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INTRODUCTION 
 

Previous study has shown that the overall prevalence of 

birth defects in live births ranges from 3–5 % [1]. Birth 

defects are a major cause of perinatal mortality, 

accounting for more than 20 % of infant deaths [2, 3]. 

Moreover, birth defects are one of the strongest known 

risk factors for childhood cancers [4], causing serious 

effects in children’s health; such defects are also 

associated with high risks of preterm birth (PTB), low 

birth weight (LBW), and infant death [5]. Thus, birth 

defects do not only increase medical burden but also 

place an economic burden on families and society [6].  
 

According to Medical Subject Headings (MeSH) of the 

PubMed database, classification of urogenital  

abnormalities, digestive system abnormalities, nervous 

system malformations, cardiovascular abnormalities, 

facial deformities, musculoskeletal abnormalities, and 

chromosome disorders are shown in Supplementary 

Table 1. 

 

In accordance with a consensus, young fathers are  

aged 20 years and below, whereas older fathers are 

older than 40 years [7]. In developed regions, such as 

Europe and the USA, the proportion of late marriage 

and childbirth is increasing [7, 8], whereas early 

marriage and early childbearing are on the ascendancy 

in developing countries [9, 10]. Some studies have 

assessed the relationship between paternal age and  

birth defects in offspring, but no substantive conclusion, 

even contradictory has been drawn [10–12]. In previous 
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ABSTRACT 
 

Objective: This systematic review and meta-analysis was aimed at determining whether paternal age is a risk 
factor for offspring birth defects. 
Results: A total of 38 and 11 studies were included in the systematic review and meta-analysis, respectively. 
Compared with reference, fathers aged 25 to 29, young fathers (< 20 years) could increase the risk of urogenital 
abnormalities (OR: 1.50, 95 % CI: 1.03–2.19) and chromosome disorders (OR: 1.38, 95 % CI: 1.12–1.52) in their 
offsprings; old fathers (≥ 40 years) could increase the risk of cardiovascular abnormalities (OR: 1.10, 95 % CI: 
1.01–1.20), facial deformities (OR: 1.08, 95 % CI: 1.00–1.17), urogenital abnormalities (OR: 1.28, 95 % CI: 1.07–
1.52), and chromosome disorders (OR: 1.30, 95 % CI: 1.12–1.52). 
Conclusions: Our study indicated that paternal age is associated with a moderate increase in the incidence of 
urogenital and cardiovascular abnormalities, facial deformities, and chromosome disorders. 
Methods: PubMed, Web of Science, the Cochrane Library, and Embase were searched for relevant literatures 
from 1960 to February 2020. The systematic review follows PRISMA guidelines. Relevant meta-analyses were 
performed.  
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years, a few systematic reviews and meta-analyses have 

evaluated the relationship between paternal age 

(especially advanced paternal age) and birth defects, 

including congenital heart disease, cleft lip and  

palate, neural tube defects, gastroschisis, and trisomy  

21 syndrome. However, these studies did not include 

other birth defects, such as hydranencephaly of common 

nervous system malformations and trisomy 13 and 

trisomy 18 syndromes of common chromosome 

disorders. Moreover, systematic reviews and meta-

analyses about urogenital abnormalities and digestive 

system abnormalities seem limited [11, 13, 14]. 

Therefore, a further systematic review and meta-analysis 

of birth defects is needed to fill the gap [15–17]. 

 

This systematic review and meta-analysis focused on 

the influence of paternal age, particularly of old (> 40 

years old) and young fathers (< 20 years old), on 

offspring birth defects in each system and chromosomal 

abnormalities. This meta-analysis is the first of its kind 

that focuses on the effect of paternal age on urogenital 

and digestive system abnormalities; the results of this 

work contributes to a comprehensive understanding of 

the risk factors for birth defects and its effective 

prevention.  

 

RESULTS 
 

Study selection and characteristics 
 

We identified a total of 3581 articles published between 

1962 and 2020 after duplicates were removed. A total of 

3412 articles were directly excluded after reading the 

titles and abstracts, and 131 articles were excluded after 

reading the full text for the following reasons: 

insufficient data (92), non-English (22), no access to the 

full paper (8), and others (9) (Figure 1). Lastly, a total 

of 38 and 11 studies were included in the systematic 

evaluation and meta-analysis, respectively. Figure 1, 

Table 1 and Supplementary Table 2 respectively show

 

 
 

Figure 1. PRISMA flow diagram for a systematic review and meta-analysis. A total of 3581 articles were identified after duplicates 
removed. Out of the 3581 articles, 3412 articles were directly excluded after reading the titles and abstracts, and 131 articles were excluded for 
some reasons after reading the full text. Finally, 38 and 11 studies were included in the systematic evaluation and meta-analysis, respectively. 
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Table 1. Summary results of the systematic review of the association between young and old father and birth 
defects. 

