder, 2013b):

SGO (s, t) = μ
(AX

s ∩ AX
t

)

μ
(AX

s ∪ AX
t

) (2)
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where AX
x = AX

x∗ ∪ {x}, μ
(AX

s ∩ AX
t

) ≥ 0 and μ
(AX

s ∪ AX
t

)
>

0 are measures of the commonality between and of the
description of AX

s and AX
t , respectively.

The set RX
g of non-redundant terms annotating the gene g is

the complementary set of RX
g in TX

g , i.e.,

RX
g = TX

g − RX
g (3)

If δ = 0, the set RX
g is referred to as the set of strict non-

redundant terms annotating the gene g, which represents the
set of terms annotating a gene at a high level. The functional
redundancy score FR(g) of the gene g is given by

FR(g) =
∣∣∣RX

g

∣∣∣
∣∣∣TX

g

∣∣∣
(4)

where |T| is the number of terms in the set T. FR(g) represents
the proportion of terms in the set of terms annotating the gene g
that are ancestors implicitly included to other term specification
in that set based on the semantic similarity between them. Thus,
the term “fuzzy” is used to map the fact that the consideration
of an ancestor term in the specification of its descendant is no
longer a two-valued logic yes (1) or no (0) but now depends on
the semantic similarity score between them.

2.1.2. Assessing functional specificity of a gene
A given gene can perform several functions or be involved in sev-
eral processes. In this case, the gene is annotated by a set of GO
terms. The specificity of each term assessing its informativeness
depends on its position in the GO structure and the deeper the
term is in the DAG structure the more specific or informative
the term is. This indicates that the closer or the more similar to
the leaf term (term without a child term) the more specific or
informative the term is. The specificity score of an annotated gene
depends on the specificity of terms used to annotate the gene and
is the average of specificity scores of terms in the set of strict non-
redundant terms annotating the gene. Thus, for a given gene g, its
functional specificity score FS(g) is assessed by measuring how
similar its GO annotations are to leaf terms of the GO DAG con-
nected to the set RX

g of strict non-redundant terms annotating g.
This functional specificity score is computed as follows:

FS(g) = 1∣∣∣RX
g

∣∣∣
∑

t∈RX
g

SGO

(
t, L

X
g

)
(5)

where L
X
g is the set of all leaves of the GO DAG connected to all

terms in RX
g . The higher this score is the more informative the set

of terms annotating the gene under consideration is.

2.1.3. Quantifying gene annotation consistency
In general, different annotations of a given protein are expected
to be less diverse or more coherent (Defoin-Piatel et al., 2011)
with minimum variability among them. In order to quantify the
coherence among different annotations of a gene or protein, we

compute the annotation consistency score QC(g) for a gene g as
follows:

QC(g) = 1∣∣∣TX
g

∣∣∣
∑

s∈TX
g

SGO

(
Ts, TX

gs∗
)

(6)

where Ts = {s} and TX
gs∗ = TX

g − {s} with TX
g the set of GO terms

in the ontology X annotating g and SGO

(
Ts, TX

gs∗
)

is the seman-

tic similarity between two sets of GO annotations, singleton Ts

and TX
gs∗ , and can be computed using any semantic similarity

model (Mazandu and Mulder, 2013a). The gene annotation con-
sistency score ranges between 0 and 1, and enables the detection
of annotation inconsistencies. This score is set to 1 for a gene with
one annotation and the lowest value of annotation consistency
score is an indication of possible annotation error for the gene
under consideration or alternatively it indicates that the gene is
multi-functional at the molecular level or involved in several bio-
logical processes. Such gene annotations should be subjected to
further investigation to check their accuracy.

2.2. SCORING GENE ANNOTATION MATCHES AND MISMATCHES
BETWEEN PIPELINES

Different annotation pipelines are likely to lead to different GO
annotations for a given gene. This is due to several reasons (Dolan
et al., 2005), including the GO structure itself, incomplete anno-
tation and annotation errors. Difference in annotation for a gene
or protein related to the GO structure or incomplete annotation
is often a consequence of insufficient knowledge about either the
protein being annotated or the term being used to annotate the
protein under consideration. These differences and even those
due to annotation error from manual annotation assignment can
be resolved and corrected by the curator. However, if the annota-
tion assignment has been inferred electronically, the annotation
error may be hard to correct since the source of the error may not
be local or the cause of the error is far from the point where it is
being detected as a result of the propagation of annotation errors
from protein databases (Devos and Valencia, 2000).

