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Abstract

Training of working memory as a method of increasing working memory capacity and fluid

intelligence has received much attention in recent years. This burgeoning field remains

highly controversial with empirically-backed disagreements at all levels of evidence, includ-

ing individual studies, systematic reviews, and even meta-analyses. The current study

investigated the effect of a randomized six week online working memory intervention on

untrained cognitive abilities in a community-recruited sample of healthy young adults, in

relation to both a processing speed training active control condition, as well as a no-contact

control condition. Results of traditional null hypothesis significance testing, as well as Bayes-

ian factor analyses, revealed support for the null hypothesis across all cognitive tests admin-

istered before and after training. Importantly, all three groups were similar at pre-training for

a variety of individual variables purported to moderate transfer of training to fluid intelligence,

including personality traits, motivation to train, and expectations of cognitive improvement

from training. Because these results are consistent with experimental trials of equal or

greater methodological rigor, we suggest that future research re-focus on: 1) other promis-

ing interventions known to increase memory performance in healthy young adults, and; 2)

examining sub-populations or alternative populations in which working memory training may

be efficacious.

Introduction

Working memory (WM) is the set of cognitive processes that work to maintain and manipu-

late task-relevant information during cognitive task performance, while also preventing inter-

ference from task-irrelevant information. In this sense, WM is an interplay between attention

and memory that allows for temporary access to intermediate mental representations needed
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for more complex cognition. By briefly preserving task-relevant information, and facilitating

manipulation of it, WM allows us to act outside the bounds of the immediate moment, and to

coordinate complex and goal-directed behaviours [1–2]. As such, WM is a core cognitive abil-

ity in humans, and underlies performance on virtually all complex cognitive tasks, both within

and beyond the laboratory. People differ in terms of how much information they can store in

WM, and also in how readily they can store this information in the face of distraction [3].

While the absolute value of these inter-individual differences in WM capacity may in fact be

quite small (e.g. 2 versus 6 items for low- and high-ability individuals respectively; [4]), these

differences have been found to be highly predictive of performance on a wide variety of cogni-

tively demanding tasks, including: reading comprehension, language abilities, mathematics,

reasoning, problem solving, and also overall academic performance [5–6].

In addition to driving variation in scholastic achievement and educational success, WM

ability has also been found to be highly related to the ability to acquire knowledge, to learn

new skills, and also to the construct of ‘fluid intelligence’ more broadly [7]. In the theory of

Cattell [8], ‘fluid intelligence’ (Gf) is the ability to adapt our reasoning abilities to solve novel

cognitive problems. In contrast, ‘crystallized intelligence’ (Gc) draws heavily upon previously

learned culturally-rooted knowledge acquired from education and previous experience [9–11].

Fluid intelligence and WM are highly related psychological constructs. Working memory

capacity has been established as one of the best predictors of general intelligence [12], and

investigations of the strength of the relationship between WM and Gf in particular have indi-

cated moderate correlations with coefficients in the .3 to .9 range [13–14]. Similarly, Martinez

and colleagues [15] describe WM capacity and Gf as almost isomorphic, and Chuderski [16]

noted latent factors of the two constructs being statistically indistinguishable when time limits

were imposed on test takers. General intelligence itself, perhaps unsurprisingly, has been

linked to a wide variety of important life outcomes, including academic success [17–18], job

performance [19], income [20–21], health [22–23], morbidity [24], mortality [24–25], and

crime [17].

Given the strong relationship between WM and Gf, and the wide range of social, educa-

tional, and occupational outcomes to which they are positively correlated, it is no surprise that

recent research has intensely focused on developing interventions to increase them via training

[6, 26]. Halford, Cowan, & Andrews [27] posited a model by which facilitation of one cognitive

ability might then transfer to a different untrained ability. Specifically, they argued that Gf and

WM are related in that both share a common capacity constraint due to a shared demand for

attention in respective reasoning or memory tasks. Under this model, while a common capac-

ity limit may be expressed in terms of the number of items a person is able to hold in WM, the

same capacity limitation may be expressed in terms of the number of interrelations amongst

elements a person is able to maintain during a reasoning task indicative of Gf ability. The gen-

eral idea is that if working memory capacity could be increased, even just marginally by train-

ing, performance on other cognitive abilities that are strongly related to it (like Gf) ought to

thereby be augmented as well.

Jaeggi and colleagues [28] put this theory to the test, and found significant facilitation of

performance on tests of Gf following WM training in a healthy young adult population.

