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Abstract

Main features of ankylosing spondylitis like
inflammatory erosive osteopenia and bony
overgrowth are recapitulated in rats chal-
lenged with complete Freund’s adjuvant. In
vivo changes induced in the rat spine were fol-
lowed longitudinally by magnetic resonance
imaging (MRI) and assessed terminally by
micro-computerized tomography (micro-CT)
and histology. Signals reflecting inflammation
were detected by MRI at levels L5-L6 through-
out the experiment, peaking at day 27 after
adjuvant. Bone erosion and formation
occurred from this time point onward, as con-
firmed by micro-CT. Histology confirmed the
inflammation and bone remodeling. The pres-
ent study demonstrates the potential of imag-
ing for longitudinal assessments of spinal
changes in this animal model and the excel-
lent correlation between in vivo images and
histology underlines its fundamental role in
the validation of non-invasive imaging.

Introduction

Ankylosing spondylitis (AS) is a common
rheumatic disease with a prevalence of 0.9%
worldwide.1 The mechanism of pathogenesis is
poorly understood despite the recognition of
the role of the human leukocyte antigen B27
(HLA-B27) in 90-95% of AS patients, and the
interleukin 23 receptor (IL-23R) polymor-
phism.2,3 AS involves both inflammatory ero-
sive osteopenia and unusual bony overgrowth
gradually replacing joints tissue.4 When
lesions occur in the spine, the ultimate bone
remodeling occurs with complete vertebrae
fusion. The delay between onset of symptoms
and diagnosis can reach up to 10 years,5 incur-

ring significant disability and economic cost.6

Currently, the most effective medication for
AS encompasses biologic agents blocking 
TNF-α.7,8 The ability of these agents to prevent
ankyloses remains controversial, despite the
fact that recent long-term studies provided
encouraging results.8,9 The development of dif-
ferent animal models have been useful for the
study of AS pathogenesis and for testing of
new therapeutic concepts. Progressive anky-
loses in ank/ank mice, HLA-B27 transgenic
mice and rats, as well as challenges with com-
plete or incomplete Freund’s adjuvant associat-
ed with proteoglycans have been explored.10-14

Imaging techniques aim at bridging preclin-
ical and clinical studies. It has been shown
that computerized tomography (CT) and mag-
netic resonance imaging (MRI) are better
techniques for the detection of earlier AS fea-
tures in humans than radiography.15-17 We
applied MRI to follow longitudinally in vivo, at
the level of the rat spine, changes induced by
complete Freund’s adjuvant (CFA) inoculation
into the tail.18,19 Post-mortem analyses included
micro-CT imaging and histology of the isolated
spine. This study shows interesting findings in
imaging readouts and reiterate the fundamen-
tal role played by histology in order to validate
non-invasive techniques.

Materials and Methods

Experiments were performed according to ani-
mal license number BS-1505, granted by the
Veterinary Authority of the City of Basel,
Switzerland.

Animals and disease induction
Han Wistar rats (n=2, Charles River

Laboratories, Wilmington, MA, USA) were accli-
matized in a controlled environment for one
week. Polyarthritis was induced in one rat by an
intracutaneous injection at the tail base, of 0.1
mL of CFA [6 mg Mycobacterium tuberculosis
(H37RA, DIFCO, Becton Dickinson) suspended
in paraffin oil (1 mL)].20 The other animal served
as control. Animals were imaged from the second
week following CFA injection, when the paws
were already inflamed. The study was finished
on day 60 after CFA.

Magnetic resonance imaging
For MRI, rats were anesthetized with 2.0%

isoflurane (Abbott, Cham, Switzerland) in a mix-
ture of O2/N2O (2:1), administered via a nose
cone. Body temperature was kept at 37±1°C
using a heating pad. Measurements were carried
out with a Biospec 70/30 spectrometer (Bruker
Medical Systems, Ettlingen, Germany) operating
at 7.0 T. A quadrature resonator with 70 mm
inner diameter (Bruker) was used for signal

excitation and detection. Three-dimensional
(3D) gradient-echo imaging (see Figure 2 legend
for parameters) was started 6 min after i.v. injec-
tion of Gd-DOTA (Guerbet, Aulnay-sous-Bois,
France; 0.15 mL) as a bolus into the tail vein.21

Post-mortem analyses
At the end of the study animals were eutha-

nized by an overdose of thiopental (Pentothal®,
Abbott; 250 mg/kg i.p., 0.2 mL) and the spines
were excised for micro-CT and histological
examination. Spine samples were first fixed in
4% neutral buffered paraformaldehyde for two
days and then kept in 70% ethanol at 4°C until
completion of micro-CT.