Currently, the level of gene or protein annotation matches or
mismatches can be quantitatively scored using semantic simi-
larity measures (Mazandu and Mulder, 2013a) by computing a

semantic similarity score SGO

(
RX

p1 ,RX
p2

)
between strict non-

redundant sets of GO annotations RX
p1 and RX

p2 provided by
different annotation pipelines for a protein p. Thus, the score of
an annotation match ω(p) for a protein p is given by:

ω(p) = SGO

(
RX

p1 ,RX
p2

)
(7)

and the score of an annotation mismatch ω(p) is computed as
follows:

ω(p) = 1 − ω(p) (8)

for a given protein p, two annotation pipelines are completely
in agreement if ω(p) = 1 or ω(p) = 0 and completely in dis-
agreement if ω(p) = 1 or ω(p) = 0. The complete disagreement
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between two annotation pipelines about annotations assigned to
a protein is an indication of an annotation error from one pipeline
or a protein is multi-functional and the two pipelines under con-
sideration are unable to identify multi-annotations or diversified
annotations for multi-functional proteins, in which case further
curation is required.

2.3. COMPARING DIFFERENT ANNOTATION PIPELINES
In this study, we use functional specificity, redundancy and con-
sistency scores to quantitatively assess GO annotation quality
of an annotation pipeline or dataset. The “optimal” pipeline or
dataset is that producing good annotation quality scores, enabling
comparison of different pipelines or datasets. In addition, when
comparing different datasets, matches, mismatches and miss-
ing annotations are checked or identified. Here, we applied
these different scores to human and fruitfly proteomes annotated
by InterPro2GO and manual pipelines using the GO-universal
metric (Mazandu and Mulder, 2012) as a semantic similarity
model. However, this approach is applicable to any dataset and
researchers can adapt it to any semantic similarity model. This
is useful for curators and end-users of datasets to detect issues
related to different datasets as quantitative quality assessment is
crucial to the comparative functional genomics community.

2.4. INTEGRATING GO ANNOTATIONS AND FILTERING GENE
ANNOTATION DATASETS

Integrating GO annotations from different pipelines or filtering
gene annotation datasets consists essentially of reducing redun-
dancy in the integrated dataset produced. There are two types of
redundancy detected in a given genome or annotation data set.
The first type, referred to as type I redundancy, is due to the “true
path” rule in the hierarchical structure of the GO DAG according
to which a child term contains all features of its ancestor terms.
The second one, referred to as type II redundancy, is due to the
GO evidence code or the source (reference) of the annotation.
The type II redundancy occurs when the same annotation is gen-
erated by different pipelines (electronic or manual/experimental)
for a given protein and this is mainly reflected in the size of the file
storing the dataset produced. We illustrate these different types
of redundancy on the protein E3 ubiquitin-protein ligase Topors
(Q9NS56) with GO MF annotations retrieved from the GOA
database and shown in Table 1. In this GO annotation set, the GO
term DNA topoisomerase binding (GO:0044547) is a descendant
of the term protein binding (GO:0005515), and thus contains all
biological specifications of this ancestor and including this ances-
tor (GO:0005515) in the set produces a type I redundancy. The
GO term ubiquitin-protein transferase activity (GO:0004842) or
SUMO ligase activity (GO:0019789), for example, was assigned to
this protein by different sources or by the same source using dif-
ferent methods and recorded in the annotation file. This yields
a type II redundancy, which only reflects in the file storing these
annotations but not in any analysis using these annotations.

Different sources may also annotate a protein with different
GO terms but which are very similar in the context of the GO
DAG, resulting in type I redundancy. One can annotate the pro-
tein to more specific terms in the same path or to sibling terms,
i.e., sharing a direct parent. Lack of more complete biological

Table 1 | GO annotations of the protein E3 ubiquitin-protein ligase

Topors (Q9NS56).

GO ID GO term Level Evidence

code

Source

GO:0008270 Zinc ion binding 6 IEA InterPro

GO:0004842 Ubiquitin-protein
transferase activity

6 IMP UniProt

GO:0004842 Ubiquitin-protein
transferase activity

6 IDA BHF-UCL

GO:0004842 Ubiquitin-protein
transferase activity

6 IDA UniProt

GO:0019789 SUMO ligase activity 6 IDA UniProt

GO:0019789 SUMO ligase activity 6 IMP UniProt

GO:0044547 DNA topoisomerase
binding

4 IPI UniProt

GO:0003677 DNA binding 4 IDA UniProt

GO:0005515 Protein binding 2 IPI UniProt

GO:0003823 Antigen binding 2 IPI UniProt

These annotations were retrieved from GOA-human gene association from the

GOA database and level represents the maximum number of links from the root

to the GO term in the GO DAG, assuming that the root of each ontology is

located at level 0. Evidence codes IEA, IMP, IPI, and IDA stand for Inferred from

