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A new global gridded 
anthropogenic heat flux dataset 
with high spatial resolution and 
long-term time series
Kai Jin1, Fei Wang1,2,3, Deliang Chen   4, Huanhuan Liu5, Wenbin Ding1 & Shangyu Shi2,3

Exploring global anthropogenic heat and its effects on climate change is necessary and meaningful 
to gain a better understanding of human–environment interactions caused by growing energy 
consumption. However, the variation in regional energy consumption and limited data availability 
make estimating long-term global anthropogenic heat flux (AHF) challenging. Thus, using high-
resolution population density data (30 arc-second) and a top-down inventory-based approach, this 
study developed a new global gridded AHF dataset covering 1970–2050 based historically on energy 
consumption data from the British Petroleum (BP); future projections were built on estimated future 
energy demands. The globally averaged terrestrial AHFs were estimated at 0.05, 0.13, and 0.16 W/
m2 in 1970, 2015, and 2050, respectively, but varied greatly among countries and regions. Multiple 
validation results indicate that the past and future global gridded AHF (PF-AHF) dataset has reasonable 
accuracy in reflecting AHF at various scales. The PF-AHF dataset has longer time series and finer spatial 
resolution than previous data and provides powerful support for studying long-term climate change at 
various scales.

Background & Summary
Human activities have caused substantial changes to the global climate. In addition to the effects of greenhouse 
gases, aerosols, and land use/cover change, anthropogenic heat released from energy consumption can affect 
climatic changes at various scales1–4. For example, Zhang et al.5 found that energy consumption could lead to 
increases in winter and autumn temperatures of up to 1 °C in the mid- and high latitudes across North America 
and Eurasia. Ichinose et al.1 found that the maximum anthropogenic heat flux (AHF) in central Tokyo, Japan, was 
as high as 1,590 W/m2 in winter, resulting in warming to a maximum of 2.5 °C. Moreover, anthropogenic heat can 
affect wind speed because it reduces the stability of the boundary layer and enhances vertical mixing6. In view 
of the effects of anthropogenic heat on climate at local and continental scales and the increasing consumption of 
energy worldwide, the potential significance of anthropogenic heat as it relates to global climate change over a 
long-term period should be further studied using techniques such as global climate models.

The diversity of regional energy consumption and limited data availability make it difficult to produce high 
quality global AHF datasets when considering the accuracy3, resolution7, and length of time series8 of the data. 
For example, Allen et al.9 developed a widely accepted AHF dataset at 2.5 × 2.5 arc-minute resolution based on the 
Large Scale Urban Consumption of Energy model; however, it still cannot satisfy the demand of high-resolution 
regional modelling because of the relatively rough spatial resolution. Additionally, acquiring all of the necessary 
data (e.g., population, temperature, and different types of the energy sources) has proved to be impossible for 
many countries such as island countries10. Moreover, Chen et al.3 and Yang et al.11 estimated global AHFs based 
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on the Defence Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night-time light 
data, but the night-time light data were normally limited by the short time series (1992–2013) available, “light 
diffusion” phenomena in densely populated areas12, and the differences in culture and day-length among different 
regions13. All of these limitations remained in producing AHF data and hindered simulation studies of anthro-
pogenic heat at local, regional, or global scales. Remarkably, the time series of previous AHF datasets generally is 
not long enough to be used for simulation studies of long-term climate change (e.g., the dramatic global warming 
period since the 1980s).

Levels of energy consumption are expected to increase in the future because of the rapid development of the 
global economy and increased living standard. Therefore, it makes sense to study the variations and climatic 
effects of global AHF in the future. So far, only Flanner has projected the distribution of global AHFs in the 
future2. Flanner’s AHF dataset which was developed at 2009 included the global gridded AHF during 2005–2040 
and in 2100; nevertheless, all of the data, except data for 2005, were projected data2. That is, Flanner’s AHF data 
during 2006–2040 were calculated based on the 2008 energy-use projection (high economic growth case) from 
the U.S. Energy Information Administration (EIA); his data for 2100 were calculated based on the assumption 
that energy consumption will grow by 2% per year for each country after 20402. Evidently, Flanner’s data from 
2006 to 2040 and the EIA energy-use projection in 2008 have been out of date; his assumption on energy con-
sumption after 2040 should be improved due to the varied energy demands of each country2. Recently, a report of 
the McKinsey Global Energy Perspective (GEP) was proposed (https://gep.mckinseyenergyinsights.com/), which 
takes into account both macro- and micro-economic developments. A unique aspect of the GEP is that most 
insights on future energy demand are local (i.e., projecting the evolution of energy systems by country). This 
provides an opportunity to re-estimate the distribution of future global AHF.