Birth defects (Numbers of studies) Risk 

Number of studies 

Total number of cases Young paternal 

age (<20 years) 

Advanced paternal 

age  

(≥40 years) 

Urogenital Abnormalities (6)    5217 

 Increased 1 2  

 Decreased 0 0  

Digestive System Abnormalities (5)    5823 

 Increased 0 0  

 Decreased 0 1  

Nervous System Malformations (9)    8191 

 Increased 1 4  

 Decreased 0 0  

Cardiovascular Abnormalities (11)    32190 

 Increased 2 6  

 Decreased 1 1  

Facial deformity (13)    18807 

 Increased 1 4  

 Decreased 0 1  

Musculoskeletal Abnormalities (14)    31479 

 Increased 3 3  

 Decreased 1 3  

Chromosome Disorders (10)    18108 

 Increased 2 4  

 Decreased 0 2  

 

the process of literature inclusion and summarize the 

characteristics of the included literature. 

 

Of the 38 studies, 18 were case-control studies, and the 

rest were cohort studies. In accordance with the NOS, 

the quality of research was evaluated. The following 

were obtained: 27 high-quality studies (NOS scores ≥ 

7), nine medium-quality studies (NOS scores of 5–6), 

and two low-quality studies (NOS scores ≤ 4). Twenty-

six studies adjusted or controlled for maternal age, and 

12 did not. 

 

The number of reported cases is as follows: more than 

1,000 in 14 studies; 101-1,000 in 19 studies, and not 

more than 100 in five studies. The number of studies 

conducted by region is as follows: 15 in North America 

(12 in the USA), 15 in Europe (five in Norway and four 

in Denmark), six in Asia (three in China), two in South 

America, and only one in Africa. One study was 

conducted simultaneously in the United States and the 

Czech Republic. Twenty-seven studies began before 

2000, and nine studies were conducted after 2000; 31 

studies lasted longer than 3 years, and five studies lasted 

less than 3 years. The longest study lasted for more than 

40 years, whereas the shortest study lasted for less than 

one year. Two studies did not report the time of study 

execution. 

 

Regarding the assessment of exposure factors (paternal 

age), 32 studies clarified the paternal age. However, 

different studies used various methods for categorizing 

paternal age; the most common categorization of 

paternal age was < 20, 20 – 24, 25 – 29, 30 – 34, 35 – 

39, and > 39 years. In the present study, we defined 

fathers younger than 20 years as young fathers, older 

than 40 years as old fathers, and 25 – 29 years as the 

reference group. 

 

Meta-analytic results for birth defects in each system 

 

Urogenital abnormalities 

We identified six studies [14, 15, 18–21] that reported a 

total of 5217 cases about urogenital abnormalities in the 

systematic review; four were cohort studies, whereas 

two were case-control studies. On the basis of the NOS 

scoring criteria, five high-quality and one medium-

quality studies were identified. In the meta-analysis, 

only two studies [14, 19] could be included. Young and 
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old fathers increased the risk of offspring urogenital 

abnormalities (OR: 1.50, 95 % CI: 1.03 – 2.19; OR: 

1.28, 95 % CI: 1.07 – 1.52, respectively). Among the 

studies, no heterogeneity was found in these two 

subgroups (I
2 

= 0.0 %, 0.0 %, respectively) (Figure 2). 

The results of the funnel plots and Egger’s test (P = 

0.369) revealed no significant publication bias. 

 

Digestive system abnormalities 

Five studies [14, 15, 19, 20, 22] reporting a total of 

5823 cases analyzed the association between paternal 

age and digestive system abnormalities in offspring. Of 

these studies, four were cohort studies, and one was a 

case-control study. In addition, all the studies were of 

high quality and adjusted for maternal age. Three 

studies [14, 19, 22] were included in the meta-analysis. 

The pooled ORs in the subgroup of young and old 

fathers were 1.13 (95 % CI: 0.98 – 1.30) and 0.90 (95 % 

CI 0.79 – 1.02), respectively. Among the studies,  

no heterogeneity was found in these two subgroups  

(I
2 

= 0.0 %, 0.0 %, respectively) (Figure 3). The results 

of the funnel plots and Egger’s test (P = 0.244) revealed 

no significant publication bias. 

 

Nervous system malformations 

Nine papers [14, 15, 19–25] reporting a total of 8191 

cases of nervous system malformations were included 

in the systematic review; seven were cohort studies, 

and two were case-control studies. In accordance with 

the NOS scoring criteria, eight high-quality and one 

medium-quality studies were identified. Five studies 

[14, 19, 22–24] were included in the meta-analysis. 

The pooled ORs in the subgroup of young and old 

fathers were 1.23 (95 % CI: 0.94 – 1.60) and 1.12 (95 

% CI: 0.97 – 1.30), respectively. Among the studies, 

minimal heterogeneities were found in the two 

subgroups (I
2 

= 36.5 %, 33.5 %, respectively) 

(Supplementary Figure 1). The results of the funnel 

plots and Egger’s test (P = 0.071) revealed no 

significant publication bias. 