Electronic Annotation, Inferred from Mutant Phenotype, Inferred from Physical

Interaction and Inferred from Direct Assay, respectively.

knowledge about the protein under consideration results in the
pipeline annotating it with a more general term. This redun-
dancy issue can be solved through semantic similarity scores
between terms in the GO-DAG, which are related when using
a given ancestor term for its descendant specification (Mazandu
and Mulder, 2012). Thus, the ancestor term is retained only when
it is unable to directly contribute to its descendant term specifica-
tion based on the semantic similarity between them, in which case
the score is lower than the agreement level or threshold (Mazandu
and Mulder, 2013a).

3. RESULTS
In order to compare different annotation pipelines, to filter an
annotation dataset or to integrate annotations from different
pipelines, we define GO annotation quality assessment mea-
sures based on GO semantic similarity scores (see Materials and
Methods Section). These quality assessment measures include the
specificity or the level of detail of GO annotations used, the con-
sistency of these annotations in terms of similarity between terms
used, the non-redundancy of the annotation set and annotation
match and mismatch scores. These measures are defined using
an abstract semantic similarity measure, but here we are using
the GO-universal metric (Mazandu and Mulder, 2012) when
applied to the Drosophila melanogaster (fruitfly) and human pro-
teomes with GO annotations manually assigned with the follow-
ing GO evidence codes (Experimental category): Inferred from
Experiment (EXP), Inferred from Direct Assay (IDA), Inferred
from Physical Interaction (IPI), Inferred from Mutant Phenotype
(IMP), Inferred from Genetic Interaction (IGI) and Inferred
from Expression Pattern (IEP), and annotations originating from
InterPro2GO, referred to as electronic inference.
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For Drosophila melanogaster, available data from the UniProt
database shows 60887 total entries (proteins coding genes), but
only totals of 11046, 12048, and 10030 proteins are annotated
with respect to the BP, MF, and CC ontologies, respectively,
as extracted from the latest version of GOA UniProt (version
130), released on 15 April, 2014 (http://www.ebi.ac.uk/GOA/
proteomes). From these totals, only 7299, 3495, and 4860 entries
contain annotations manually assigned with respect the BF, MF,
and CC ontologies, respectively. Among annotations inferred
electronically, a total of 3195, 6055, and 2276 proteins have anno-
tations inferred electronically using InterPro2GO mappings for
BP, MF, and CC ontologies, respectively. Similarly, for 47592 total

reviewed entries of human proteome from UniProt, 29844, 36177,
and 31683 proteins are characterized with respect to the BP, MF,
and CC ontologies, respectively, among which 6507, 8665, and
7416 entries contain annotations manually assigned, and 12422,
21989, and 8725 entries with annotations inferred electronically
using InterPro2GO mappings.

3.1. COMPARING MANUAL AND INTERPRO ANNOTATIONS
We analyzed the redundancy in the manual and InterPro2GO
pipelines using different confidence levels (0.0, 0.3, and 0.7),
the specificity, consistency of terms obtained from InterPro and
manual pipelines, and annotation matches (mismatches) between

Table 2 | Percentage redundancy of manual and electronic pipelines for different confidence levels.

Confidence Genome Biological process Molecular function Cellular component

EXP IPR AEC EXP IPR AEC EXP IPR AEC

0.0 Human 22.70 0.00 22.32 28.01 0.00 12.66 22.09 0.00 18.11

fruitfly 29.02 0.00 27.08 18.31 0.00 13.45 20.72 0.00 17.18

0.3 Human 16.74 0.00 17.44 26.04 0.00 11.63 10.06 0.00 8.89

fruitfly 20.30 0.00 19.65 16.31 0.00 12.16 10.17 0.00 8.52

0.7 Human 11.20 0.00 11.22 6.08 0.00 4.22 2.28 0.00 1.91

fruitfly 11.02 0.00 11.40 5.04 0.00 6.74 3.89 0.00 3.41

The confidence level of 0.0 refers to the strict non-redundancy which consists of using the “true path” rule of the GO structure to identify the ancestor of a term

as redundant annotation, but for confidence level of 0.3 and 0.7, a term ancestor is considered to be a redundant annotation for a protein if their semantic similarity

score is 0.3 and 0.7, respectively. EXP, IPR, and AEC stand for manual, electronic pipelines and considering all evidence codes, respectively.