The inventory-based approach is widely used to estimate anthropogenic heat release, including for both 
bottom-up and top-down approaches14. The bottom-up approach relies on detailed datasets of local land use 
and statistics on the hourly variation in energy consumption; this type of data is mostly used for local-scale 
studies such as a single city because of limited data availability4,15. In contrast, a top-down approach is often used 
for large-scale studies through allocating total energy consumption (e.g., energy consumption at country-level) 
into specific regions7. However, some detailed information about local energy consumption (e.g., industrial scale 
and distribution) is difficult to capture. Therefore, when using the top-down approach, some spatial data closely 
associated with energy consumption intensity such as population density and/or night-time light data are nor-
mally used as a proxy for the redistribute the total energy consumption8. The basic assumption of the top-down 
approach is that all energy consumed by human activities in a specified region is directly converted to anthropo-
genic heat in that region14. This assumption is somewhat insufficient because the transformation and storage of 
energy are ignored. However, detailed processes involved in heat emissions are not easily tracked in large-scale 
studies because transformation and storage can vary widely with the technology employed for each activity16.

Additionally, AHF can be spatially estimated based on the concept of energy budget closure17,18. This method 
employs measurements of net radiation along with sensible, latent, and ground heat using remotely sensed 
meteorological data, which is suitable for local-scale studies19. Recently, several studies have combined multiple 
approaches to estimate AHF for large regions20,21. For example, Lee et al.22 built a regression model that used 
AHF calculated by an inventory-based approach and pollutant emission data to estimate AHF over the entire US. 
However, generalizing this method to a global scale has proved difficult, because such simulations of AHF are 
subject to the availability of data from multiple sources. Given the features and limitations of existing approaches, 
a top-down approach should currently be the most efficient for estimating the distribution of global AHF.

Therefore, the objective of this study is to develop a new long-term (1970–2050) global gridded AHF dataset 
with fine resolution using a top-down approach based on population density data. The new dataset, including past 
and future global gridded AHF (PF-AHF), was compared with previous estimates at multiple scales (from the city 
to global level) for validation.

Methods
Data collection.  Statistical energy consumption data.  Annual primary energy consumption data from 
1965 to 2016 were obtained from the British Petroleum (BP) Statistical Review of World Energy (hereinafter, BP 
Review) (https://www.bp.com/). Primary energy sources comprise coal, hydroelectricity, nuclear energy, natural 
gas, oil, and modern renewables used to generate electricity. The BP Review classified the entire earth into six 
sub-regions, which include 65 countries and five other regions (Table 1). Based on the BP energy consumption 
data in 2015, the total energy consumption of the above-mentioned 65 countries counted about 95.8% of the 
global amount, indicating that these 65 countries are the most significant places for energy consumption and 
anthropogenic heat release. The energy statistics reported by BP with relatively high reliability have been used in 
many previous studies7,23. In addition, future energy demands reported by the 2018 Reference Case of McKinsey 
GEP were used to estimate annual growth rates in future energy demand (https://gep.mckinseyenergyinsights.
com/).

Global population data.  Global gridded population density data representing conditions in 1970, 1980, and 
1990 were obtained from the Global Population Density Grid Time Series Estimates, Version 1, while the data for 
2000, 2005, 2010, and 2015 were obtained from the Gridded Population of the World, Version 4, Revision 10 Data 
Sets24,25. The two above-mentioned datasets were downloaded from the Socioeconomic Data and Applications 
Center in NASA’s Earth Observing System Data and Information System (http://sedac.ciesin.columbia.edu/data/
sets/browse). These two datasets have a spatial resolution of 30 arc-seconds (approximately 1 km at the equa-
tor) and are used to redistribute the total energy consumption within a country or region. The population size 
data were obtained from the Wittgenstein Centre Data Explorer Version 1.2 that includes the global population 
projections from 1970 to 2100 for 195 countries worldwide (http://www.wittgensteincentre.org/dataexplorer). 
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The future population sizes during 2020–2050 used in this study were generated according to the medium level 
scenario of the Shared Socioeconomic Pathways scenarios. The assumptions about future trends in fertility, mor-
tality, and migration are authoritative and were based on scientific input from more than 500 population experts 
worldwide who responded to an online questionnaire and assessed the validity of alternative arguments as well 
as the conclusions of intensive discussions at five meta-expert meetings26,27. We re-counted the population sizes 
for the 65 countries and five other regions in the six sub-regions mentioned above to maintain data consistency 
(Table 1).

Other data used for validation.  The DMSP/OLS night-time stable light (NSL) data in 2010 with a spatial res-
olution of 1 km were collected by the US Air Force Weather Agency and obtained from the NOAA’s National 
Geophysical Data Center (https://ngdc.noaa.gov/eog/download.html). The values of NSL data ranging from 
0–63 indicate the night-time light intensities. In general, developed areas with a high gross domestic product 
(GDP) consume more energy than do developing areas with low GDP. It has been demonstrated that night-time 
light intensity is positively correlated with GDP, population size, and energy consumption16,28. Therefore, the 
night-time light data could be used as a proxy of AHF to validate our PF-AHF dataset29–31.

Global Man-made Impervious Surface (GMIS) data in 2010 with a spatial resolution of 1 km were used to 
extract the spatial extent of urban area; GMIS data were obtained from the Socioeconomic Data and Applications 
Center in NASA’s Earth Observing System Data and Information System (http://sedac.ciesin.columbia.edu/data/
sets/browse). The values of pixels in the GMIS data ranging from 0 to 100% show the percentage of impervious 
surface. Examples of impervious surface include roads, parking lots, buildings, driveways, sidewalks, and other 
manmade surfaces32. As an important indicator used to assess the urban environment, impervious surface has 
been frequently used to reflect the land use/cover change associated with urbanization33,34. Based on the study of 
Voorde et al.34, we extracted the regions with pixels having a GMIS value larger than 10%, and delineated them 
as urban areas.