 

 
 

Figure 2. Forest plot presenting the effect of young and old father on urogenital abnormalities in their offspring: Only two 
studies could be included in the meta-analysis. Both young and old father increased the risk of urogenital abnormalities in offspring 

(OR 1.50, 95%CI 1.03-2.19; OR 1.28, 95%CI 1.07-1.52, respectively). There was no heterogeneity in these two subgroups (I
2
=0.0%, 0.0%, 

respectively) amongst the studies. 
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Cardiovascular abnormalities 

Five cohort studies and six case-control studies [15, 19, 

21, 22, 26–32] reported the association between paternal 

age and cardiovascular abnormalities; nine high-quality 

and two medium-quality studies were identified. The 

total number of cases of cardiovascular system 

malformations was 32,190. A meta-analysis of the data 

based on four studies [19, 22, 30, 31] showed that 

compared with fathers aged 25 – 29, younger fathers (< 

20 years) did not increase the risk of cardiovascular 

abnormalities in their children, whereas older fathers (≥ 

40 years) did. The pooled ORs were 1.05 (95 % CI: 

0.96 – 1.16) and 1.10 (95 % CI: 1.01 – 1.20), 

respectively. Among the studies, minimal heterogeneity 

was found in the two subgroups (I
2 

= 2.1%, 37.6%, 

respectively) (Supplementary Figure 2). The results of 

the funnel plots and Egger’s test (P = 0.128) revealed no 

publication bias. 

Facial deformities 

Thirteen papers [12, 14, 15, 19–22, 33–38], including 

nine cohort studies and four case-control studies, 

concentrated on paternal age as a risk factor for facial 

deformities in offspring; eleven were of high quality, 

one was of medium quality, and one was of low 

quality. A total of 18807 cases of facial deformities 

(most of the cleft lip or palate) were explored in 

thirteen studies. Older fathers (≥ 40 years) slightly 

increase the risk of facial deformities in their children, 

whereas younger fathers (< 20 years) did not. The 

pooled ORs were 1.08 (95 % CI: 1.00 – 1.17) and 

1.14 (95 % CI: 0.99 – 1.31), respectively. Among the 

studies, no heterogeneity was found in the two 

subgroups (I
2 

= 0.0 %, 0.0 %, respectively) [14, 19, 

22, 33] (Supplementary Figure 3). The results of the 

funnel plots and Egger’s test (P = 0.186) revealed no 

significant publication bias. 

 

 
 

Figure 3. Forest plot presenting the effect of young and old father on digestive system abnormalities in their offspring: Three 
studies were included in the meta-analysis. The pooled OR in subgroup of young fathers and old fathers was 1.13(95%CI 0.98-1.30) and 
0.90(95%CI 0.79-1.02), respectively. There was no heterogeneity in these two subgroups (I

2
=0.0%, 0.0%, respectively) amongst the studies. 
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Musculoskeletal Abnormalities 

Thirteen papers [14, 15, 19–22, 39–45], including nine 

cohort studies and four case-control studies, 

concentrated on paternal age as a risk factor for 

musculoskeletal abnormalities in offspring; ten were of 

high quality, two were of medium quality, and one was 

of low quality. A total of 27546 cases of musculo-

skeletal abnormalities in fourteen studies were included 

in the systematic review. We included four studies [14, 

19, 22, 44] in the meta-analysis, and the results showed 

that compared with fathers aged 25 – 29, younger (< 20 

years) and older fathers (≥ 40 years) did not increase the 

risk of musculoskeletal abnormalities in offspring. The 

pooled ORs were 1.15 (95 % CI: 0.86 – 1.54) and 1.19 

(95 % CI: 0.99 – 1.42), respectively (Supplementary 

Figure 4). Among the studies, medium heterogeneity 

was found in the two subgroups (I
2 

= 53.7 % and 41.4 

%, respectively). The funnel plots and Egger’s test (P = 

0.004) revealed a significant publication bias. We 

detected publication bias in the subgroup of young and 

old fathers. The Egger’s test found no publication bias 

in the subgroup of young fathers (P = 0.586) but found 

such bias in the subgroup of old fathers (P = 0.002). In 

addition, after correcting publication bias in the 

subgroup of old fathers via the nonparametric trim-and-

fill method, the pooled OR was still not statistically 

significant (OR: 1.039, 95 % CI: 0.841 – 1.284). The 

funnel plots after correcting the publication bias in the 

subgroup of old fathers is shown in Supplementary 

Figure 5. 

