
Effect of Dedifferentiation on Time to Mutation
Acquisition in Stem Cell-Driven Cancers
Alexandra Jilkine1,2, Ryan N. Gutenkunst1*

1 Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America, 2 Department of Applied and Computational

Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America

Abstract

Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed
of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-
lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from
dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on
carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and
progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer
simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for
the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in
carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly
constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the
stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with
density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation
beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a
crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further
progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis.
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Introduction

Most tissues consist of three classes of cells: stem cells, transit-

amplifying progenitor cells, and differentiated cells. Multicellular

organisms require a tight control of cell division to ensure a proper

balance between these different cell populations. The cancer stem

cell (CSC) hypothesis states that tumors are also hierarchically

organized, with a small sub-population of cancer cells driving

cancer growth [1]. Individual cell tracing studies of tumor

development strongly support the cancer stem cell hypothesis in

many (but not all) types of cancer [2,3], and identifying these cells

in tissues is an ongoing goal in cancer research. Lineage studies

find that malignant tumors contain more cancer stem cells

compared to benign tumors and that cancers gradually lose their

tissue-like hierarchical organization as they evolve from benign to

malignant [2].

Cells escape proliferation control after acquiring a series of

mutations in a multi-step process [4]. While some cancers may

require only a few mutations [5], the number of required (driver)

mutations in solid cancers is larger, with up to twenty driver

mutations being required [6]. In order to accumulate this critical

number of mutations during a lifetime, cells either have to be long-

lived or the mutation rate has to be large [7]. Stem cells have been

proposed to be likely candidates for the initial cell of mutation due

to their long lifetime and sustained self-renewal capacity [1]. In

addition to their long life span, stem cells are able to generate full

lineages of differentiated cells, thereby perpetuating mutations

through clonal expansion. Given known division and mutation

rates, theoretical studies have argued that the necessary number of

mutations for carcinogenesis cannot be obtained in the stem cell

population on a reasonable time scale without assuming either

significant selective advantage or elevated mutation rates [4,7].

However, there is conflicting evidence as to how early in tumor

development cancers acquire an elevated mutation rate [8,9] and

several cancer genome sequencing studies have estimated muta-

tion rates during cancer initiation to be normal for some types of

cancer [10–12].

Although a stem cell may sustain the first oncogenic hit,

subsequent alterations required for development of CSCs can

occur in descendent progenitor cells [13]. Dysregulation of

pathways involved in stem cell self-renewal may lead to progenitor

cells acquiring a stem cell-like phenotype. It remains an open

question whether cancer stem cells originate from stem cells that

escape homeostasis or from dedifferentiated progenitor cells that

acquire infinite proliferating potential [14]. There is significant

evidence that dedifferentiation can play a role in establishment of

certain cancers [15–17]. For example, cell sorting has demon-

strated that stem-like cells can arise de novo from non-stem-like

cancer cells in in vitro breast cancer cell lines [18,19]. In the

hematopoietic system, it has been shown that leukemic stem cells
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can be generated from committed progenitor cells that acquire

stem cell-like behavior [20]. It has been suggested that acute

myeloid leukemia (AML) is a progenitor disease, where a

progenitor acquires abnormal self-renewal potential and ‘‘dedif-

ferentiates’’ to a stem cell-like state [21,22]. Other myeloid

leukemias such as CML (chronic myeloid leukemia) are thought of

as stem-cell diseases [23]. However, although a hematopoietic

stem cell is thought to be the cell of origin in the early phases of

CML, in patients with CML blast crisis, granulocyte–macrophage

progenitors are thought to acquire self-renewal capacity through a

b-catenin mutation and emerge as the probable CSCs [24]. Using

mathematical modeling to investigate the likelihood of mutation

occurring in a progenitor versus a stem cell is a continuing line of

investigation [25]. We treat the probability of a mutant progenitor

cell acquiring stem cell-like state as a ‘‘dedifferentiation’’ rate, and

we study how this parameter influences the time to carcinogenesis.

We are primarily interested in whether dedifferentiation can speed

up the time to tumor development in hierarchically organized

cancers and in what rates of dedifferentiation are necessary for a

noticeable effect.

Prior Related Mathematical Modeling
Certain aspects of the cancer stem cell hypothesis have

previously been addressed by mathematical models. It has been

shown that having a hierarchical tissue design, where a small

population of stem cells maintains a transient population of

differentiating cells, may slow the accumulation of mutations and

protect against cancer [26–28]. The question of whether genetic

instability (resulting in hyperactive mutation rate) is an early or

later event in mutation acquisition leading to cancer has been

addressed by several groups (see [4] for review). Most mathemat-

ical models find that the onset of genetic instability should be an

early event, if at least some of the mutations are neutral. However,

sequencing suggests that the mutator phenotype is expressed

relatively late in cancer progression [9].

Stem cell populations are typically small. Hence, the dynamics

of mutant cells in the stem cell population are highly sensitive to

stochastic fluctuations. A tumor begins with a single mutated cell,

so there is a substantial chance of mutant extinction due to

random events. Genetic drift and stochastic clonal extinction in

stem cell lineages have been experimentally demonstrated for both

normal tissue stem cells [29–31] and cancer stem cells [2] in

several tissue types. Consequently, a deterministic model of

mutation acquisition in stem cells will significantly underestimate

the time to cancer establishment [32]. Many models of mutation

acquisition use a stochastic approach and are concerned with

calculating time to emergence or fixation (or when the number of

mutant cells reaches some threshold value used in diagnosis) of a

mutant cell with fitness r~1zs in a population of size Nsc.

The waiting time for cancer is often defined as the time until a

particular number of mutation events have occurred in at least one

cell. Iwasa et al. [33] considered a two-stage Moran model and

described conditions under which ‘‘stochastic tunneling’’ can

occur. (In this phenomenon, cells with two mutations reach

fixation before cells with one mutation reach fixation.) Durrett et

al. [34] obtained asymptotic estimates of waiting times until a cell

with i mutations first appears under the assumption of neutrality

(s~0). These models typically consider a fixed population size

[5,23,25,35–39]. The fixed population assumption is supposed to

reflect homeostasis in the stem cell population, though how

homeostasis is achieved is typically not addressed. Although the

Moran model captures the stochastic nature of mutation

acquisition, this type of model is not capable of describing

mutations that change the stem cell division pattern and result in

possible expansion of the stem cell pool, which in turn leads to

tumor growth. Some recent models also consider mutation

accumulation in exponentially growing cell populations [40–43].

Beerenwinkel et al. [6] used the Wright-Fisher model with

exponentially growing population size to look at the effect of

selection on the waiting time to cancer, and they predicted that the

observed genetic diversity of colorectal cancer genomes can arise

under a normal mutation rate (taken to be u~10{7 per cell

division) if the average selective advantage per mutation is on the

order of 1%. Similar calculations using a discrete branching

process found s~0:4% given u~10{5 [40]. Note that increased

mutation rates due to genetic instability would allow even smaller

selective advantages during tumorigenesis, but neutral mutants

(s~0) result in waiting times that are too long compared with

disease incidence. Other groups have also concluded that for

normal mutation rates and neutral mutants, mutations in multiple

genes in acquired hematopoietic disorders are most likely very rare

events, as acquisition of multiple mutations typically requires

development times that are too long compared to disease

incidence [36].

Spencer et al. [44] and Ashkenazi et al. [45] have focused on the

sequential order of mutations associated with increased rate of

proliferation, decreased rate of death, increased mutation rate, and

other hallmarks of cancer that must accumulate before emergence

of cancer. The sequence of mutations with the shortest waiting

time to getting all the necessary mutations is considered the most

likely mutational pathway [25,44]. However, these models do not

consider the possibility that dedifferentiation of progenitor cells

can affect the time to multiple mutation acquisition.