Methodology.  The flow chart used for developing the PF AHF dataset in this study is presented in Fig. 1. 
First, we aggregated the total population data of 195 countries from the Wittgenstein Centre to the 70 countries 
and regions listed in the BP Review. Next, the distribution of future population density (i.e., 2020, 2030, 2040, and 
2050) was estimated based on the 2015 population density data from the Socioeconomic Data and Applications 
Center and ratio of future population size to that in 2015. Second, we calculated the annual growth rates in 
future energy demand for the eight global sub-regions classified by McKinsey, and then disaggregated them to 
the above-mentioned 70 countries and regions to estimate future energy consumption for each country and 
region. Third, based on the global gridded population density data and the population sizes of the 70 countries 
and regions, the global AHF at 30 arc-seconds was estimated for each target year through redistributing the total 
energy consumption at the country level. Finally, spatial resolution of the calculated global gridded AHF data was 
decreased from 30 arc-second to 2.5 arc-minute by resampling in ArcGIS software (ESRI, Redlands, CA, USA).

Projection of future energy consumption.  Based on the future energy demands reported by the GEP, 
the annual growth rates of the energy demand during 2015–2030 and 2030–2050 were estimated for different 
regions of the world (Table 2). According to the level of energy consumption for 2015 reported by BP and the 
growth rates of energy demand mentioned above, we further estimated the energy consumption of 65 countries 
and five other regions in 2020, 2030, 2040, and 2050. The GEP represents McKinsey’s latest consensus on how 
the energy transition will unfold, which takes into account both macro- and micro-economic developments (e.g., 
shifts in electricity demand curves, population, and GDP). It is based on a bottom-up energy demand model, 
showing energy demand projections for 145 countries, 28 sectors, and 55 fuel types. For each sector and country, 
a detailed methodology defines how fundamental drivers such as economic growth and population expansion, 
and key developments such as efficiency improvements and fuel shifts drive the evolution of energy demand. For 
example, McKinsey adopted a road transport model to calculate fuel demand for vehicles in each country, which 
covers five vehicle segments (cars, vans and pickups, trucks, buses, and 2- and 3-wheelers) and four distinct ele-
ments (vehicle sales, type of powertrain, fuel consumption, and expected annual distance travelled). More details 
about the GEP model can be accessible online (https://gep.mckinseyenergyinsights.com/the-model/).

Sub-regions in the world Countries or regions

North America United States of America, Canada, Mexico

South and Central America Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Republic of Trinidad and Tobago, Venezuela, other 
regions

Europe and Eurasia
Austria, Azerbaijan, Belarus, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, 
Greece, Hungary, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, 
Russian Federation, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, 
Uzbekistan, other regions

Middle East Iran, Israel, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, other regions

Africa Algeria, Egypt, South Africa, other regions

Asia Pacific Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, 
Singapore, Republic of Korea, Thailand, Vietnam, other regions

Table 1.  List of the countries and regions in six sub-regions as listed in the British Petroleum Statistical Review 
of World Energy.
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Projection of future population density.  In the present study, global population density data in the 
targeted future years (i.e., 2020, 2030, 2040, and 2050) were estimated based on the two following steps. First, 
the ratios of the population size in a target year to that in 2015 were calculated for the 70 countries and regions 
listed in Table 1. Second, global population density in the target year was estimated by multiplying the population 
density of a given country or region in 2015 by the corresponding population growth ratio. The global popula-
tion projections from the Wittgenstein Centre Data Explorer Version 1.2 considered the fertility, mortality, and 
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Fig. 1  Flow chart of calculations for the past and future global gridded anthropogenic heat flux. AHF, 
anthropogenic heat flux; BP, British Petroleum; GEP, global energy perspective; SEDAC, Socioeconomic Data 
and Applications Center.

Regions

Primary energy demand 
(million terajoules) Growth rate per annum (%)

2015 2030 2050 2015−2030 2030−2050

OECD Americas 115 114 106 −0.1 −0.4

OECD Europe 75 71 63 −0.4 −0.6

OECD Asia Pacific 37 37 34 0.0 −0.4

China 124 144 138 1.0 −0.2

India 35 57 89 3.3 2.3

Other Asia countries 41 55 77 2.0 1.7

Africa 33 45 70 2.1 2.2

Rest of World 106 123 142 1.0 0.7

Table 2.  Growth rates of future energy demands in eight sub-regions of the world. Growth rates of energy 
demands were calculated based on data reported by the 2018 Reference Case of the McKinsey Global Energy 
Perspective. Note: OECD, Organization for Economic Co-operation and Development.
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migration of population for each country. In the present study, therefore, the estimated data on future population 
density also contain information related to country-level population movement. These calculations were con-
ducted in ArcGIS software using Eq. (1):