 

Chromosome disorders 

Ten papers [14, 15, 17, 22, 46–51], including five 

cohort studies and five case-control studies, were 

identified. Among them, eight papers were of high 

quality, and two were of medium quality. A total of 

18108 cases of chromosome disorders, such as Trisomy 

21, Trisomy 13, and Trisomy 18, were accessed in this 

systematic review. We conducted meta-analysis on four 

studies [14, 22, 46, 50] and revealed a moderately high 

risk of chromosome disorders in newborns of young and 

old fathers (OR: 1.38, 95 % CI: 1.01 – 1.89; OR: 1.30, 

95 % CI: 1.12 – 1.52, respectively) in comparison with 

the reference fathers (25 – 29 years) (Supplementary 

Figure 6). Among the studies, medium heterogeneity 

was found in the two subgroups (I
2 
= 52.6 % and 62.1% 

for young and old fathers, respectively). The funnel 

plots and Egger’s test (P = 0.376) revealed no 

significant publication bias. 

 

DISCUSSION 
 

Previously, a few works involving meta-analysis 

evaluated the association between paternal age and birth 

defects; however, most of them explored birth defects in 

general, without sorting the defects by systems. Based 

on the results of our meta-analysis, young fathers (< 20 

years) could increase the risk of urogenital 

abnormalities and chromosome disorders in their 

offspring, whereas old fathers (≥ 40 years) could 

increase the risk of cardiovascular abnormalities, facial 

deformities, urogenital abnormalities, and chromosome 

disorders in their offspring. However, no significant 

difference was found between fathers younger than 20 

or older than 40 in the incidence of musculoskeletal 

malformations, nervous system malformations, and 

digestive malformations in their offspring in 

comparison with fathers aged 25 – 29. Overall, the 

heterogeneities of the studies we included were small. 

Although, publication bias was found in the literature of 

skeletal musculoskeletal birth defects, the original 

conclusion did not change after correction by the 

nonparametric trim-and-fill method. Table 2 sum-

marizes the main findings of the meta-analysis. 

 

As for cardiovascular abnormalities, a previous study 

suggested that older fathers were not a risk factor (OR: 

1.15, 95 % CI: 0.96 – 1.36); this finding is consistent 

with our results [52]. However, the other study was in 

line with our results in cardiovascular abnormalities 

(OR: 1.27, 95 % CI: 1.14 – 1.42) [53]. Our meta-

analysis controlled for the confounding of maternal age, 

and we included not only congenital heart defects but 

also vascular malformations. This might indicate that 

the difference is due to additional vascular mal-

formations. Conversely, their meta-analysis did not set 

an age reference group for fathers, whereas our 

reference group was 25 – 29 years. Two meta-analyses 

were consistent with our findings that advanced paternal 

age did not increase the risk of facial deformities; 

however, these studies focused on orofacial clefts only 

[52, 54]. Our finding that paternal age was not a risk 

factor was similar to that of Oldereid [52] (OR: 0.98, 95 

% CI: 0.72 – 1.32) in nervous system malformations but 

different with Jia [55]; the latter reported that younger 

paternal age (< 20) significantly increased the risk of 

neural tube defects compared with 25 – 29 years (OR: 

1.41 (1.10–1.81)). However, our study encompasses not 

only neural tube defects but also other neurological 

diseases, such as hydrocephalus. 

 

The exact mechanism by which young and old paternal 

age increase the risks of birth defects in offspring is 

unclear. However, the decline in sperm quality in older 

men has been demonstrated by several studies, even 

resulting in infertility. Androgen levels drop 

significantly in older fathers, and some significant 

abnormalities in sperm parameters, including the 

decrease in the total number of Sertoli cells, have been 

identified in human and animal models [56–59]. Aging 

could result in testicular histomorphology abnormalities 

[60], which are the underlying mechanisms of infertility
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Table 2. Summary results of the meta-analyses of the association between young and old father and birth defects. 

Birth defects Paternal age(years) 
Pooled estimate (with 

95% CI) 

Heterogeneity 

(I
2
) 

Publication bias 

Urogenital Abnormalities    NO 

 <20 1.50 (1.03-2.19) 0.0%  

 ≥40 1.28 (1.07-1.52) 0.0%  

Digestive System Abnormalities    NO 

 <20 1.13(0.98-1.30) 0.0%  

 ≥40 0.90(0.79-1.02) 0.0%  

Nervous System Malformations    NO 

 <20 1.23(0.94-1.60) 36.5%  

 ≥40 1.12(0.97-1.30) 33.5%  

Cardiovascular Abnormalities    NO 

 <20 1.05 (0.96-1.16) 2.1%  

 ≥40 1.10 (1.01-1.20) 37.6%  

Facial Deformities    NO 

 <20 1.14 (0.99-1.31) 0.0%  

 ≥40 1.08 (1.00-1.17) 0.0%  

Musculoskeletal Abnormalities    YES 

 <20 1.15 (0.86-1.54) 53.7%  

 ≥40 1.19 (0.99-1.42) 41.4%  

Chromosome Disorders    NO 

 <20 1.38 (1.01-1.89) 52.6%  

 ≥40 1.30 (1.12-1.52) 62.1%  

 

and adverse pregnancy outcomes in older men. Sperms 

are also associated with an increased abnormal 

chromosome segregation during meiosis, which may 

lead to chromosomal defects, including trisomy 21 in 

progeny [61–63]. Studies have shown that an increase 

in the number of genetic mutations carried by offspring 

is related to the age at which the parents conceived [64]. 