Micro computerized tomography
Scans of fixed spine were performed on a

μCT40 instrument (Scanco Medical,
Brüttisellen, Switzerland) using the following
parameters: energy/intensity: 70 kVp, 57 µA, 4 W;
image matrix: 2048x2048 pixels, voxel size: 20
µm. Segmentation thresholds of 190 and 280 and
a Gaussian filter (σ = 0.8, support of one voxel)
were used for image analysis.
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Histology
Following micro-CT imaging, samples were

kept in a decalcification solution
(ImmunoCalTM, Decal Chemical Corporation,
Suffern, NY) for 14 days until decalcification
was complete as verified chemically using a
procedure previously described.22 After sample
dehydration and paraffin embedding, 5-µm
thick sections were cut and stained with
Hematoxylin and Eosin (HE). Subsequently,
additional stainings were performed to distin-
guish cartilage, bone, muscle, fibrotic tissue
and monocytes/osteoclasts. Cartilage was
stained by the Safranin O/Fast green proce-
dure adapted from Kalscheur.23 Safranin-O
stained the cartilaginous areas until the tide-
mark, while Fast green stained the subchon-
dral mineralized bone. The Aldehyde-Fuchsin-
Picrosirius red (AFPS) staining was used to
differentiate cartilage, collagens or bone.
Under this specific staining, newly formed
bone has the aspect of woven bone and polar-
izes in green rather than orange/red.24

Osteoclasts were detected with an anti-CD68
antibody applied on paraffin sections.25,26 After
an antigen retrieval step in a 10 mM citrate
buffer (pH 6) at 98°C, the primary monoclonal
antibody anti-rat ED1 (MCA341R, Bio-Rad,
Puchheim, Germany) was incubated at 
0.05 μg/mL followed by a biotinylated second-
ary antibody (BA-2001, Vector Lab.,
Burlingame, CA) and amplified by the Avidin
Biotin - HRP complex (Elite PK-6100, Vector
Lab.) according to manufacturer’s recommen-
dations. After the reaction was revealed with
DAB, sections were counterstained with
Mayer’s Hematoxylin, washed, dehydrated and
mounted with Pertex.

Results

The main features of AS were observed by
histology. Globally, the L5-L6 lumbar spine of
the CFA rat (Figure 1 A-b) was severely affect-
ed as demonstrated by the damage of the ver-
tebral bone. Subchondral tissues were infil-
trated by immune cells like osteoclasts respon-
sible for bone resorption (Figure 1 A-c), poly-
morphonuclear cells (Figure 1 A-d), and lym-
phocytes (Figure 1 A-e). Figure 1 B-a shows
the invasion of joint space by a synovial pan-
nus (sp) resulting from fibroblast-like synovio-
cyte proliferation, leading to cartilage destruc-
tion (ca) and bone invasion (bo). The remain-
ing nucleus pulposus (np) of intervertebral
disc surrounded newly-formed bone (bo)
replacing the annulus fibrosus (Figure 1 B-b).
No osteoclasts were observed in this newly-
formed bone (data not shown). Figure 1 B-c
displays the bony ankylosis process resulting
in a newly formed bone, so-called woven bone