ρ ρ= ×
P
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,
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grid i j grid j
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total j
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,2015,

where ρgrid,i,j indicates the population density of each grid in the country (region) j for the target year i in person/m2,  
i indicates 2020, 2030, 2040, or 2050, j indicates one of the 70 countries and regions listed in Table 1, ρgrid,2015,j 
indicates the population density of each grid in 2015 in the country (region) j in person/m2, Ptotal,i,j indicates total 
population of the country (region) j in the target year i in number of people, Ptotal,2015,j indicates total population 
of the country (region) j in 2015 in number of people. Ptotal,i,j was obtained from the Wittgenstein Centre Data 
Explorer Version 1.2 according to the medium Shared Socioeconomic Pathways scenarios (http://www.wittgen-
steincentre.org/dataexplorer).

Estimation of global gridded AHF.  This study adopted the top-down inventory-based approach and cur-
rent national boundaries to redistribute the total energy consumption within each country or region. Based on 
previous studies3,7, we assumed that all consumed energy was eventually converted into heat. Moreover, the delay 
between energy use and its conversion to heat was ignored35. Thus, the gridded AHF of the world could be calcu-
lated in ArcGIS software using Eq. (2):
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where AHFi,j means gridded anthropogenic heat flux induced by energy consumption in the country (region) j 
for the target year i in W/m2, i indicates 1970, 1980, 1990, 2000, 2005, 2010, 2015, 2020, 2030, 2040, or 2050, j 
indicates one of the 70 countries and regions listed in Table 1, Etotal,i,j indicates total energy consumption of the 
country (region) j in the target year i in tonne oil equivalent (toe), Pgrid,i,j means the total population of each grid 
in the country (region) j for the target year i in number of people, Ptotal,i,j indicates total population of the country 
(region) j in the target year i in number of people, Sgrid,j represents the area of each grid in the country (region) 
j in m2, ti represents the total time of the target year i in s, and C represents the energy conversion coefficient, 1 
toe = 42 × 109 J.

Because the ratio of Pgrid,i,j to Sgrid,j equals to the population density of a grid in region j for the target year i, Eq. 
(2) can be represented by Eqs (3), (4), and (5):
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where ρgrid,i,j indicates the population density of each grid in region j for the target year i, in person/m2.
After data pre-processing, two main steps were conducted to produce the global gridded AHF data. First, 

based on the Eq. 3, Micro Excel 2010 software was used to calculate the parameter Mi,j for each country or region. 
Second, the Raster Calculator in ArcGIS 10.2 software was used on the gridded AHFs in a given country or region 
to calculate the gridded population density data multiplied by the corresponding Mi,j.

In this process, we adopted population data to redistribute the total energy consumption into each grid in a 
country or region. Because of the lack of detailed information related to energy consumption (e.g., industrial dis-
tribution, energy-use type, and per-capita energy consumption in different areas and periods), we had to assume 
that each person consumes the same amount of energy in a given country. This assumption may lead to some 
uncertainties at a local scale because it fails to consider specific socio-economic factors. In this study, we analysed 
the relationship between energy consumption and population size based on the statistics from 30 provinces and 
autonomous regions/cities (hereinafter, administrative regions) of China (http://www.stats.gov.cn). The Macao 
Special Administrative Region, Hong Kong Special Administrative Region, Tibet and Taiwan were not considered 
because of the limitation of statistical data. Figure 2 shows that a significantly positive correlation exists between 
energy consumption and population size (R2 = 0.67, P < 0.001). The result indicates that our method and the 
assumptions used for redistributing total energy consumption at the country level are somewhat reasonable, and 
can reflect the variations in energy consumption at least at the provincial scale.

Validation of PF-AHF data.  Evaluating AHF data with real measurements spatially has proved difficult 
because of the difficulties involved in measuring this type of heat flux9,36. Therefore, the PF-AHF data were veri-
fied by correlation and comparison analyses with the help of other datasets. First, we analysed the spatial distri-
bution of AHF based on the new gridded database, and compared it with the DMSP/OLS night-time light image 
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data at a global scale. Correlation analysis between averaged AHFs and averaged night-time light intensities was 
conducted for the 32 administrative regions of China by SPSS 19.0 software (the Macao and Hong Kong Special 
Administrative Regions were excluded because of the small area they include). Night-time light intensity has been 
frequently used as a proxy for anthropogenic heat release28–30, indicating that the correlation between AHFs and 
night-time light intensities can be indirectly used to evaluate the accuracy of PF-AHF data. Second, using a same 
spatial resolution (2.5 × 2.5 arc-minute), we analysed the difference in annual mean AHF over the entire planet 
between the PF-AHF data and a previous AHF dataset produced by Flanner2. The averaged AHFs of the 100 larg-
est cities in the world ranked by population size in 2010 were estimated based on both the PF-AHF and Flanner’s2 
datasets, independently. Then, correlation analysis between the PF-AHF and Flanner’s dataset was conducted for 
these 100 largest cities. Third, we compared the averaged AHF of some cities of the world reported in previous 
studies with the AHF calculated using the PF-AHF data. Urban areas of a given city were determined based on 
the impervious surfaces extracted from GMIS data.