As the father grows older, the number of mutations in 

the father’s genome increases, leading to an increase in 

the incidence of congenital malformations in offspring 

[11, 65]. 

 

Older paternal age may be harmful to the offspring’s 

health in terms of genetic mutations, telomere length, 

and epigenetics [66]. Several lines of evidence suggest 

that epigenetic changes occur in the sperm of older 

fathers, particularly defects in DNA methylation [67–

69]. As fathers age, they are exposed to various 

environmental risk factors, which are involved in the 

formation and maintenance of epigenetic patterns; these 

epigenetic modifications have serious consequences for 

offspring, often contributing to the early onset of 

diseases [70, 71]. Common environmental risk factors 

include physical factors (such as radiation and high 

temperature), chemical factors (such as alcohol, 

aromatic compounds, heavy metals), and biological 

factors (such as viruses and bacteria). Older fathers 

have less antioxidant capacity, and environmental risk 

factors which may lead to new mutations and DNA 

damage in some key DNAs related to fetal development 

[72–74]. Interestingly, a study found that young and old 

fathers increase the risks of new dominant autosomal 

mutations, leading to various birth defects in their 

offspring [75]. 

 

A few studies have found that young fathers increase 

the risk of adverse pregnancy outcomes; unfortunately, 

fewer studies have focused on the mechanisms. Steiner 

found that younger fathers have a higher risk of 

chromosomal aneuploidy in their offspring [76]. 

Interestingly, Steiner assumed if a 35-year-old woman 

receives the sperm of a 20-year-old man, her offspring 

almost doubled their risks of aneuploidy compared with 

the sperm of a 40-year-old man; meanwhile, the odds of 

a dominant de novo mutation increased. Moreover, a 

recent study maintains that young fathers could 

contribute a substantial load of point mutations to their 

offspring [77]. Chromosomal aneuploidy and point 

mutations may partially explain that young fathers 

increase the risk of some birth defects in newborns, but 

other factors might be involved, too. The early-bearing 

population may be at low socioeconomic status [78]. 

Consequently, factors, including the nutrition of the 

father or the pregnant woman, and the family's health 

care affect the health of the fetus in many ways. This 

phenomenon may be due to unplanned pregnancies 

among young people, who probably do not take prenatal 

supplements (such as folic acid) and may be 
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continuously exposed to environmental risk factors 

(such as smoking) [79–83]. Young fathers may take in 

additional acrylamide because of special dietary habits 

and high-temperature food [84]. The metabolites of 

acrylamide have strong genotoxicity [84], which can 

indirectly lead to the alkylation of protamine, DNA 

breakage, and chromosome aberration [85, 86]. Some 

substances in the semen of young fathers may alter the 

normal structure and function of sperm, leading to birth 

defects. Uric acid is highly concentrated in young male 

semen [87]; such high concentration has been shown to 

adversely affect sperm morphology and functions [88]. 

This may be a potential mechanism despite the lack of 

relevant clinical data validation. Young fathers under 

stress may contribute to poor birth outcomes, as pre-

pregnancy stress may lead to changes in epigenetics 

[89, 90]. In short, although the exact mechanism is 

unclear, birth defects caused by young and older fathers 

may be attributed to some interactions between 

environmental and genetic factors. 

 

Our findings showed that paternal age, particularly that 

of young or old fathers is associated with an increased 

risk of birth defects, indicating that men’s childbearing 

age should not be too early or too late. Moreover, the 

implementation of strategic interventions and 

appropriate preventive measures to reduce the risks of 

birth defects in offspring are of paramount importance. 

We found that epidemiological studies in developing 

countries (especially in Africa, Latin America, and 

Asia) are relatively few, and future research needs to 

happen in these regions. Furthermore, some birth 

defects, such as those of the respiratory, endocrine, and 

skin systems, have been poorly studied. This requires 

further study to fill this gap. Future research may also 

focus on the mechanisms by which paternal age leads to 

birth defects in offspring for improved prevention and 

intervention. 

 

Strengths and limitations 
 

We investigated the influences of old and young 

paternal age on offspring in this systematic review and 

meta-analysis. This study neither summarized all birth 

defects into one category nor analyzed a single birth 

defect; instead, the study divided them into seven 

categories according to body regions or systems. The 

analysis from a systematic perspective is unable to 

lower the heterogeneity among studies but also 

incorporate papers about birth defects as many as 

possible. Moreover, we included some literature 

published recently in the systematic evaluation. The 

number of cases of birth defects included in our study 

was large, with each study sample covering over 5,000 

cases, among which the number of cases of 

cardiovascular abnormalities and musculoskeletal 

abnormalities exceeded 30,000 cases. Studies that did 

not control for the confounding of maternal age were 

excluded, and all high-quality studies (NOS score ≥ 7) 

were included in the quantitative synthesis, thus 

improving the reliability of the results to a certain 

extent. Lastly, this work is the first meta-analysis on the 

effect of paternal age on urogenital abnormalities in 

offspring. This can guide clinicians to use some 

methods before or after delivery, such as ultrasound 

examination, to check these potential defects in 

offspring. 
 