(bo), well-observed under polarized light. This
confirmed the presence of inflammation and
erosion, as well as new bone formation at the
levels L5-L6 of the spine of the CFA-rat. 
MRI images of the longitudinal development

of injury induced by CFA inoculation at the

lumbar levels L5-L6 of the spine are summa-
rized in Figure 2. High intensity signals (red
arrows) reflecting inflammation have been
detected throughout the study. At day 14, the
inflammatory response occurred along liga-
ments. It expanded to nearby soft tissues and
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Figure 1. Histology of lumbar spine (L5-L6 level) and sacro-iliac junction. A) HE stain-
ing of the lumbar spine shows damage of the vertebral bone in a CFA rat (b) compared
to the normal vertebral structure of a control animal (a); the lower panels show bone
resorption by osteoclasts (dark cells in c), infiltration of polymorphonuclear cells (d), and
presence of lymphocytes (e). B) Main features of the pathology developed in this CFA
model; a) Safranin O/Fast green staining reveals the invasion of joint space by a synovial
pannus (sp) resulting from proliferation of fibroblast-like synoviocytes; ca, cartilage; bo,
bone; b) AFPS staining shows the remaining nucleus pulposus (np) of the intervertebral
disc and the outer annular fibers replaced by bone (bo); c) AFPS staining coupled with
the polarized light shows the new bone formation, so-called woven bone (bo).
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also to regions within the eroded bone
(magenta arrows) at later time points.
Moreover, images indicate the formation of
bone-like structures (green arrows) from day
27 onwards.
Figure 3A presents MRI images of the lum-

bar spine at day 53 post-CFA, showing inflamed
areas (characterized by high intensity signals)
around the levels L5-L6 of the spine (red
arrows) and within the bone (magenta
arrows), as well as the formation of new bony
structures (green arrows). Images from the
control rat displayed none of these features.
Post-mortem micro-CT showed severe axial
bone remodeling (erosion and new bone for-
mation) and beginning dorsal spinal fusion in
the lower lumbar spine region of the CFA rat
(Figure 3B). An excellent agreement was
found between the new bone formation as
revealed histologically and the formation of
bone-like structures as indicated by in vivo
MRI (Figure 3C).

Discussion

The histological data presented here indi-
cate the potential of the rat adjuvant model to
mimic some of the important human patholog-
ical features of AS, such as inflammatory
response showing polymorphonuclear cells
and lymphocytes as well as subchondral tissue
infiltration by osteoclasts leading to bone
resorption, and the disappearance of interver-
tebral discs and their replacement by a well-
vascularized fibrotic tissue followed by ossifi-
cation of fibrocartilage in the spine. This bone
formation is one of the early signs of the bony
fusion process of vertebrae. Using MRI we
could visualize progressive structural dam-
ages, such as edema and inflammatory lesions
as well as bone erosion and formation in the
lumbar spine over time. Post-mortem micro-CT
confirmed this bone remodeling.
In this pilot study, only one sampling time

was used to compare MRI, micro-CT and his-
tology. MRI showed the inflammatory response
occurring along ligaments, then expanding to
soft tissues and bone, and the formation of
bone-like structures over time, demonstrating
the progressive nature of this pathology. Even
if more extensive studies are needed to inves-
tigate the relationship between inflammation
in the spine and bone remodeling, the develop-
ment of progressive damage observed in vivo
indicated a correlation with histopathological
features of AS. 
The present study including three comple-

mentary approaches clearly demonstrates the
potential of histology in the demonstration of
pathologic features provided by non-invasive
imaging. Moreover, our data suggest that in
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Figure 2. CFA-induced effects at the levels L5-L6 of the lumbar spine depicted by MRI
acquisitions performed at day 14 (D14), day 20 (D20), day 27 (D27), day 34 (D34) and
day 41 (D41) after CFA administration. A) Four slices from 3D gradient-echo datasets at
approximately the same anatomical location are depicted per time point. B) Gradient-
echo images at approximately the same anatomical location to highlight the formation of
bone-like tissue from day 27 onwards; red arrows, inflammation; magenta arrows,
inflammation within the bone, tentatively assigned to areas of bone erosion; green
arrows, formation of bone-like tissue. Parameters for gradient-echo imaging at each time
point: 3D fat-suppressed acquisition, echo time/repetition time: 2.5/57 ms, field-of-view:
80x40x20 mm3, matrix: 256x128x96, voxel size: 312x312x208 µm3, 1 average, acquisi-
tion time 11 min 40.4 s.
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vivo imaging in this AS model may be used to
validate the use of imaging in translational
activities as therapies are moved into patient
studies. Since AS has a very long disease
development in humans,27 having access to
well-characterized imaging readouts for early
diagnosis becomes increasingly essential for
therapy intervention studies.28,29
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