The dividing progenitor cell population has previously been

described by multi-compartment ODE models, with cells moving

between compartments as they age [45–47]. Note that in these

models the exact number of different stages of differentiation is

ambiguous and does not exactly correspond to mitotic events, as

cells may undergo more than one division in each compartment

stage [46]. Most of these models of age-structured cell populations

assume a stem cell proliferation rate that is dependent on the total

number of cells and thus incorporate negative feedback as a means

of achieving homeostasis [48,49]. These deterministic models have

Author Summary

Recent evidence suggests that, like many normal tissues,
many cancers are maintained by a small population of
immortal stem cells that divide indefinitely to produce
many differentiated cells. Cancer stem cells may come
directly from mutation of normal stem cells, but this route
demands high mutation rates, because there are few
normal stem cells. There are, however, many differentiated
cells, and mutations can cause such cells to ‘‘dedifferen-
tiate’’ into a stem-like state. We used mathematical
modeling to study the effects of dedifferentiation on the
time to cancer onset. We found that the effect of
dedifferentiation depends critically on how stem cell
numbers are controlled by the body. If homeostasis is
very tight (due to all divisions being asymmetric), then
dedifferentiation has little effect, but if homeostatic
control is looser (allowing both symmetric and asymmetric
divisions), then dedifferentiation can dramatically hasten
cancer onset and lead to exponential growth of the cancer
stem cell population. Our results suggest that dedifferen-
tiation may be a very important factor in cancer and that
more study of dedifferentiation and stem cell control is
necessary to understand and prevent cancer onset.

Effect of Dedifferentiation on Time to Cancer
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focused on mechanisms that could regulate cell numbers that are

necessary for homeostasis and efficient repopulation. We use a

similar mathematical approach to model the progenitor popula-

tion as [49], but we couple it to stochastic dynamics in the stem cell

compartment.

Upon division a stem cell can produce zero, one, or two stem

cells with probabilities aD, aA, and aS , respectively (Fig. 1A). The

mean number of stem cell offspring is given by aAz2aS . If

symmetric divisions are permitted, the stem cell population can be

described by a branching process with the expected number of

cells at time t given by (aAz2aS)t. However, a branching process

either goes extinct or undergoes exponential growth, and thus it

cannot capture stem cell dynamics at equilibrium. One solution is

to use a conditional branching process [50], where the probabil-

ities for a branching process are conditioned to the total

population size remaining constant by an unspecified sampling

mechanism (i.e., assuming that the stem cell population remains in

homeostasis). Some theoretical studies have previously considered

the impact of the asymmetry of cell division on stem cell dynamics.

However, these stochastic models all assumed a fixed stem cell

population size, either through a variant of the Moran process

[35,51] or conditional branching process [39]. We utilize a

different approach to get a time-varying but bounded stem cell

population size in our models.

Our Modeling Approach
We use mathematical modeling to study how the possibility of

‘‘dedifferentiation’’ of mutant progenitor cells into a stem cell-like

state affects the waiting time to carcinogenesis. Dividing progen-

itor cells have large growing populations, so we use a deterministic

model to describe their evolutionary dynamics. For stem cell

populations, stochastic effects are important, because the prolif-

erating stem cell population is typically small. We use a stochastic

model for stem cell dynamics as a boundary condition to the PDE

governing differentiated cell expansion (Fig. 1B and C.) There is

also feedback from the deterministic progenitor population to the

stochastic stem cell population as a rate of ‘‘dedifferentiation’’.

To assess the effect of dedifferentiation on time to carcinogen-

esis, we consider models for stem cell dynamics with both fixed

and variable stem cell numbers (Fig. 1D). The main questions we

address are:

1. What is estimated time to carcinogenesis (acquisition of M
mutations) in stem cell-driven cancers if dedifferentiation from

the progenitor population is allowed?

2. What magnitude of dedifferentiation rate is needed to

significantly shorten the time to cancer acquisition? Will

dedifferentiation still change the waiting time to cancer if

homeostasis in the stem cell population is maintained

(population size remains constant) or does homeostasis need

to be lost?

3. What is the effect of symmetric division of stem cells, which

leads to a non-constant stem cell population size? Do stochastic

fluctuations in the size of the stem cell pool shorten the time to

malignancy compared to a constant stem cell population size?

Our general compartment model can be applied to different

tissues, such as colonic crypts, mammary cells, and hematopoiesis.

Models

We make the following assumptions:

1. The population of progenitor cells is large enough that

maturation can be treated as a continuous variable. Discretiz-

ing the progenitor cell population based on the number of

divisions a cell has completed, we obtain an age-structured

partial-differential-equation model for the number of differen-

tiated cells of age a at time t. We assume that when progenitor

transit-amplifying cells carrying i mutations divide, they

produce progenitor cells of the same maturity stage, obtaining

the linear PDE

Lpi

Lt
z

da

dt

Lpi

La
~(s(a){m(a))pi: ð1Þ

where pi(a,t) is the progenitor cell density at age a and time t,
s(a) is the age-dependent proliferation rate, and m(a) is the

age-dependent mortality rate. We assume that the rate of

maturation
da

dt
does not depend on age a and, without loss of

generality, set it equal to 1. Similar age-structured population

equations have been previously studied, with focus on the

regulatory feedback mechanisms that are necessary for homeo-

stasis and structural stability of the steady state solution [47,49].

2. We assume that there is a separate stem cell population that

gives rise to newly born differentiated cells pi(0,t) that serves as

a boundary conditions to the PDE system in Eq. (1). We treat

this population stochastically. We consider two different models

for the stem cell population: one where the total stem cell

population is fixed and a variant that allows a time-varying but

bounded stem cell population size (Fig. 1D).

Figure 1. Schematic representation of our model. (A) Stochastic
model for stem cell division. A stem cell can produce zero, one, or two
stem cells with probabilities aD , aA , and aS , respectively. The mean
number of offspring is given by m~aAz2aS . (B) Stem cells serve as an
input to the proliferating progenitor population, and the progenitor
population feeds back to the stem cell pool via dedifferentiation. (C)
Mutation occurs with rate u during division and can affect cells both in
the stem cell and progenitor pools. Blue circles represent wild-type
cells, red circles cells with one mutation, and green circles cells with two
mutations. (D) The sequence of models explored in this paper.
doi:10.1371/journal.pcbi.1003481.g001
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3. We assume neutral fitness of mutant stem cells, with the

proliferation advantage of the mutant phenotype appearing

only in the progenitor stage, in line with what is known for

some cancers of the hematopoietic system [52,53].

4. We require M~2 mutations to appear in the progenitor

population before dedifferentiation to a stem-cell like state is

possible, because sequencing of acute myeloid leukemia

genomes suggest that there are two driver mutations present

[54]. Additional justification for requiring M~2 mutations is

considered in the Discussion.

5. Due to lack of data on dedifferentiation capacities, we assume

progenitor cells of all maturity stages have an equal probability

of dedifferentiating.

Progenitor Cells
Extending Eq. (1) to account for mutations between multiple

subpopulations of progenitor cells (Fig. 1C) we obtain

Lp0

Lt
z

Lp0

La
~((1{u�)s0(a){m0(a))p0, ð2aÞ

Lp1

Lt
z

Lp1

La
~((1{u�)s1(a){m1(a))p1zu�s0(a)p0, � � � ð2bÞ

Lpk

Lt
z

Lpk

La
~(sk(a){mk(a))pkzu�sk{1(a)pk{1: ð2cÞ

Here u� is the mutation rate per cell per unit time and pi(a,t) is the

number of progenitor cells of ‘‘age’’ a from the subpopulation with

i mutations. We assume 0ƒiƒM, and no back mutation is

allowed.

Let ni(t) be the number of stem cells with i mutations at time t.
Let aD,i be the probability of a symmetric division that gives rise to

two differentiated cells, aA,i be the probability of an asymmetric

division that gives rise to one stem cell and one differentiated cell,

and aS,i be the probability of a symmetric division that gives rise to

two stem cells. Then

pi(0,t)~(2aD,izaA,i)ni(t): ð3Þ

If we neglect mutation, the steady wave-form solutions of Eq. 2

have the form

pi(a,t)~ani(t{a)eri (a), ð4Þ

where a~2aD,izaA,i is the average number of stem cells of type i

produced per division and ri(a)~
Ð a

0
(si(s){mi(s))ds is the age-

dependent growth rate of the differentiated cell population (Text

S1). Hence, the long-term age distribution is largely determined by

the functional forms of the differentiated cell birth and death rates

(Fig. S1 and S2.) Altered birth and death rates due to mutations

can result in mutant subpopulations growing to higher plateaus in

size, but the final population size will be bounded. Our PDE

system can be easily modified to have a maximal carrying capacity

Ki for each sub-population. This does not qualitatively change the

age distribution of progenitor cells (Fig. S1) and does not

significantly affect the fraction of i-mutation cells in the total

progenitor population (Fig. S3), so we do not consider it further.