However, this systematic review and meta-analysis also 

have some limitations. Although, tens of studies were 

retrieved, only a few studies could involve quantitative 

synthesis as some studies did not control for 

confounding factors, such as maternal age or different 

stratification methods of father’s age. Again, most of 

the estimates and 95 % CI are close to 1.00. For the 

limitation of the number of articles, we could not 

perform the subgroup analysis of the countries, years, 

and specific "isolated" malformations of the study. 

Although most of the birth defects were included in this 

meta-analysis, some unusual birth defects, such as 

respiratory birth defects, were not available. In addition, 

different studies may have some differences in the 

definition and classification of birth defects. Some 

research may only study live births, whereas some 

studies include birth defects during stillbirth and thus 

may reduce the accuracy of the results to some extent. 

The marked etiologic and pathogenic heterogeneity 

involved in organ systems and body region 

malformations in this meta-analysis might constitute a 

major bias regarding the etiologic effect of paternal age. 

The results showed that heterogeneity was almost 

minimal (most of I
2 
< 50 %), except for musculoskeletal 

birth defects and chromosomal abnormalities (Table 2). 

However, this heterogeneity may not be important 

because the systematic review and meta-analysis are 

based exclusively on observational studies and not on 

intervention trials. We do not circumscribe the meta-

analysis to those specific "isolated" malformations but 

classified them by body regions because the number of 

studies on specific birth defects is limited.  
 

CONCLUSIONS 
 

The results of this systematic review and meta-analysis 

showed that young fathers (< 20 years) could increase 

risks of urogenital abnormalities and chromosome 

disorders in their offspring. On the other hand, old fathers 

(≥ 40 years) could increase risks of cardiovascular 

abnormalities, facial deformities, urogenital abnormalities, 

and chromosome disorders in their offspring. In general, 

younger fathers had less effect on birth defects compared 

with older ones. Albeit of a moderate effect, we have yet 
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to understand the plausible effects of young or old 

paternal age in the onset of congenital defects in their 

offspring. To determine whether paternal age have an 

adverse effect on specific "isolated" malformations in 

offsprings, more high-quality prospective cohort studies 

are needed to be conducted in the future. 

 

MATERIALS AND METHODS 
 

This study strictly followed the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses 

(PRISMA) criteria. The protocol has been registered 

with PROSPERO (CRD42020180376). 

 

Search strategy and selection criteria 

 

We systematically searched original research on Pubmed, 

Web of Science, the Cochrane Library, and Embase 

online databases from 1960 to February 2020; references 

to selected articles were also searched. The retrieval 

process on PubMed database is as follows: (“Paternal 

Age”[Mesh] OR (((“male age” OR “man age”) OR “men 

age”) OR “father age”)) AND (“Congenital 

Abnormalities”[Mesh] OR ((((((“congenital abnormality” 

OR “congenital disorder”) OR “congenital disorders”) OR 

“congenital malformation”) OR “congenital 

malformations”) OR “birth defect”) OR “birth defects”)). 

All terms were searched through a combination of the 

field “Title / Abstract,” but no filters were used to retrieve 

the literature. 

 

Inclusion criteria 

Observational epidemiologic studies, including cohort 

and case-control studies published in English; examined 

the association between paternal age and birth defects in 

infants; reported ORs and 95 % confidence intervals 

(CIs) or had raw data available. For multiple 

publications using the same database, we chose the 

study that contains the most comprehensive 

information. 

 

Exclusion criteria 

Studies that were not adjusted or controlled for maternal 

age, had unclassified birth defects, had no available full 

text or complete data, and involved animal experiments.  

 

Outcome measures 
 

This study mainly focuses on urogenital abnormalities, 

digestive system abnormalities, nervous system 

malformations, cardiovascular abnormalities, facial 

deformities, musculoskeletal abnormalities, and 

chromosome disorders. All these defects have been 

mentioned in the introduction. Supplementary Table 3 

shows the selected birth defects of each study included 

in the meta-analysis. 

Data extraction and quality assessment 

 

 Studies that met the inclusion criteria were 

independently reviewed by two authors (Y.F. and J.X.), 

and discrepancies between the authors were resolved 

through a consensus with a third author (Z.F.). The 

following information were extracted in a standardized 

format: first author and year of publication, study period 

and location, study design, sample size (case/population 

or case/control), types of birth defects, paternal age 

categorization, ORs (95 % CI), and adjusted factors. 

 

The methodological quality of the study was evaluated 

independently by two evaluators (Y.F. and J.X.) in 

accordance with the Newcastle–Ottawa Quality 

Assessment Scale (NOS) [91]. NOS has been widely 

used to evaluate the quality of cohort and case-control 

studies and strongly recommended by Cochrane. We 

defined a score of 7–9 as high quality, 5–6 as medium 

quality, and 0–4 as low quality. The conflicting results 

were resolved through a discussion between two 

authors. 