FIGURE 1 | Comparison of annotations inferred manually and electronically in human and fruitfly genomes in terms of annotation specificity score

computed using the GO-universal metric. (A) Human genome. (B) Fruitfly genome.
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these two pipelines using the GO-universal metric (Mazandu
and Mulder, 2012) to compute similarity between terms in a
given ontology. Results are shown in Table 2 for redundancy,
Figures 1, 2 for annotation specificity and consistency, respec-
tively, and Figure 3 for annotation matches in each organism
under consideration.

These results indicate that electronic inference (InterPro2GO)
produces non-redundant and more consistent annotations than
the manual pipeline for different ontologies (Table 2 and
Figure 2), and this electronic pipeline also produces more spe-
cific annotations for BP and MF ontologies, but not for the
CC ontology for which the manual pipeline provides more spe-
cific annotations compared to the electronic inference (Figure 1).
However, it has been previously reported (Mazandu and Mulder,
2012) that electronic mapping annotations tend to be to higher
level GO terms compared to manual pipelines. Furthermore, the

lower annotation consistency displayed by the manual pipeline
(Figure 2) may be due to the fact that this pipeline is better
equipped to identify multi-annotations or diversified annotations
for multi-functional proteins. This shows that the only effec-
tive way to assign annotations to uncharacterized proteins is
the combination of manual and electronic inference (Mazandu
and Mulder, 2011). These different results reveal that an opti-
mal integration and filtration of annotations obtained from
different pipelines may enable high-quality annotations for a
genome annotation. For the two proteomes under considera-
tion, the results in Table 2 show that using the GO-univesal
metric for filtering these proteome annotations reduces redun-
dancy in human annotation data up to 22.32, 12.66, and
18.11% and in fruitfly annotation data up to 27.08, 13.45,
and 17.18% with respect to the BP, MF and CC ontologies,
respectively.

FIGURE 2 | Comparison of annotations inferred manually and electronically in human and fruitfly genomes in terms of annotation consistency score

computed using the GO-universal metric. (A) Human genome. (B) Fruitfly genome.

FIGURE 3 | Annotation matches between manual and electronic pipelines for human and fruitfly genomes with scores computed using the

GO-universal metric. (A) Human genome. (B) Fruitfly genome.
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In order to assess annotation coherence between electronic
and manual pipelines, we compute functional similarity scores
between annotations of a given protein annotated by these two
pipelines. Thus, we used the formula (6) and the Best Match
Average (BMA) measure (Mazandu and Mulder, 2012, 2013a,b)
to score functional similarity between the two sets of annota-
tions for a given protein and results are displayed in Figure 3.
These results generally show low annotation matches for several
proteins with annotations from the two pipelines (electronic and
manual) in the two genomes under consideration for BP, MF, and
CC ontologies. Possible reasons include protein mis-annotations,
the inability of a given pipeline to identify an annotation for a
given protein (missing annotations) and the use of more general
GO terms for the manual pipeline and more specific terms for the
electronic pipeline (see Figure 1). Once again, these results indi-
cate that the integration of annotations from multiple pipelines
can provide more accurate annotations and quality control for
functional genomics data.

3.2. ASSESSING FRUITFLY-HUMAN ORTHOLOG FUNCTIONAL
SIMILARITY

We compared annotations of ortholog proteins between fruit-
fly and human to check for annotation equivalence as ortholog
proteins share common evolutionary processes and are thought
to maintain similar functions (Mazandu and Mulder, 2012).
Based on this principle, known as “ortholog” conjecture (Nehrt
et al., 2011), electronic annotation pipelines, such as Ensembl
Compara, arose in order to transfer annotations between
ortholog proteins between different species. In this study, we

check for matches and missing annotation for every ortholog
protein pair. Ortholog protein pairs were retrieved from the
Ensembl website (Flicek et al., 2010; Kinsella et al., 2011) at http://
www.ensembl.org using biomart, and GO-association data were
downloaded from the GOA site (Dimmer et al., 2012).

From the list of ortholog protein pairs, we have considered
those pairs with high confidence according to Ensembl in lists
of reviewed proteins (Swiss-Prot) for these two genomes from
the UniProt database. We ended up with a list of 3346 ortholog
protein pairs with 1988 and 2949 proteins in fruitfly and human
proteomes (Ensembl uses a one to many ortholog relationship),
respectively, and different results obtained are shown in Table 3
and Figure 4 for different ortholog annotation features and func-
tional similarity scores. The main result in Table 3 is the missing
annotations in both genomes for 371, 319, and 485 ortholog pro-
teins in BP, MF and CC ontologies, respectively. This lack of
annotations for ortholog proteins in one genome and character-
ized in another genome is partly to incomplete knowledge, and
elicits the need for further curation of existing information about
these specific organisms.