To mimic a maturity switch for cellular proliferation and death,

we took the proliferation and death rates of differentiated cells per

unit time to be

s(a)~
b

2
1{tanh(rb(a{vb))ð Þ, and ð5aÞ

m(a)~
d

2
(1ztanh(rd (a{vd ))): ð5bÞ

Here b and d are the maximal proliferation and death/removal

rates of progenitor cells. The age at which the proliferation switch

occurs (i.e., half the progenitor cells stop dividing) is given by vb,

and the steepness of the proliferation switch is determined by rb.

Similarly, the age at which half the cells begin to undergo

apoptosis is given by vb, and the steepness of the death switch is

controlled by rd . If vbvvd , then differentiated cells between the

ages of vb and vd are not replicating (senescent). Note that setting

either of these values to zero results in a uniform rate of birth/

death. Effects of varying proliferation/death parameters are shown

in Fig. S2. The parameters governing proliferation, in particular b

and vb, have much larger influence on the final differentiated cell

population size than parameters governing death/removal. The

steepness of the switch does not substantially change the age

distribution.

Stem Cells
Constant stem cell population size. To model the evolu-

tionary dynamics of a stem cell population under strict homeostasis

(resulting in a fixed stem cell population size), we used the Moran

stochastic process for Mz1 different types, with mutations

between types and neutral fitness [50]. Let the number of

individuals carrying each possible number of mutations be given

by n~(n0,n1,:::,nM ), where
XM

i~0
ni~Nsc. We considered two

versions of this model, with and without dedifferentiation. In both

cases, we assumed that each stem cell divides, on average, every

Tgen chronological time units. Thus, in a population of size Nsc,

the average time between divisions was Tgen=Nsc.

In the first model, no dedifferentiation of progenitor cells was

possible. Every Tgen=Nsc time units, a single randomly chosen stem

cell j was removed and one cell i was born with probability given by

P(n?nzei{ej)~
nj

Nsc

XM
h~0

mi,h
nh

Nsc

" #
, ð6Þ

where mi,h is the probability of changing to type i from type h per

replication event, and ej is a unit vector with 1 in the jth column. We

considered a linear cascade of mutations in which the muta-

tion matrix ½mi,h� is given by

1{u1 0 0 � � � 0

u1 1{u2 0 � � � 0

0 u2 0 � � � 0

..

. ..
. ..

.
P

..

.

0 0 0 � � � 1

2
66666664

3
77777775
: ð7Þ

We also considered a version of the model in which dedi-

fferentiation of two-mutation differentiated cells was allowed, but

Effect of Dedifferentiation on Time to Cancer
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the total stem cell population size remained fixed. In this model,

the probability of death of a j-mutation stem cell and birth of an i-
mutation cell was given by

P(n?nzei{ej)~

1{efð Þ nj

Nsc

XM
h~0

mi,h
nh

Nsc

" #
zdi,2e

Ð
a

p2(a)daP
i

Ð
a
pi(a)da

,
ð8Þ

where e is the proportion of cells in the stem cell pool that come

from dedifferentiated cells at each replication event, and di,2 is the

Kronecker delta function signifying that that only two-mutation

progenitor cells can dedifferentiate. Here

f ~

Ð
a

p2(a)daP
i

Ð
a
pi(a)da

is the proportion of two-mutation cells of all ages in the progenitor

population, given that pi(a) is the density of differentiated cells of

age a carrying i mutations. We also considered a version of the

model in which all progenitor cells, regardless of the number of

mutations, could dedifferentiate (Text S1).

Because the Moran model has been studied extensively, we were

able to use several existing results on the time to emergence and

fixation of mutants. Let tM be the first time at which an individual

carrying M mutations emerges who will go on to fix in the

population. We focus on the case M~2 because sequencing of acute

myeloid leukemia genomes suggests that there are 2 driver mutations

present [54]. (See Discussion for more details.) Using branching

process approximations, Durrett et al. [34] calculated the waiting

time for the Moran model under neutral drift of prior mutants. For

M~2, the probability density function for t2 is given by

w(Nscu1
ffiffiffiffiffiffiffiffiffiffiffiffi
u2rfix

p
t2~t)&

1{e{2t=l

1ze{2t=l
exp {

ðt

0

1{e{2j=l

1ze{2j=l
dj

� �
: ð9Þ

This simplifies to

w(Nscu1
ffiffiffiffiffiffiffiffiffiffiffiffi
u2rfix

p
t2~t)&tanh(t=l)(cosh(t=l)){l, ð10Þ

where l~Nscu1, and rfix is the probability that a single mutant

individual will fix in a population of size Nsc. For neutral drift,

rfix~1=Nsc, and for weak selection

rfix~
1{exp({2s)

1{exp({2sNsc)
, ð11Þ

where M-mutation cells have advantage s%1 [50].

The time to fixation of the subpopulation with M~2 mutations

is a sum of two random variables: the time t2 until appearance of a

successful two-mutation cell (Eq. (9)) and the waiting time tfix from

the time that mutant first appears until that mutant fixes [55].

Note that this time is given in units of stem cell generation times

Tgen. The probability density function of the total fixation time,

Tfix, is given by the convolution

w(Tfix)~

ðTfix

0

w(t)~ww(Tfix{t)dt ð12Þ

of the probability density functions w for time to first appearance of

successful mutant and ~ww for time it takes that mutant to fix. ~ww can

be obtained from the backward Kolmogorov equation for the

probability of fixation f of a gene with initial frequency p0 before

time t:

Lf (p0,t)

Lt
~

p0(1{p0)

2Nsc

L2f (p0,t)

Lp0
2

zsp0(1{p0)
Lf (p0,t)

Lp0
, ð13Þ

subject to boundary conditions f (1,t)~1 and f (0,t)~0 and initial

condition f (p0,0)~d(p0). Dividing f by the ultimate probability of

fixation rfix and differentiating with respect to t, we obtain the

probability density function for ~ww as a function of initial allele

frequency p0 [56].

Variable stem cell population size. Our previous stem cell

models couple birth and death events to keep the population size

fixed, but we next decoupled these events to allow for a

stochastically varying population size. For clarity, we refer to the

total stem cell population size in this model by S(t). Again

assuming that the average replication time of a stem cell is Tgen,

the interval between birth/death events in this stochastic stem cell

model corresponds to Tgen=S(t) time units in the progenitor cell

model. We assume that homeostasis in the stem cell pool is

maintained by control of cell fate upon division, and that each

stem cell can produce zero, one, or two stem cell offspring. For

example, the possible offspring from a zero-mutation stem cell are:

two differentiated zero-mutation cells with probability aD, one

zero-mutation differentiated cell and one zero-mutation stem cell

with probability aA(1{u), one zero-mutation differentiated cell

and one one-mutation stem cell with probability aAu, two zero-

mutation stem cells with probability aS(1{2u), and a one zero-

mutation stem cell and one one-mutation stem cell with

probability 2uaS . (For simplicity we assume the probability of

both offspring carrying new mutations to be negligible.) In general,

a stem cell carrying i mutations can produce k stem cell offspring

carrying j mutations with probability P
j
i(k) given by

Pi
i(0)~aD, Pi

i(1)~aA(1{u)zaSu,

Piz1
i (1)~aAuzaSu, Pi

i(2)~aS(1{2u):
ð14Þ

With constant division probabilities aD,aS and aA, this model is a

rescaled Galton-Watson branching process, and the stem cell

population either goes extinct in finite time or undergoes expo-

nential growth when the mean number of stem cell progeny per

cell, m~2aSzaA, is greater than one [57]. To describe a stem cell

population under homeostasis, the probabilities aD, aA, and aS

must depend on the total stem cell population size S(t). We model

a carrying capacity Ki for stem cells carrying i mutations, such that

aA,i~g, aS,i~(1{g)
Kj

i

Kj
i zS(t)j

, aD,i~(1{g)
S(t)j

Kj
i zS(t)j

: ð15Þ

As g approaches one, aA approaches one, so that most of the

divisions that occur do not change the stem cell population size,

and we recover the Moran process for all carrying capacity values.