 

Statistical analysis 

 

To improve reliability, we only included the studies of 

the reference group with fathers aged 25–29 years into 

the quantitative meta-analysis. Moreover, studies 

included in the meta-analysis should be at least adjusted 

or controlled for maternal age. We quantitatively 

synthesized the ORs (95 % CI) of each study and 

compared birth defects in the offspring of young (< 20 

years old) and old fathers (> 40 years old) with those of 

fathers aged 25–29 years old. The results in this study 

only report random-effect models due to the potential 

heterogeneity of the study. Funnel plots and Egger’s test 

were used to assess publication bias, and a 

nonparametric trim-and-fill method was conducted to 

correct publication bias. Stata12.0 was used for 

statistical analysis, and p < 0.05 was considered 

statistically significant. 
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Supplementary Figure 1. Forest plot presenting the effect of young and old father on nervous system malformations in their 
offspring: Five studies were included in the meta-analysis. The pooled OR in subgroup of young fathers and old fathers was 

1.23(95%CI 0.94-1.60) and 1.12(95%CI 0.97-1.30), respectively. There was minimal heterogeneity in these two subgroups (I
2
=36.5%, 33.5%, 

respectively) amongst the studies. 
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Supplementary Figure 2. Forest plot presenting the effect of young and old father on cardiovascular abnormalities in their 
offspring: Meta-analysis of the data based on four studies showed that, compared with fathers aged 25 to 29, younger 
fathers (<20 years) did not increase the risk of cardiovascular abnormalities in their children, while older fathers (≥40 years) 
did, the pooled OR was 1.05 (95%CI 0.96-1.16) and 1.10 (95%CI 1.01-1.20), respectively. There was minimal heterogeneity (I

2
= 

2.1%, 37.6%, respectively) amongst the studies. 
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Supplementary Figure 3. Forest plot presenting the effect of young and old father on facial deformities in their offspring: 
Four studies were included in the meta-analysis. Older fathers (≥40 years) slightly increase the risk of facial deformities in their 

children, while younger fathers (<20 years) did not, the pooled OR was 1.08 (95%CI 1.00-1.17) and 1.14 (95%CI 0.99-1.31), respectively. There 
was no heterogeneity in these two subgroups (I

2
=0.0%, 0.0%, respectively) amongst the studies. 
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Supplementary Figure 4. Forest plot presenting the effect of young and old father on musculoskeletal abnormalities in their 
offspring: Five studies were included in the meta-analysis and the results showed that, compared with fathers aged 25 to 29, 
younger fathers (<20 years) and older fathers (≥40 years) did not increase the risk of musculoskeletal abnormalities in 
offspring, the pooled OR was 1.15 (95%CI 0.86-1.54) and 1.19 (95%CI 0.99-1.42), respectively. There was medium 
heterogeneity (I

2
= 53.7%, 41.4%, respectively) amongst the studies. 

 

 
 

Supplementary Figure 5. The Funnel plots after correcting publication bias in the subgroup of old father by the 
nonparametric trim and fill method: After correcting publication bias in the subgroup of old fathers by the nonparametric 
trim and fill method, the pooled OR was still not statistically significant (OR 1.039; 95%CI 0.841-1.284). The dots represent the 

included studies, and the little square represents complementary studies. 
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Supplementary Figure 6. Forest plot presenting the effect of young and old father on chromosome disorders in their 
offspring: Meta-analysis including four studies which showed a moderate high risk of chromosome disorders in newborns of 
both young and old fathers (OR 1.38, 95%CI 1.01-1.89; OR 1.30, 95%CI 1.12-1.52, respectively), compared with the reference 
fathers (25-29 years). There was medium heterogeneity (I

2
= 52.6%, 62.1%, respectively) amongst the studies. 
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SUPPLEMENTARY TABLES 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Classification of 7 congenital malformations according to PubMed database. 

Classification Birth defects Links 

Urogenital 

abnormalities 

bladder extrophy, cryptorchidism, disorders of sex 

development, epispadias, Fraser syndrome, fused kidney, 

hypospadias, multicystic dysplastic kidney, hereditary 

nephritis, pyelectasis, and retrocaval ureter 

https://www.ncbi.nlm.nih.gov/mesh/68014564 

 

Digestive 

system 

abnormalities 

anorectal malformations, imperforate anus, biliary atresia 

and choledochal cyst, diaphragmatic eventration, 

esophageal atresia, Hirschsprung disease, intestinal atresia, 

Meckel’s diverticulum, and pancreaticobiliary maljunction 

https://www.ncbi.nlm.nih.gov/mesh/68004065 

 