Moreover, a cross-validation method was used to evaluate uncertainties of our approaches for calculating 
future AHF data. First, we assumed this year is year 2000. Next, based on the population density data in 2000 and 
the population size projections in 2000, 2005, 2010, and 2015, we recalculated the distribution of ‘future’ pop-
ulation density (i.e., 2005, 2010, and 2015) using Eq. (1). Second, based on the BP energy consumption data in 
2000 and the GEP energy demands in 2030, we recalculated the annual growth rate of the energy demand during 
2000–2030 and estimated the ‘future’ energy consumption data (i.e., 2005, 2010, and 2015). Third, based on these 
recalculated ‘future’ data and the Eqs (3) and (4), global gridded AHF data in 2005, 2010, and 2015 were projected 
for test (i.e., test data). Finally, based on the root mean squared error (RMSE) and coefficient of determination 
(R2)37, the relationship between the measured data (i.e., PF-AHF data) and the test data was analysed for the 
selected 100 largest cities in the world. Additionally, we resampled the test data in 2010 to varied spatial resolu-
tions (i.e., 30 arc-second, 1 arc-minute, 2 arc-minute, 3 arc-minute, …, 30 arc-minute). Then, the mean AHFs in 
2010 for the selected 32 administrative regions of China were estimated based on both the measured data with 
a spatial resolution of 30 arc-second and the test data with different spatial resolutions, independently. Based on 
the RMSE and R2 between the two kinds of estimations of the 32 administrative regions in 2010, we assessed the 
uncertainties caused by different spatial resolutions for our PF-AHF data in future years.

Data Records
The PF-AHF dataset included estimated or predicted annual mean AHF data for 1970, 1980, 1990, 2000, 2005, 
2010, 2015, 2020, 2030, 2040, and 2050. The PF-AHF dataset had two levels of spatial resolution (30 arc-second 
and 2.5 arc-minute). The uploaded data at the figshare repository were tagged in image file format and included 
global gridded AHF imagery for 1970, 2015, and 205038. These data can be processed by ArcGIS software, etc. The 
values of grids represented the annual mean heat flux induced by energy consumption, in W/m2.

Technical Validation
Spatiotemporal patterns of AHF and validation using night-time light data.  Based on energy 
consumption and global land area statistical data, the globally averaged terrestrial AHFs were estimated to be 
0.05, 0.13, 0.15, and 0.16 W/m2 in 1970, 2015, 2030, and 2050, respectively, although these data varied among 
different continents (Fig. 3). While Asia experienced the greatest increase of AHF in the period of 1970–2015, 
some regions of Europe and US showed a decrease in AHF (Fig. 3e). In the future, grids with a substantial change 
in AHF are predicted to mostly be located in the developed and developing regions of the planet (Fig. 3f).

y = 13.05x + 9.48
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Fig. 2  Relationship between energy consumption and population in 2005 for the 30 administrative regions of 
China. Significance was determined using a two-tailed confidence t-test in SPSS 19.0 software (P < 0.05).
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Overall, the AHFs induced by energy consumption were larger in the Northern Hemisphere (especially in 
20–60°N) than the Southern Hemisphere in the past few decades. This could be one of the reasons for the warm-
ing occurring over mid- and high latitudes in Northern Hemisphere5. Additionally, the spatial distribution of 
AHF was consistent with the night-time light intensity at a global scale (Figs 3 and 4). At a provincial scale, the 
correlation between averaged AHF and night-time light intensity was significant (P < 0.001; Fig. 5), which is 
consistent with the report of Chen et al.28. All of these results imply that the annual mean AHF data are consistent 
with the distribution, intensity, and magnitude of human activities; that is, a large number of cities located in the 
middle latitudes of the Northern Hemisphere consume a great deal of energy5,9,10.

Comparison of the differences between PF-AHF data and Flanner’s2 AHF data.  In the present 
study, the global AHF dataset calculated by Flanner2 with a resolution of 2.5 × 2.5 arc-minutes that was based 
on population density data was compared with our PF-AHF data2. Flanner’s data had been developed based on 
historical energy consumption records for 2005, the EIA energy-use projections during 2006–2040 (high eco-
nomic growth case), and the assumed growth rate of energy-use during 2040–2100 (i.e., 2%). First, we analysed 
the difference in annual mean AHF between the PF-AHF data and Flanner’s data in 2005 to validate the accuracy 
of the PF-AHF data. Second, we compared the PF-AHF data with Flanner’s data in 2015 and 2030 to evaluate the 
uncertainties resulted from the use of different projections of energy consumption.