The parameter j controls strength of fluctuations about the

carrying capacities; as j increases, the fluctuations become smaller.

In this model, newly emerging mutants can still go extinct due to

stochasticity, but the total population reaches a quasi-stationary

regime at population size Ki. Note that, because this is a quasi-

stationary regime, eventually the stem cell population will go

extinct, but the expected time to extinction is exponentially

proportional to Ki for j~1 and g~0 [58]. We chose the carrying

Effect of Dedifferentiation on Time to Cancer
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capacity to be large enough that extinction of the stem cell

population does not occur on a physiological timescale, and we

initialized the stem cell population to be at carrying capacity with

zero-mutation cells.

We considered two versions of the variable stem cell population

size model. In the first case, no dedifferentiation was possible. In

the second case, differentiated cells with K mutations were allowed

to dedifferentiate and re-enter the stem cell population. Let d be

the dedifferentiation rate per two-mutation progenitor cell per unit

time. Then the mean number of cells dedifferentiating in the

interval Tgen=S(t) between two stem cell replications is

l~d
Tgen

S(t)
P(t)~d

Tgen

S(t)

ð
p2(a,t)da: ð16Þ

To introduce dedifferentiated cells into the stem cell population, at

each replication event we calculate the mean number of

dedifferentiated progenitor cells l and update the stem cell

population:

½n0,n1,n2�?½n0,n1,n2zPoisson(l)�, ð17Þ

After the total stem cell number is updated, the probabilities of

reproduction are re-calculated using Eq. (14), and reproduction is

carried out.

Model Parameters
Parameters used are summarized in Table 1. We used parameter

estimates from the human hematopoietic system because param-

eters for other cancers are less well known. We used M~2 as the

number of necessary mutations to develop a cancerous phenotype.

Although it has been estimated that for the human hematopoietic

system there are 11,000–22,000 stem cells [59], which give rise to all

blood and immune system cells, most of these cells are quiescent and

only divide when body sustains an injury and needs to repopulate

the hematopoietic system. Our model only considers actively

dividing stem cells, which have been estimated by various methods

to number around 100 [32,60]. The entire actively dividing stem

cell population has previously been modeled as turning over once

per year [32], but most recent estimates have an individual stem cell

dividing every 25–50 weeks [61]. However, this is likely an over-

estimate, as it is difficult to distinguish between actively dividing and

quiescent stem cell populations. We assume that an active stem cell

divides every 20 weeks, which when multiplied by Nsc results in an

active stem cell population turnover time of Tgen~5 weeks. (The

entire stem cell population including quiescent cells turns over on a

much longer timescale.)

Whereas the size of the active hematopoietic stem cell pool is

small, the number of progenitor cells such as granulocyte,

erythroid, monocyte, and megakaryocyte colony-forming units

(CFU–GEMM) and granulocyte and monocyte colony-forming

units (CFU–GM) is much larger. There are approximately 105

CFU–GEMM cells and 108 CFU–GM cells [62]. There are

estimates that each CFU–GEMM may contribute to hematopoi-

esis for an average of 60 days (range of 40–340 days) and that it

replicates at an average rate of once every 50 days (range of 35–

285 days) [62]. We track the progenitor populations for L~20
weeks, and assume that their proliferative potential rapidly drops

off after 10 weeks. The maximal proliferation and death rates, bi

and di were chosen so that 100 stem cells results in 105{106

progenitor cells of all ages.

Not much is known about the selective advantage s provided by

driver mutations for different cancer types, except that it is small

(r~1zs&1). Unless stated otherwise, we assume neutral fitness in

the stem cell pool (s~0) in our stochastic models throughout the

paper, to focus on the effect of dedifferentiation. We use a range of

s~0 � � � 0:4 for the progenitor cells in the deterministic model.

Mutation estimates per cell division per gene range from about

10{7 in normal cells to 10{2 in the case of chromosomal

instability [63]. (Note that the rate of epigenetic change has been

estimated to be orders of magnitude higher than that of genetic

change and could also play a role in cancer initiation [10].) A

common value used in many mathematical models is a driver

mutation rate of u~10{5 per division, obtained by assuming a

somatic mutation rate of 10{7 per gene, and about 100 genes that

could be mutated to give same phenotype [40,45]. In normal

hematopoietic cells the mutation rate has been measured as

u~10{6 per division [64].

Note that in the stochastic model, which considers every cell

division, the mutation rate u can be used as is, but using

chronological time (i.e., weeks or months) means that this value

should be multiplied by the average number of divisions per unit

time to obtain u�. (Mutations that speed up the cell cycle will then

speed up the apparent mutation rate per unit of chronological time

in our progenitor model.) The expected number of doublings from

ni stem to pi progenitor cells is log2 pi=nið Þz2 [46], and the total

number of progenitors cells of type i is pi&anie

Ð
r(a), da

. Using

values from Table 1, this results in 8{10 cell divisions that take

place over 10 weeks, so u�&u in equations (2).

Results

The coupled system of stem cells and progenitor cells undergoing

mutation and dedifferentiation we modeled is complex. To

disentangle the effects of different phenomena, we systematically

built up the model. We first considered the progenitor population

alone. We then considered the stem cell population alone, in models

with strict and variable stem cell homeostasis. Finally, we coupled

the stem and progenitor populations through dedifferentiation.

Progenitor Population Alone
We first considered whether mutation and reproduction in the

progenitor population could by itself generate a sustained

population of two-mutation cancerous cells. We thus modeled a

scenario in which no stem cell mutations occur, so the boundary

condition to the progenitor population system in equations (2) is

simply (Nsc,0, � � � ,0). Because selection in the progenitor popula-

tion might favor mutants, we also assumed that progenitor cells

with i mutations have a proliferation rate bi~(1zs)ib0 (Eq. (5)).

This yields a steady-state age distribution of normal and mutant

progenitor cells (Fig. S2).

Fig. 2 summarizes results for typical parameter values, showing

that for M~2 mutant cells to be an appreciable fraction of the

population, the mutation rate u and proliferative advantage s must

both be unreasonably high. This is true both if the total progenitor

population can grow without bound (Fig. 2a) and if its growth is

restricted (Fig. 2b). Similar findings are obtained if competition

between progenitor subpopulations is included in the model (Fig.

S3). Consistent with previous work [26,27,36], these results show

stem cell dynamics cannot be ignored in considering time to

carcinogenesis, so we next considered stochastic models of the

stem cell population.

Stem Cell Population Alone
Our first models for stem cells did not incorporate dedifferen-

tiation, so the dynamics were entirely governed by the stem cells.

Effect of Dedifferentiation on Time to Cancer
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In modeling cancer, the time to carcinogenesis can be defined as

the time for a single M-mutation cell to emerge, the time for M-

mutation cells to pass some threshold number or fraction, or the

time for M-mutation cells to fix in the population. If the mutation

rate is low (such that Nscu%1), then all three definitions are

similar, because the time to emergence of a successful M-mutation

cell is long compared to the time from emergence to fixation.

However, there is large uncertainty regarding effective mutation

rates in carcinogenesis (Table 1), so the assumption of low

mutation rate may not always be valid, and we thus calculated

times to fixation.