Nervous system 

abnormalities 

agenesis of corpus callosum, central nervous system cysts, 

central nervous system vascular malformations, Dandy–

Walker syndrome, hereditary sensory and autonomic 

neuropathy, hereditary sensory and motor neuropathy, 

hydranencephaly, malformations of cortical development, 

neural tube defects, optic nerve hypoplasia, and septo-

optic dysplasia 

https://www.ncbi.nlm.nih.gov/mesh/68009421 

Cardiovascular 

abnormalities 

Congenital heart defects and vascular malformations https://www.ncbi.nlm.nih.gov/mesh/68018376 

Facial 

deformities 

congenital microtia, eye abnormalities, and stomatognathic 

system abnormalities 

https://www.ncbi.nlm.nih.gov/mesh/68000013 

Musculoskeletal 

abnormalities 

arthrogryposis, campomelic dysplasia, cervical rib 

syndrome, craniofacial abnormalities, funnel chest, 

gastroschisis, Hajdu–Cheney syndrome, congenital hip 

dislocation, Klippel–Feil syndrome, laryngomalacia, 

congenital limb deformities, pectus carinatum, synostosis, 

and tracheobronchomalacia 

https://www.ncbi.nlm.nih.gov/mesh/68009139 

Chromosome 

disorders 

22q11 deletion syndrome, Angelman syndrome, 

Beckwith–Wiedemann syndrome, branchiootorenal 

syndrome, Cri du Chat Syndrome, De Lange syndrome, 

Down syndrome, holoprosencephaly, Jacobsen distal 11q 

deletion syndrome, Prader–Willi syndrome, Rubinstein–

Taybi syndrome, sex chromosome disorders, Silver–

Russell syndrome, Smith–Magenis syndrome, Sotos 

syndrome, Trisomy 13 syndrome, Trisomy 18 syndrome, 

WAGR syndrome, Williams syndrome, and Wolf–

Hirschhorn syndrome 

https://www.ncbi.nlm.nih.gov/mesh/68025063 
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Supplementary Table 2. The characteristics of the included studies in the systematic review. 

 

Supplementary Table 3. Selected birth defects of each study included in meta-analysis. 

Classification Birth defects Reference 

Urogenital Abnormalities birth defect in renal Kazaura (2004a) 

 Renal agenesis McIntosh (1995) 

 Cystic kidney McIntosh (1995) 

 Obstructive renal defects McIntosh (1995) 

 Hypospadias McIntosh (1995) 

 Atresia of the urethra McIntosh (1995) 

Digestive System Abnormalities Pyloric stenosis Archer (2007), McIntosh (1995) 

 Anal Kazaura (2004a) 

 Tracheoesophageal fistula McIntosh (1995) 

 Atresia of the intestine McIntosh (1995) 

 Hirschsprung’s disease McIntosh (1995) 

Nervous System Malformations Anencephaly Archer (2007), Kazaura (2004a), 

McIntosh (1995) 

 Spina bifida Archer (2007), Kazaura (2004a), 

McIntosh (1995) 

 Encephalocele Archer (2007) 

 Isolated Schizencephaly Curry (2005) 

 Non-Isolated Schizencephaly Curry (2005) 

 Agenesis of the Corpus Callosum Glass (2008) 

 Hypoplasia of the Corpus Callosum Glass (2008) 

 Neural tube defects Kazaura (2004a), McIntosh (1995) 

 Hydrocephaly Kazaura (2004a), McIntosh (1995) 

 Microcephaly McIntosh (1995) 

 Other CNS Kazaura (2004a) 

Cardiovascular Abnormalities Ventricular septal defect Archer (2007), Olshan (1994), Su 

(2015) 

 Atrial septal defects Archer (2007), Olshan (1994), Su 

(2015) 

 Patent ductus arteriosus Olshan (1994), Su (2015) 

 Coarctation of aorta Olshan (1994), Su (2015) 

 Pulmonary artery anomalies Olshan (1994) 

 Tetralogy of Fallot Olshan (1994), Su (2015) 

 Transposition of great vessels Olshan (1994) 

 Pulmonary valve anomalies Olshan (1994) 

 CHDs Cedergren (2002), Kazaura (2004a) 

 Circulatory Kazaura (2004a) 

Facial Deformities Cleft palate alone, Cleft lip ± cleft palate Archer (2007), Berg (2015), Kazaura 

(2004a), McIntosh (1995) 

 Ear/Face/Neck Kazaura (2004a) 

 Congenital cataracts McIntosh (1995) 

Musculoskeletal Abnormalities Craniosynostosis Archer (2007) 

 Gastroschisis Archer (2007), Vu (2008) 

 Limb, Reduction defect of upper limb, 

Reduction defect of upper limb 

Kazaura (2004a), McIntosh (1995) 

 Chondrodystrophy McIntosh (1995) 

 Anomaly of the diaphragm McIntosh (1995) 

Chromosome Disorders Trisomy 21 Agopian (2012), Kazaura (2002), 

McIntosh (1995) 

 Trisomy 13 Archer (2007) 

 Trisomy 18 Archer (2007) 

 

 