The distribution of mean annual AHF from the PF-AHF data for 2005 agreed well with Flanner’s data 
(Fig. 6a,b). Differences in measured AHF between the two datasets were mostly between −0.1 and 0.1 W/m2, 
which is very small at a global scale (Fig. 6c). Pixels with an extremely slight difference between the two datasets 
(−0.01 to 0.01 W/m2) were mainly distributed in regions known to consume little energy. In contrast, pixels with 
relatively large differences (>2 W/m2 or < −2 W/m2) were mainly distributed in urban areas known to consume 
a great deal of energy. The spatial patterns of the differences in AHF between the PF-AHF data and Flanner’s 
data in 2015 and 2030 were consistent with that in 2005 (Fig. 6c–e). However, the regional differences in AHF 
between the two datasets in 2015 and 2030 were larger than those in 2005. For example, in India, more pixels with 
a difference ranging from 0.01 to 0.1 W/m2 were observed in 2015 than those observed in 2005; in China, more 
pixels with a difference ranging from −1.0 to −0.1 W/m2 were observed in 2030 than those observed in 2005. 

Fig. 3  Spatiotemporal changes in the annual mean anthropogenic heat flux (AHF) based on the past and 
future global gridded AHF dataset. (a) shows spatial distribution of AHF in 1970. (b–d) are same as (a) but for 
2015, 2030, and 2050, respectively. (e) shows the difference in AHF between 1970 and 2015 and (f) shows the 
difference in AHF between 2015 and 2050.
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Descriptive statistic shows that means of the difference in pixel value between the two datasets were 0.013, 0.011, 
and −0.014 W/m2 in 2005, 2015, and 2030, respectively (Fig. 6). This indicates that the historic AHF data may 
have been underestimated by Flanner2 relative to this study, while he may have overestimated the AHF data for 
future period. Moreover, standard deviations of the differences in pixel values between the two datasets indicate 
that the difference between the two datasets in 2030 has larger spatial variability than that in 2005 and 2015.

Figure 7 shows that a significantly positive correlation exists between the PF-AHF and Flanner’s datasets 
based on the annual mean AHF of the 100 largest cities in the world (P < 0.001). Moreover, based on the annual 
mean AHF of the 100 cities, correlation coefficients between the PF-AHF data and Flanner’s data were 0.96, 0.89, 
and 0.87 in 2005, 2015, and 2030, respectively (Fig. 7). This indicates that the agreement between the PF-AHF 
and Flanner’s datasets in 2005 was closer than that in 2015 and 2030. The correlation between the PF-AHF and 
Flanner’s datasets in 2030 was the lowest, which is consistent with the result based on Fig. 6.

Differences between the two datasets were largely attributed to differences in energy consumption data and 
variations in the population density data used in this study and in Flanner2. For example, energy data used in 
Flanner’s study did not include renewable energy, which features an increasing percentage over time in recent 
years2. This may be one reason why the mean of the PF-AHF data was larger than the mean of Flanner’s data in 
2005 and 2015. Moreover, the energy-use projections of EIA used in Flanner’s study were based on a high eco-
nomic growth case2, which differs from the energy demands of GEP used in the present study. This may be the 
main reason why the mean of the PF-AHF data was smaller than the mean of Flanner’s data in 2030. Decreasing 
the pixel resolution of our data for comparison may also lead to a certain amount of bias in those areas that lie 
close to large water bodies9.
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Validation of PF-AHF data using the results reported by previous studies.  For comparison, we 
selected some cities where other researchers have analysed the anthropogenic heat release in recent years. Table 3 
shows that AHFs have been estimated at 10–90 W/m2 for most cities based on the PF-AHF data, findings that are 
comparable with previous findings. However, some differences in the estimates between the present and previous 
studies exist. With three specific cities located in Eastern China for example, the AHFs of the cities of Beijing, 
Shanghai, and Taiyuan were estimated to be 8.4, 15.5, and 13.5 W/m2, respectively, based on the PF-AHF data-
base. The above three estimates differ from the corresponding previous results listed in Table 3 to some extent. 
Lu et al.39 reported that the AHFs in Eastern China were mostly between 0.5 and 20 W/m2, indicating that the 
estimates based on the PF-AHF database are in a reasonable range. The difference between the current estimates 
based on PF-AHF database and previous results may be related to the differences in the spatial ranges used to 
delineate the cities as well as differences in data sources and methodologies.

In addition, we found that our estimates for the cities of Houston, TX, USA, Phoenix, AZ, USA, and Montreal, 
QC, Canada were smaller than corresponding results reported in previous studies. This occurred because the esti-
mated AHFs of Houston, Phoenix, and Montreal in previous studies focused on summer and winter, which are 
generally larger than in spring and autumn9,40. Allen et al.9 demonstrated that the AHF peaked from December 
to February in the Northern Hemisphere, while the AHFs in July and August were also high. Regional climates 
greatly affect the intensity of heat releases41. During winter in the Northern Hemisphere, apart from the energy 
consumption for normal production, the cold climate causes a very large increase in energy consumed for res-
idential heating42. The relatively high AHF during summer in the Northern Hemisphere is mainly caused by 
the use of cooling systems42. For this reason, most previous studies of anthropogenic heat release have focused 
on summer and winter. However, monthly energy consumption data are difficult to obtain covering large-scale 
regions. Flanner2 adopted several latitudinally dependent equations to explore seasonal AHF cycles, and provided 
a selection for research results on projected future intra-annual variations of global AHF.