We began our stem cell modeling by considering fixed

population size, corresponding to strict homeostasis. In this

constant Nsc case, we could leverage several analytic results, with

which our simulations agreed well. Fig. 3A shows a typical

simulation. The full probability density distribution of time to

fixation is given by Eq. (12) and agrees well with our simulations

for high mutation rates (Fig. 3B). The time to emergence of a

successful mutant is of order 1/(
ffiffiffiffiffiffiffi
Nsc

p
u3=2) stem-cell generations

(Eq. (9)). For normal mutation rates of u~10{6{10{8 per cell

division, the mean time until emergence of a two-mutation cell is

108{1011 stem cell generations, which is very long even with a

short stem cell generation time.

Because homeostasis is likely imperfect, we also considered a

stochastically fluctuating stem cell population size. We found that,

without dedifferentiation, the distributions of times until fixation

are very similar for models with and without fluctuations in the

stem cell population size, as long as we condition on non-

extinction of the stem cell population (Fig. 3B). This is true for a

wide range of probabilities of asymmetric division g and strengths

of mean reversion j (Eq. (15)). This agrees with previous findings

that demographic stochasticity does not alter fixation times of

neutral mutants in a large population [65], provided that the

carrying capacities of the mutants are the same.

Our results suggest that dynamics within either the progenitor

or stem cell compartments considered separately do not result in

carcinogenesis in the hematopoietic system on a realistic time-

scale, provided that cancer-causing mutations occur at normal

mutation rates, selection advantages relative to wild-type stem cells

do not appear until M~2 mutations, and the stem cell population

size is constant or varies stochastically around a carrying capacity.

We thus turned our attention to coupled model systems in which

progenitor cells can dedifferentiate into stem cells.

Dedifferentiation with Constant Stem Cell Population
Size

For the coupled system, we first considered stem cell homeo-

stasis caused by strict asymmetric division in the stem cell

population, so the stem cell population size remains fixed. To

model dedifferentiation in this case, we built off the Moran model

and assumed that when a stem cell dies and another enters the

population, the new entrant comes from the two-mutation

progenitor population with probability equal to e times the

proportion of two-mutation cells in the progenitor population.

Otherwise the new stem cell comes from replication of another

stem cell. Roughly speaking, in this model the death of a stem cell

leaves a opening in the niche, which can potentially be filled by a

dedifferentiated progenitor cell. The number of progenitor cells

which can successfully dedifferentiate is controlled by the number

of niche openings (stem cell deaths), not by the absolute number of

progenitor cells.

Typical simulation results are shown in Fig. 4A. We found that

dedifferentiation dramatically shortens the time to fixation of two-

mutation cells (Fig. 4B). For small dedifferentiation rates e 0:05,

we also saw good agreement between our simulations and a semi-

analytical approximation for the time to fixation of two-mutation

cells with selective advantage e (Eq. (12)). This agreement suggests

that under strict stem cell homeostasis, dedifferentiation is

effectively equivalent to a growth advantage for mutant stem cells.

Distributions of times to fixation of two-mutation stem cells are

plotted as a function of both dedifferentiation rate e and mutation

rate u in Fig. 4C. Dedifferentiation had two major effects in this

Table 1. Parameter values used in numerical simulations.

Parameter Meaning Value

L maximum progenitor lifespan 20 weeks [62]

Tgen=Nsc mean time between stem cell replication/death events 0.05 per week [45]

Nsc total number of active stem cells at homeostasis 100 [32]

Tgen turnover time of active stem cell population 0:05|100~5 weeks (see text)

Ki active stem cell population carrying capacity Nsc [32]

bi maximal proliferation rate of progenitors with i mutations 1.5+0.2i per week (see text)

di maximal death rate of progenitors with i mutations 1.0 per week (see text)

rb steepness of the proliferation switch 2 (assumed)

vb age at which proliferation switches off 10 weeks (assumed)

vd age at which death switches on 0 weeks (assumed)

u stem cell mutation rate per replication 10{2 [63] to 10{6 [64]

u� effective progenitor mutation rate (per week) same as u (see text)

g probability of stem cell asymmetric division 0 to 1

e replicating stem cell fraction from dedifferentiated progenitors (constant size model) 0 to 1

d progenitor cell dedifferentiation rate (variable size model) 0 to 10 per week (assumed)

l(t) mean number of dedifferentiated progenitors per stem cell reproduction event (variable size model) dTgen

S(t)

ð
p2(a,t)da

doi:10.1371/journal.pcbi.1003481.t001
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model: increasing the probability that an emergent two-mutation

stem cell would fix and reducing the time between emergence and

fixation. Both of these effects act only after a two-mutation cell has

been generated in the stem cell population. (Recall that, as shown

in Fig. 2, the mutation rate and selective advantage must be

unrealistically high for a nontrivial fraction of two-mutation

progenitor cells to exist in the absence of underlying two-mutation

stem cells.) For all mutation rates u, the distribution of times to

fixation was roughly constant for dedifferentiation rates

e 1=Nsc, consistent with population genetics theory that

selection is only effective when the selection coefficient is greater

than the reciprocal of the effective population size. For small

mutation rates u, increasing e beyond this threshold only

marginally shortened the total time to fixation. This is because

in this case the total time to fixation is dominated by the time for a

successful two-mutation cell to emerge, and dedifferentiation only

reduces this time by a factor of 1=
ffiffiffiffiffiffiffi
rfix
p

(Eq. (9)), where rfix is the

probability of a emergent two-mutation stem cell fixing. Under

Figure 2. Steady-state progenitor distributions in the absence of stem cell mutation. (A, B) Fraction of two-mutation cells as a function of
mutation rate u and proliferative advantage s for (A) unlimited growth, (B) logistic growth for each subpopulation. (C, D): Corresponding total
population sizes for (C) unlimited growth, (D) logistic growth. Birth/death rates of progenitor cells are given by Eq. (5) with constant death rate m~1
and sigmoidal birth rate with maximal growth rate b0~2, bi~(1zs)bi{1 for i~1,2. In (B) the carrying capacity used is
N1~200Nsc,N2~250Nsc,N3~300Nsc: Other parameters are as in Table 1. For two-mutation cells to reach appreciable levels in this scenario,
both the mutation rate and the proliferative advantage must be unreasonably large.
doi:10.1371/journal.pcbi.1003481.g002

Figure 3. Times to fixation without dedifferentiation. (A) Typical simulation trajectory for constant stem cell population size and mutation rate
u~0:1. The numbers of zero-, one-, and two-mutation stem cells are shown in blue, red, and green, respectively. The proportion of two-mutation
cells in the progenitor population is shown in black. (B) Times to fixation for constant and variable stem cell population size models. Histograms of
waiting times to fixation of two-mutation cells for constant (blue) and variable stem cell population size with high fluctuations (green, j~1) and low
fluctuations (red, j~100). The semi-analytic distribution of waiting times calculated from Eq. (12) is shown in black. In both panels the mutation rate
u~0:01.
doi:10.1371/journal.pcbi.1003481.g003
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neutrality rfix~1=Nsc, so for our model with Nsc~100, dediffer-

entiation can shorten the time to emergence by at most a factor of

10. The dedifferentiation rate needed to significantly change this

waiting time scales linearly with Nsc (Fig. S4C). Hence, for larger

stem cell population sizes, a small dedifferentiation rate would have

a larger effect. For high mutation rates u, the effect of dedifferen-

tiation is more dramatic, because the time from emergence to

fixation of two-mutation cells, which dedifferentiation also shortens,

is comparable to the time to emergence (Fig. 4D).

The model considered in Fig. 4 assumes that only two-mutation

progenitor cells can dedifferentiate. We also considered an

alternate model in which any progenitor cell can dedifferentiate

(Text S1). In this alternate model, dedifferentiation again had little

effect for ev*1=Nsc. Past that threshold the effect was substantial,

because in this model dedifferentiation speeds up the time to

emergence of two-mutation cells, because one-mutation cells fix

much more quickly when they too can dedifferentiate (Fig. S4D).

In addition, we considered the case in which the dedifferentiation

rate is additionally weighted by the progenitor proliferation rate,

and our results did not change qualitatively (Text S1, Fig. S4B).