Results in Figure 4 show high functional similarity between
protein orthologs as expected, especially for the MF and CC
ontologies. Orthologs with very low functional similarity based
on their GO annotations have also been detected, especially for
the BP ontology, and this is not in agreement with the belief
about function conservation between orthologs. There are several
possible reasons for this, including protein mis-annotations, the
use of more general GO terms for one and more specific terms
for the other protein, or simply the lack of relevant biological

Table 3 | General features of fruitfly-human ortholog proteins in terms total number of ortholog proteins with GO annotations in BP, MF, and

CC ontologies for different genomes under consideration.

Biological process Molecular function Cellular component

Fruitfly Human Fruitfly Human Fruitfly Human

Annotated ortholog 1766 2674 1678 2669 1682 2752

Annotated ortholog pair 2866 2829 2759

Uncharacterized ortholog pair 109 198 102

Missing annotation ortholog 180 191 95 224 103 382

FIGURE 4 | Fruitfly-human ortholog functional similarity scores. Comparing GO annotations for ortholog protein pairs between human and fruitfly genomes
with scores computed using the GO-universal metric.
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knowledge about these proteins, thus requiring further curation
of existing knowledge in these systems as pointed out previously.
In particular, for the BP ontology describing broad biological
goals for genes and proteins, this could be an indication of miss-
ing annotations in both orthologs as the differing terms may not
be conflicting processes so it may be that the other terms are cor-
rect, but have just not yet been added, or they may be organism
specific (Mazandu and Mulder, 2012).

3.3. DISCUSSION
Worldwide DNA sequencing efforts have led to a rapid increase
in sequence data in the public domain, but also the lack of func-
tional annotations for many newly sequenced genes and their
predicted proteins. Thus, several genome annotation pipelines
were set up to assign or predict functions for the sequenced
genes. Even though these annotation pipelines widely adopted the
Gene Ontology (GO) as an efficient and standardized functional
scheme, the specific procedures followed by each annotation
pipeline varies. This leads to an increased heterogeneity created
by different granularity of GO annotations across a genome or
gene set, rendering curators’ tasks tedious and challenging. In this
study, we have introduced a large-scale approach that allows the
integration of protein GO annotations from different pipelines
using GO semantic similarity measures for efficient exploitation
of biological knowledge embedded in the GO structure.

We have defined a set of annotation quality assessment
measures using an abstract semantic similarity measure and
producing a very general approach that can use any semantic
similarity measure for filtering and integrating functional anno-
tations from multiple pipelines. We have applied this approach
to the manual and InterPro2GO annotation pipelines for the
Drosophila melanogaster (fruitfly) and human proteomes for dif-
ferent ontologies. In the context of the Gene Ontology, several
semantic similarity measures have been introduced and used in
different biological applications. These measures are being used
to set up novel bioinformatics approaches that enable the effi-
cient use of the GO DAG structure in protein functional analysis,
function prediction and assignment. Here, we used the GO uni-
versal metric as a semantic similarity measure and results showed
that this integrative model may enable high-quality and accurate
annotations for genome annotation, reducing redundancy and
eliminating inconsistencies in the integrated annotation datasets
for ease of comparative functional genomics.

We have assessed GO annotations manually assigned (manual
pipeline) with the following GO evidence codes (Experimental
category): Inferred from Experiment (EXP), Inferred from
Direct Assay (IDA), Inferred from Physical Interaction (IPI),
Inferred from Mutant Phenotype (IMP), Inferred from Genetic
Interaction (IGI) and Inferred from Expression Pattern (IEP), and
compared them to those originating from InterPro (InterPro2GO
pipeline). Results revealed that, in general, the InterPro2GO (elec-
tronic) pipeline produces non-redundant and more consistent
annotations than the manual pipeline due to the fact that the
manual pipeline is possibly assigning diversified annotations to
multi-functional proteins. This suggests that an efficient inte-
gration and filtration of annotations from different pipelines
would enable high-quality non-redundant annotation in genome

annotation. In the case of human and fruifly annotation datasets,
an efficient integration of annotation pipelines can reduce redun-
dancy up to 27 and 22% (see Table 2), respectively, and iden-
tify mismatches between some protein annotations from these
pipelines (see Figure 3) and incoherence or missing annotations
for some orthologs in the two proteomes under consideration
(see Table 3 and Figure 4), requiring further curation of exist-
ing knowledge. Such an approach is useful for the comparative
genomics community, simplifies tasks of curators and should
advance comparative functional genomics research.
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