Validation of PF-AHF data using a cross-validation method.  Using the data before 2000 and the 
approaches for calculating future AHF data in this study, we projected the AHF data in 2005, 2010, and 2015 

Fig. 6  Comparison of the past and future global gridded anthropogenic heat flux (PF-AHF) data with Flanner’s 
data (2.5 × 2.5 arc-minute). Top row represents spatial distribution of the annual mean anthropogenic heat flux 
(AHF) for 2005 based on (a) the PF-AHF data and (b) Flanner’s2 data. (c) shows the spatial difference in annual 
mean AHF between the PF-AHF data and Flanner’s2 data in 2005. (d,e) are same as (c) but for 2015 and 2030, 
respectively.
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for test. Based on these test data, the average AHF of the 100 largest cities in the world in 2005 was calculated to 
be about 11.44 W/m2, which is slightly larger than the corresponding measurement based on the PF-AHF data 
(Table 4). However, the test data in 2010 and 2015 were smaller than the corresponding measurements overall. 
These differences between the two abovementioned data were mainly caused by the use of the different energy 
consumption data. While the measured data were calculated using the energy consumption records, the test data 
were calculated using the energy consumption projections based on the average annual growth rate of the energy 
demand during 2000–2030. This growth rate was higher than the reality in the early period but lower than the 
reality in the late period. Moreover, while RMSE between the test data and the measured data increased from 
2.80 W/m2 in 2005 to 5.12 W/m2 in 2015, their R2 decreased from 0.97 in 2005 to 0.88 in 2015. These imply that 
the differences of AHF between the projections and the actual situation would increase with time. However, there 
were significant correlations between the test data and the measured data in 2005, 2010, and 2015, implying cer-
tain reliability of the projected AHF data based on the approaches used in this study.

Fig. 8 shows that RMSE between the measured data and the test data gradually increased with the decrease 
in spatial resolution of the test data. Contrarily, R2 between the two abovementioned data gradually decreased 
with the decrease in spatial resolution of the test data. Moreover, the least RMSE between the measured data and 
the test data was found when the spatial resolution of the test data was 14 arc-minute. The largest R2 between the 
two data was found when the spatial resolution of the test data was 4 arc-minute. Overall, the biases between the 
measured data and the test data were relatively small and their correlations were relatively strong when the spatial 
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Fig. 7  Relationship between the past and future global gridded anthropogenic heat flux (PF-AHF) data and 
Flanner’s data based on the annual mean anthropogenic heat flux (AHF) of the 100 largest cities in the world. 
(a) shows the relationship between PF-AHF data and Flanner’s2 data in 2005. (b,c) are same as (a) but for 2015 
and 2030, respectively. The significance was determined using a two-tailed confidence t-test (P < 0.05).

Cities AHF in this study (W/m2)

The results in previous studies

AHF (W/m2) Method Reference

Beijing, China 8.4 in 2010 14.55 in 2011 Bottom-up 40

Shanghai, China 15.5 in 2010 19 in 2010
Top-down 16

Taiyuan, Shanxi, China 13.5 in 2010 7.8 in 2010

Incheon, Republic of Korea 52.2 in 2000 53 in 2002
Top-down and Bottom-up 47

Seoul, Republic of Korea 87.5 in 2000 55 in 2002

Tokyo, Japan 52.8 in 2015 41.4 in 2013 Top-down 8

Houston, TX, US 12.2 in 2005 14.6 in summer, 2005 Statistical regression 22

New York, NY, US 54.7 in 2005 48 in 2005 Top-down 2

Phoenix, AZ, US 11.2 in 2010 13 in summer, 2012 Bottom-up 16

Montreal, QC, Canada 34.8 in 2010 35 in winter, 2007–2009 Energy budget closure 19

Sao Paulo, Brazil 13.6 in 2005 20 in 2004–2007 Bottom-up 48

Sydney, Australia 19.9 in 2010 13–59.3 in 2007–2009 Bottom-up 4

Johannesburg, South Africa 11.8 in 2010 4.52 ± 7.87 in 2011 Top-down 49

Basel, Switzerland 33.5 in 2000 20 in 2001–2002 Energy budget closure 18

Helsinki, Finland 10.7 in 2010 13 in 2007–2010 Energy budget closure 17

London, UK 26.2 in 2015 16–24 in 2015 Top-down 9

Toulouse, France 7.9 in 2000 7.2 in 2000 Bottom-up 7

Table 3.  Some examples of anthropogenic heat flux (AHFs) in urban areas of selected cities estimated by the 
present and previous studies.
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resolution of the test data was in the ranges of 4~5 arc-minute and 8~11 arc-minute. These implies that the spatial 
resolutions of 4~5 arc-minute and 8~11 arc-minute may be more appropriate for the future time series of the 
PF-AHF dataset.

Usage Notes
The Fifth Assessment Report of the Intergovernmental Panel on Climate Change showed that the radiative forcing 
of CO2 has increased by 0.27 (0.24–0.30) W/m2 in the past decade43. This implies that the average radiative forcing 
of annual released CO2 was approximately 0.027 W/m2 during this period, which is comparable to the current 
global annual mean AHF (i.e., 0.03 W/m2)7. Anthropogenic heat release has influenced changes in climates glob-
ally, especially for the Northern Hemisphere5,44. In densely populated areas, AHFs have been much larger than 
the global average level, and this forcing is expected to continue to grow in developing regions5,45. Thus, incorpo-
rating anthropogenic heat into global climate models could help us to improve the performance of simulations of 
surface climate warming11.