Our analytical and numerical results suggest that, with intact

homeostasis in the stem cell population and normal mutation

rates, dedifferentiation plays a fairly minor role in speeding up the

time to cancer initiation. We thus turned to consider the case in

which homeostasis is not strict.

Dedifferentiation with Variable Stem Cell Population Size
In the previous section, we assumed that the stem cell

population size was constant because homeostasis was maintained

by all divisions being strictly asymmetric. Consequently, dedif-

ferentiated progenitor cells could only occupy newly created

openings in the stem-cell niche created by a death event in the

stem cell population. Because homeostasis is likely maintained at

the population level [66], with each stem cell division producing

not strictly one stem cell but rather on average one stem cell, we

next considered a model in which the stem cell population could

stochastically fluctuate around a carrying capacity. In this model,

stem cell homeostasis was maintained by dynamically altering the

probabilities of the three possible outcomes of a stem cell division:

two stem cells, one stem and one progenitor cell, or two

progenitor cells (Eq. (15)). Two-mutation progenitor cells each

had a probability per unit time of dedifferentiating, and

dedifferentiated cells were simply added to the stem cell pool.

Thus in this model the total influx of dedifferentiated cells

depended on the total number of two-mutation progenitor cells,

not on the creation of openings in the stem cell niche. (Note that,

in our previous model with constant stem cell population size, the

rate of dedifferentiation per reproduction event was denoted e.

To distinguish the present model, we denoted the progenitor

dedifferentiation rate per cell per unit time as d.) Again, we asked

whether dedifferentiation substantially speeds the time to

carcinogenesis.

Fig. 5A and 5B show typical results from this model for a

moderate dedifferentiation rate d. After a waiting time, the

population of stems cells began to grow exponentially, because the

influx of dedifferentiated two-mutation progenitor cells exceeded

the capacity of stem-cell division homeostasis. For larger

dedifferentiation rates, the exponential growth rate is larger

Figure 4. Times to fixation with dedifferentiation for constant stem cell population size. (A) Typical simulation trajectory with
dedifferentiation (e~0:02) for the same random number seed as Fig. 3A. Blue: zero-mutation stem cells, Red: one-mutation stem cells, Green: two-
mutation stem cells. Black: proportion of two-mutation cells in the progenitor population. (B) Distributions of times to fixation of two-mutation cells
under strict stem cell homeostasis. Normalized histograms (dots) and analytical approximations (solid lines) are shown for u~0:01 for zero
dedifferentiation (red; e~0) and non-zero dedifferentiation (black; e~0:02). (C) Median times to fixation of two-mutation cells (solid lines) and inter-
quantile ranges (shaded regions) versus dedifferentiation rate e and mutation rate u. (D) Mean times to emergence of a successful two-mutation stem
cell (solid lines, Eq. (9)) and fixation of such cells (dotted lines, Eq. (12)) in Moran models with selection coefficient s. Black curve indicates first
appearance of two-mutant cell.
doi:10.1371/journal.pcbi.1003481.g004
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(Fig. 5C and 5D), and the distribution of progenitor ages can be

distorted, with many young cells, as seen in Fig. 5E and 5F.

Exponential growth eventually occurs whenever the dediffer-

entiation rate exceeds a threshold dcrit. Solving self-consistently for

the influx of dedifferentiated cells and the growth rates of the stem

and progenitor cell populations, we obtained an integral equation

for the growth k

k~ad

ð?
0

e{kaer(a)da{
1{g

Tgen

, ð18Þ

which provides an excellent fit to the numerical simulations (Fig. 5

and 6A,B). (For derivation details, see Text S1.) Setting this growth

rate k to zero, we found

dcrit~
1{g

aTgen

Ð?
0

er(a)da
: ð19Þ

Here g is probability of asymmetric stem cell division (producing

one stem and one progenitor cell), and Tgen is the mean time

between stem cell divisions. (Note that if g~1, this model reduces

to the Moran model with the population size monotonically

increasing due to dedifferentiation.) Lastly, a~2aD,2zaA,2 in Eq.

(19) is the average number of progenitor offspring produced by a

two-mutation stem cell. Because aD,2 changes as the system

attempts to maintain stem-cell homeostasis, a is actually a

stochastic variable that depends on the stem cell population size.

During exponential growth a&2{g, because the probability of

symmetric divisions that give rise to two stem cells goes to zero,

and all new stem cell growth comes from dedifferentiated

progenitor cells. In Eq. (19), r(a) is the growth rate of two-

mutation progenitor cells as a function of age a, so
Ð?

0
er(a)da is the

number of progenitors produced by one two-mutation stem cell.

Increasing the amplification of mutant stem cells into progenitors

increases the net dedifferentiation rate, lowering the threshold

dcrit. Because the threshold dcrit depends on the age distribution of

the two-mutation cells, for a given (small) rate of dedifferentiation

d, evolving a mutant that proliferates faster (increasing er(a)) can

destabilize a system in which the number of cancerous cells is

stable and take it into exponential growth regime.

The dependence of the critical dedifferentiation rate dcrit on the

growth-rate advantage s of two-mutation progenitor cells and

probability g of asymmetric cell division is shown in Fig. 6B. The

critical d decreases rapidly as the selective advantage of two-

mutation cells increases. Increasing g or Tgen also lowers the

critical dedifferentiation rate, because homeostasis is less effective

when asymmetric stem cell divisions are less frequent. Note that

the exponential growth rate k does not depend on the mutation

rate (Fig. S5A), and although the critical d given by (19) needed for

exponential growth is a function of the probability of asymmetric

division g, the actual growth rate k and the time to exponential

growth are not significantly affected by changing g (see Fig. S5B).

For dedifferentiation rates d below dcrit, two-mutation stem cells

eventually fix in the population, but for dwdcrit, the stem cell

population is likely to begin exponential growth before fixation of

two-mutation stem cells. Thus in Fig. 6C and 6D we report the

time to carcinogenesis as the time for the two-mutation stem cell

population to exceed Nsc, the nominal carrying capacity of the

stem cell compartment. In this case of stochastic stem cell

homeostasis, dedifferentiation can dramatically shorten the time to

carcinogenesis, even for low mutation rates u. This is because the

first two-mutation stem cell often arises not from direct mutation

of a stem cell, but rather from dedifferentiation of a progenitor cell

generated by mutations within the progenitor compartment

(Fig. 6E). Although mutations in the progenitor compartment do

not affect a large fraction of progenitors, because the number of

progenitor cells is so large, the absolute number of two-mutation

progenitor cells is non-negligible. Thus even small rates of

dedifferentiation can have dramatic effects. This is in contrast to

the case of strict stem cell homeostasis, in which the absolute

number of two-mutation progenitor cells was unimportant,

because they needed an opening in the stem cell niche to

successfully dedifferentiate.

Our results show that the case of stochastically controlled stem

cell homeostasis is qualitatively different from the case of strict

homeostasis. If homeostasis is controlled at the population level

(where stem cell decisions between symmetric and asymmetric

division are stochastic), dedifferentiation can overwhelm it, leading

to exponential growth of the stem cell population. Moreover, if

dedifferentiated cells do not depend on openings to colonize the

stem cell niche, dedifferentiation can dramatically hasten the time

to carcinogenesis, even for low mutation rates.

Discussion

Progression to cancer is associated with expansion of the cancer

stem cell (CSC) population, but the origin of these CSCs remains

unclear. Although CSCs may arise directly from adult stem cells,

they may also arise from somewhat differentiated cells that have

dedifferentiated and acquired stem cell-like characteristics

[13,14,18,19,67]. Stems cells replicate indefinitely, giving them a

long time to accumulate the mutations that drive carcinogenesis,

but the population of actively dividing stems cells (Nsc) is small.

Progenitor cells replicate only a small number of times, but the

population of progenitor cells is typically several orders of

magnitude larger than the stem cell population. Thus, as a

population, progenitors undergo many more divisions, potentially

letting some of these cells acquire mutations that enable them to

dedifferentiate and drive carcinogenesis. Here, using mathematical

modeling, we have shown that even a small rate of dedifferenti-

ation may drastically shorten the time to cancer emergence, even

for low mutation rates.