The PF-AHF data predict a weakening of AHF at some regions in the coming decades that is closely related 
to the projected consumption of energy reported by McKinsey in the present study. The changes in the quantity 
of energy consumed can be induced by economic development, shifting economic structure, changes in energy 
consumption type, and improved energy use efficiency46, which have been considered by McKinsey (https://gep.
mckinseyenergyinsights.com/). However, the single existing global gridded dataset associated with future AHF, 
Flanner’s data, was built on an early energy-use projection of EIA during 2006–2040 (high economic growth 
case) and a simple assumption that the growth rate of energy consumption after 2040 will be 2% per year for all 
countries2. Evidently, Flanner’s data from 2006 to 2015 have been out of date, and his data after 2015 may contain 
large uncertainties2. Correlation analysis showed that the correlation between the two datasets in 2015 and 2030 
was weaker than that in 2005, implying the necessity of updating global AHF data based on new statistics and pre-
dictions of energy consumption. When compared with Flanner’s data2, our data are more objective in describing 
the global distribution of future AHFs. The accuracy of our PF-AHF data in future period was also confirmed by 
the cross-validation method. Additionally, the history time series of the PF-AHF database is longer than that of all 

Year

Averaged AHF (W/m2)

RMSE (W/m2) R2 P-valueTest data Measured data

2005 11.44 11.07 2.80 0.97 4.4E−76

2010 12.23 14.12 3.83 0.95 7.1E−66

2015 14.35 14.96 5.12 0.88 2.9E−46

Table 4.  Relationship between the test data and the measured data based on the annual mean anthropogenic 
heat flux (AHF) of the 100 largest cities in the world. The test data in 2005, 2010, and 2015 were from the 
projected AHF data based on the data before 2000. The measured data were from the past and future global 
gridded AHF (PF-AHF) data. Note: RMSE, root mean squared error; R2, coefficient of determination.
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previous datasets2,7, providing an advantage in simulating long-term climatic effects using the dataset developed 
in this study.

However, the PF-AHF database may still include some uncertainties. For example, we assumed that all con-
sumed energy was eventually converted into heat, and the delay between energy use and its conversion to heat 
was ignored. Since some energy that is consumed will be stored by buildings and converted to other forms of 
energy35, this assumption is somewhat unreasonable. As a result, the present study may overestimate the amount 
of anthropogenic heat produced. This uncertainty also existed in previous studies because of the difficulties in 
observing and estimating the conversion efficiency from fuel to heat11. Another uncertainty is induced by the 
assumption that each person consumes the same amount of energy in a given country when redistributing total 
energy consumption in each country. As we know, energy consumption rates may be different between different 
regions in a large country because of unbalanced regional economic development (e.g., China). However, specific 
information about energy consumption such as industrial distribution, energy-use type, and per-capita energy 
consumption in different areas and periods is difficult to obtain for each country of the world. In order to produce 
a global gridded AHF dataset with long-term time series, we have to use the country-level statistics to conduct 
this work. Figure 2 indicates that our method and assumption for redistributing the total energy consumption at 
a country level are somewhat reasonable. Validation results imply that the PF-AHF data can well reflect the spa-
tiotemporal variation of AHF globally. However, it still should be noted that the above-mentioned uncertainties 
may be prominent in describing local distribution of AHF, which may lead to a certain biases in simulated results 
based on climate models, and need to be improved in the future. Thus, selecting appropriate spatial resolution of 
the AHF datasets for researches at different scales is necessary. This study found that the spatial resolution at the 
ranges of 4~5 arc-minute and 8~11 arc-minute may be better for the provincial-scale researches using the future 
time series of the PF-AHF dataset.

Moreover, the use of different energy consumption datasets may lead to some divergence in the estimation of 
AHF. For instance, we noted that total energy consumption in Singapore was reported at about 81.0 million toe in 
2015 in the BP Review (https://www.bp.com/), while it was 17.1 million toe in the 2017 US Energy Information 
Administration Global Energy Dataset (https://www.eia.gov/). Although these two datasets are frequently used 
in studies associated with energy consumption and show a high level of correlation, the differences in small areas 
may lead to strikingly different AHFs in the same grid. These differences in AHF may further lead to different 
results when simulating the climatic effects of those AHFs1,4,45.

Overall, multiple validations revealed that the PF-AHF data were consistent with the night-time light data and 
the levels of AHF reported in previous studies. The relatively long time series and fine spatial resolution of this 
new global gridded AHF dataset could provide needed support for the simulation of climate change induced by 
anthropogenic heat release.

Code Availability
We did not use any custom coding in the process of producing the PF-AHF dataset. In this study, Microsoft Excel 
and ArcGIS software were employed to process all the data such as the future population density data and the 
gridded AHF intensity. ArcGIS software was also used to resample the PF-AHF data and draw the figures.
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