Recent studies suggest stem cell dynamics during homeostasis

are governed by neutral competition and genetic drift [10,29,30].

Traditionally, stem cells were thought to always undergo

asymmetric division, always yielding a stem cell and a progenitor

cell, resulting in a fixed stem cell population size. This scenario is

represented by our first model for stem cell dynamics, based on the

popular Moran model. It has been recently shown, however, that

symmetric divisions also occur in adult stem cells and may be the

predominant form of division [68,69]. Moreover, cancer stem cells

have been shown to undergo more symmetric divisions than

normal stem cells [70]. Little is known, however, about how the

stem cell population size is regulated [29]. Hence, in our second

model for stem cell dynamics, we made the simplifying assumption

of an a priori carrying capacity Ki. We considered a density-

dependent stochastic process, in which the degree of mean

reversion is controlled through the probabilities of producing zero,

one, or two stem cell offspring. In this model, the non-constant

stem cell population size S(t) tends to return to the carrying

capacity Ki, because the mean number of stem cells produced per

division is greater than one when S(t)vKi and less than one when

S(t)wKi. (Although the stem cell population size could, in

principle, be maintained by regulating apoptosis rather than

biasing division, previous modeling suggests that regulating

division probabilities rather than cell cycle time or removal is

more important for maintaining homeostasis [46,71].)

Effect of Dedifferentiation on Time to Cancer
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If the stem cell population size varies and is regulated by biasing

division, we found two distinct regimes. If the dedifferentiation

rate is much less than a critical value, then the initial two-mutation

stem cell often arises from a normal stem cell, so the time to

fixation of such a cell is similar to the case with constant

population size. If the dedifferentiation rate exceeds the critical

value, however, then the initial two-mutation stem cell often arises

from a dedifferentiated progenitor cell, so the time to fixation is

dramatically shorter than the case with constant population size.

Moreover, in this regime the stem cell population eventually grows

exponentially, as dedifferentiating progenitor cells overwhelm stem

cell homeostasis. Note that the threshold between these two

regimes is independent of the overall mutation rate, if stem and

progenitor cell mutation rates are proportional.

When the stem cell population size is constant, dedifferentiation

simply acts like a selective advantage for mutant stem cells. When

the stem cell population size is allowed to vary, however,

dedifferentiation can additionally drive exponential growth of

the stem cell population. If the stem cell population size Nsc is

constant, our results imply that stem cell dynamics in the coupled

stem cell-progenitor system can be approximated by a population

genetics model of the stem cells alone, as long as that model

includes positive selection. In this case, we found that the

dedifferentiation rate e must exceed 1=Nsc to substantially shorten

the time to cancer acquisition, similar to classical population

genetics results that the selection coefficient must exceed the

inverse population size to be effective. Hence, our model predicts

that in tissues where the niche contains fewer cells, smaller rates of

dedifferentiation are sufficient to influence the time to cancer. It is

interesting to note that cancers where dedifferentiation has been

shown to occur have a small niche size (i.e. intestinal crypts)

[15,16]. For the hematopoietic system, based on the available

literature, we assumed that the number of actively dividing stem

cells is Nsc~100, so the dedifferentiation rate must be &0:01 or

higher to significantly shorten the time to cancer.

Here we focus on the hematopoietic system, in which the stem

cell compartment consists of Nsc&100 active cells, and two

mutations are necessary for carcinogenesis. For some other

Figure 5. Exponential growth given varying stem cell population size and dedifferentiation. Total number of stem cells (A, C, E) and
corresponding final progenitor age distributions (B, D, F) are shown in black. Also shown are best exponential fits of the growth rate (blue) and our
semi-analytic solution given by Eq. (18) (green). In all panels the probability of asymmetric stem cell division g~0 and the mean reversion parameter
is j~1.
doi:10.1371/journal.pcbi.1003481.g005
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cancers, such as colon cancer, the number of stem cells per

compartment is much smaller, there are many compartments, and

the number of necessary mutations is larger. For high mutation

rate, the mean time to fixation scales linearly with Nsc (see Fig.

S4C). So in cancers with small Nsc two-mutation stem cells will fix

much faster. However, the need to accumulate more mutations

will slow carcinogenesis. We expect, however, that the qualitative

effects of dedifferentiation will be similar to the hematopoietic

system we analyzed.

The fact that mutants take a long time to reach an appreciable

fraction of the stem cell population is not typically considered in

the cancer modeling literature, which often makes an implicit

assumption that a newly emerged mutant cell will not go extinct

and will fix quickly. Our results show that, for high mutation rate,

the time for a mutation to fix in the population is comparable to

time for a successful mutant to first emerge, in accordance with

classical results of Kimura and Ohta [56]. This is especially

important if division events are rare and the population size is

large. Considering the time to some predetermined diagnosis

threshold is similar to considering the time to fixation, because the

time between a selected mutation becoming common and fixing is

typically short [72]. Hence, elevated mutation rate (genetic

instability) may not speed up time to carcinogenesis as much as

is typically assumed, suggesting that some form of selection

(potentially through dedifferentiation) is necessary. Most tumors

accumulate hundreds of mutations, but the number of necessary

‘‘driver’’ mutations depends on the type of cancer. We considered

M~2 mutations, because sequencing of acute myeloid leukemia

Figure 6. Fixation and exponential growth of two-mutation cells with dedifferentiation for variable stem cell population size. A:
Observed growth rate k of the stem cell population (black curve) and the semi-analytic approximation Eq. (18) (green) for g~0, j~1, and u~0:01.
The vertical line denotes dcrit . B: Analytically predicted critical dedifferentiation rate dcrit as a function of asymmetric division probability g and the
growth advantage s of the two-mutation progenitor population. Exponential growth occurs for dwdcrit. C: Normalized histogram (stars) of waiting
times for exponential growth of the stem cell population with stochastic homeostasis and dedifferentiation for u~0:01, d~0:01. For comparison the
histogram (red and black dots) as well as the analytical distributions of times to fixation given strict homeostasis for e~0:01 and e~0 are also shown.
D: The median and inter-quantile range of times to first occurrence of Nsc~100 two-mutation stem cells, given stochastic homeostasis and a range of
dedifferentiation rates d. For comparison, the waiting times to fixation for Nsc~100 given strict homeostasis (shaded areas) for the equivalent value
of e are also shown. E: The probability that the first two-mutation stem cell arose from mutation in the stem cell compartment, rather than
dedifferentiation. Vertical line denotes dcrit. Parameters for all simulations given in Table 1.
doi:10.1371/journal.pcbi.1003481.g006
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genomes suggest that there are two driver mutations present [54].

Moreover, recent findings on induced pluripotent stem cells also

suggest M~2, as loss of both copies of the tumor suppressor

protein p53 [73] or the activation of two oncogenes [67] may be

necessary for dedifferentiation. Disabling both copies of p53

improves the efficiency of reprogramming to a stem-like state and

greatly enhances the production of induced pluripotent stem cells

[74,75]. The loss of p53 also leads to the emergence of tumor cells

bearing functional and molecular similarities to stem cells [22,73].

Finally, inactivation of p53 changes the ratio of symmetric to

asymmetric division in mammary stem cells, allowing the total

stem cell population to escape homeostasis [70].

Our model only considers actively dividing stem cells, which in

the human hematopoietic system have been estimated to be

roughly 100 [32] out of 11,000–22,000 total stem cells [59]. A

more complete model would consider both the active and

quiescent stem cell populations. Transitions between these states

may be influenced by the progenitor population size, potentially

acting as a negative feedback and regulating the proliferation of

cancer stem cells. In our models, cancerous cells take over the stem

cell population, but the ratio of cancer progenitor cells to cancer

stem cells is fixed by the progenitor growth process. Even when

dedifferentiation drives exponential growth of the stem cells, it is

their absolute number that increases, not their proportion in the

population. This is in concordance with some in vitro studies, which

suggest a fixed proportion of CSCs in a tumor [18].

Many theoretical models find that in order to accumulate

multiple mutations on a reasonable time scale, the onset of

elevated mutation rate (i.e., genetic instability) should be an early

event in tumorigenesis (reviewed in [4,7]). The importance of

genetic instability, however, depends on assumptions about

symmetric self-renewal and differentiation of stem and progenitor

cells. In particular, mutations that alter stem cell division or make

committed progenitors somewhat immortal may also lead to an

early onset of cancer, diminishing the impact of genetic instability

[45]. Similarly, our results show that different assumptions about

how dedifferentiation occurs (frequency-dependent reproduction

versus absolute numbers of dedifferentiating cells) dramatically

alter time to carcinogenesis.

A large body of modeling work in this area (reviewed in section

Prior Mathematical Models) has focused on calculating the time to

carcinogenesis under the assumption of constant population size

(not specifying the mechanism of homeostatic regulation). We

compared the times to multiple mutation acquisition in our

constant and variable stem cell population size models and found

that without dedifferentiation both models yield similar results.

With dedifferentiation, however, we found that the two models

differ substantially. We explicitly considered different ways that

homeostasis can be maintained in the stem cell population, and

showed that these assumptions can lead to very different results.

Our results suggest that if homeostasis is controlled through

division asymmetry and if de-differentiated cells do not depend on

openings to colonize the stem cell niche, then for de-differentiation

rate larger than a critical threshold, the cancer stem cell will most

likely originate in a progenitor cell that has undergone de-

differentiation. This is a prediction of our model that can be

experimentally tested using inducible genetic labeling, the same

technique that permitted lineage-tracing experiments allowing

quantification of symmetric versus asymmetric divisions [29,30]. A

similar method was previously used to identify oligodendrocyte

precursor cells as the tumor cell of origin in glioma [76].

Our model contributes to the existing literature on the trade-offs

between symmetric and asymmetric divisions of the stem cell

population in stem cell-driven [35,51,77]. To our knowledge, our

model is the first to quantify the effects of dedifferentiation on the

time to carcinogenesis. There are a number of important aspects

of homeostasis our model does not consider, such as spatial aspects

of stem cell position in the niche (we assume the cells are well-

mixed) or negative feedback to stem cell divisions from the

progenitor population (we assume progenitors only influence the

stem cells by dedifferentiating). Lander et al. have previously

shown that negative feedback control is needed for homeostasis,

and that feedback regulating replication probabilities is more

effective than feedback regulating cell cycle lengths [71]. In

ongoing work, we are investigating what effect including spatial

structure and feedback from progeny will have on dedifferentiation

times. The effect of spatial structure on mutation acquisition is still

not fully resolved. Some groups argue that time to acquire M~2
mutations is actually decreased in a spatial model compared to the

space-free model [78]. Other groups find that time to multiple

mutations is increased when space is considered [79,80]. Like

other mathematical models, our model suggests that eradication of

cancer is dependent on eradication of cancer stem cells [81–83].

The potential for progenitor cells to dedifferentiate and repopulate

the stem cell compartment, however, may complicate successful

treatment. Our work suggests that further progress in understand-

ing initiation and treatment of cancer requires a more detailed

understanding dedifferentiation and of stem cell homeostasis.

Supporting Information

Figure S1 Progenitor cell dynamics for a constant stem
cell population. Fixed number of zero-mutation stem cells

Nsc~100. (A) Proliferation and death rates s(a) (red curve) and

m(a) (blue curve) used in the simulation and the resulting age-

dependent growth rate r(a) (black curve). (B) The total number of

progenitor cells given by Eq. (1) (solid line) and Eq. (S6) (dotted

line) as a function of time. (C) The steady state age distribution

with no competition between progenitor cells is given by Eq. (1)

(solid line) and with logistic growth by Eq. (S6) (dotted line). (D–F)

Progenitor dynamics for for K~3 subpopulations with mutation

rate u~0:001. (D) Age-dependent birth rates s(a) given by Eq. (5).

The death rate is constant. (E) The total number of progenitor cells

as a function of time for zero-mutation (blue), one-mutation (red),

and two-mutation (green) subpopulations. (F) The steady state age

distribution for zero-mutation (blue), one-mutation (red), and two-

mutation (green) progenitor cells.

(EPS)

Figure S2 Robustness to parameter variations in pro-
liferation/death rates in progenitor model. The effect of

parameters in age-dependent birth and death rates, s(a) and m(a)
(given by Eq. (5)) on the age-dependent growth rate

r(a)~
Ð a

0
(s(s){m(s))ds and the steady state age distribution er(a)

in our models. (A,B) Effect of varying maximal growth rate b
between 0 and 2. (C,D). Effect of varying maximal death rate d
between 0 and 5. (E,F) Effect of varying the location (age of onset)

of the proliferation switch vb between 0 and 5. (G,H) Effect of

varying the age at which the apoptosis switch vd is turned on

between 5 and 10. (I,J) Effect of varying the steepness of the

proliferation switch rb between 0 and 5. (K,L) Effect of varying the

steepness of the apoptosis switch rd between 0 and 5.

(EPS)

Figure S3 Steady-state progenitor distributions in the
absence of stem cell mutation but with progenitor
competition. Top: The fraction of mutant cells as a function

of mutation rate u and proliferative advantage s for (A,C) local

(age-dependent) competition between subpopulations given by Eq.
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(S7), and (B,D) global competition between subpopulations given

by Eq. (S8). Bottom: Corresponding plots of total cell density.

Basal dynamics are constant death rate m~1 and sigmoidal birth

rate with maximal growth rate b0~2, bi~(1zs)bi{1 for i~1,2.

The same carrying capacity is used for all simulations:

N1~200Nsc, N2~250Nsc, N3~300Nsc. Note that there is a

sharp transition zone at which mutant cells go from nearly zero

fraction of total population to majority of the differentiating cell

population. However, the mutation rate u and proliferative

advantage s at which this is observed is unreasonably high, just

as for the model without progenitor competition (Fig. 2).

(TIF)

Figure S4 Comparison of two Model I variants with all-
mutant progenitor dedifferentiation and two-mutant
progenitor dedifferentiation. (A) Fixation time distributions

in constant stem cell population size model for potential

dedifferentiation of only two-mutation progenitors (red, Eq. (8))

and potential dedifferentiation of all progenitor cells (blue, Eq.

(S9)). (B) Fixation time distributions in constant stem cell

population size model with dedifferentiation of all progenitor

cells. Blue: all progenitor cells equally likely to dedifferentiate with

dedifferentiation probabilities given by Eq. (S9). Red: all

progenitor cells can dedifferentiate with dedifferentiation proba-

bility weighed by birth rate given by Eq. (S10). Progenitor

dynamics without competition (Eq. (2)). Green: all progenitor cells

can dedifferentiate with dedifferentiation probability weighed by

birth rate given by Eq. (S10). Progenitor dynamics with local

competition given by Eq. (S7). Dedifferentiation rate used is

e~0:02, mutation rate is u~0:01. (C) Mean + standard deviation

of time to fixation as the stem cell pool size Nsc is varied for two

different values of the dedifferentiation rate e. Mutation rate is

u~0:01. (D) Median and inter-quantile range of time to fixation in

alternative Model Ib as a function of dedifferentiation rate e are

shown as a box-whiskers plot. All mutant cells are allowed to

dedifferentiate with probability of dedifferentiation give by Eq.

(S9) u~0:01 (blue), u~0:001 (green),u~0:0001 (red), and

u~10{5 (teal). For comparison, the waiting times to fixation in

Model Ib are also shown as shaded areas (compare to Fig. 4C).

(EPS)

Figure S5 Characterization of exponential growth of
two-mutant population in Model II. (A) The exponential

growth rate k~
l{(1{g)

Tgen

of the stem cell population does not

depend on the mutation rate (u~0:01,0:001, � � � ,10{5 for

g~0, j~1). (B) The time to exponential growth for different

rates of asymmetric division (red g~0; blue:g~0:95) is roughly

similar. Rate of dedifferentiation is d~0:01. n~1000 points are

used for each distribution.

(EPS)

Text S1 Analytic solutions and derivations, alternative
models, and Matlab code.
(PDF)
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