Empirical study on WM training and its effects on Gf has greatly intensified since the publica-

tion of Jaeggi et al.’s [28] initial positive findings (see [29–35]). However, although many stud-

ies have found strong and durable effects (over several months) for near-transfer (i.e.

facilitation of WM capacity by WM training) of WM abilities, examples of far-transfer (i.e.

facilitation of untrained abilities by WM training) to Gf have been more elusive, as well as gen-

erally weaker and less durable when they have been found (see [26, 36–45]). Rather, to this

point there exists a striking lack of consensus in the literature about whether or not training on
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WM tasks generalizes to Gf, and secondly, the specific methodology by which these claims

ought to be tested. The topic remains highly controversial and has spurred a variety of conflict-

ing reviews [46–52], meta-analyses [53–57] meta-analytic rebuttals [58], meta-analytic

counter-rebuttals [59], and even further meta-analytic rejoinders [53] on the basis of existing

trials. The resulting literature on the efficacy of WM training is what Urbánek and Marček

[60] have candidly called “reliably ambiguous” in terms of efficacy. Unfortunately the cumula-

tive effect of this literature has been to jointly obfuscate the ostensibly simple question that

each individual experiment, review, and meta-analysis has sought to clarify: “Does working

memory training work?”

Subsequent investigations and reviews have addressed a variety of methodological short-

comings thought to account for the early positive findings in the field (see [61]), however, new

and more specific methodological qualms have since arisen in the literature in an attempt to

further homogenize study design, and encourage the search for additional unmeasured or

uncontrolled variables which may account for significant variance in extant WM training tri-

als. The search for these variables can generally be divided into two main types: 1) those relat-

ing to individual differences amongst WM training participants themselves; and 2) those

relating to WM training trial design and execution.

Relating to individual differences amongst participants, Urbánek and Marček [60] rightly

point out, that from a conceptual point of view, the reliably ambiguous nature of the WM

training literature may be the result of an (as of yet unmeasured) independent, randomly dis-

tributed factor in participants. For example, Chein and Morrison [29] noted that no study up

to that date had accounted for the potential effects of motivation, commitment, or training

task difficulty across experimental and control conditions. Jaeggi and colleagues [6] echoed

these concerns, and further suggested that individual differences in personality factors, pre-

existing ability, and intrinsic versus extrinsic motivational factors need to be considered when

assessing WM training and transfer.

Relating to WM training trial design and execution, Redick and colleagues [52] discuss sev-

eral methodological issues ubiquitous in the WM training literature as a type of ‘best practices

guide’ to study design. Firstly, they advocate for the use of sensible active control groups over

simple no-contact control groups. When compared to no-contact control groups alone, active

training groups may benefit from a number of advantages related to the placebo or Hawthorne

effects. Secondly, they stress the importance of adequate sample sizes, and recommend at least

20 participants per group, following Simmons, Nelson, & Simonsohn [62]. Small sample sizes

are unfortunately common in the working memory training literature likely due to the time

and cost associated with the intervention, and can produce inflated effect sizes. Third, if facili-

tation of Gf by WM training is to occur by increasing the capacity of WM (as per Halford

et al.’s model [27]), evidence of this intermediate step should also be demonstrated along with

evidence of the far-transfer by a separate task from the training task itself. Fourth, the pattern

of results supporting the transfer effect should be ‘sensible’. That is, further than simply achiev-

ing a significant group by time interaction effect, this result should be achieved within the con-

text of relatively equal group performance at pre-training testing, and divergent performance

at post-training in favour of the active training group (see Redick [63] for examples of studies

with ‘non-sensible patterns of significant results). Finally, Redick and colleagues [52] advocate

for including more than one outcome measure for far-transfer to Gf which can then be used to

form a composite or latent variable for subsequent analyses.

Meta-analytic work [53–55, 57, 64] has pointed to a number of potentially moderating fac-

tors of WM training trial success or failure, including type of cognitive training (n-back train-

ing versus other types), participant age (younger versus older), participant status (learning

disabled versus impaired WM versus normal functioning), training dose (less versus more),
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randomization (randomized versus nonrandomized), type of control group (treated versus

untreated), geographic location (United States versus international populations), remunera-

tion for participation (more versus less), and publication type (theses, dissertations, and

conference posters versus journal articles, book chapters, and peer-reviewed conference

proceedings). Unfortunately, as alluded to above, the authors of these meta-analytic reviews

have disagreed about the appropriate methods for conducting a meta-analytic review of WM

training, which have led them to opposite conclusions about the efficacy of WM training

overall.

Melby-Lervåg et al.’s latest meta-analytic review [53] addressed several shortcomings in

previous meta-analytic work in examining 87 publications with 145 separate experimental

comparisons of WM training groups versus treated control groups. The authors did find a sig-

nificant effect of cognitive training for nonverbal ability in adults (g = 0.10; p< .05), and for n-

back training specifically (g = 0.15; p = .02) in studies using treated control (effect sizes jump

to 0.20 and 0.26 respectively when examining studies comparing to untreated controls). How-

ever, closer examination of the studies that contributed to this significant positive effect size

were found to suffer from several of the methodological shortcomings described by Redick

and colleagues [52]. For example, the five largest effect sizes were arrived at with sample sizes

of less than 20 per group, and employed only a single outcome measure of nonverbal ability.

More troublingly, four of these five largest effect sizes evinced substantial unexplained

decreases in outcome measure scores for the control group, which were in fact larger than the

increases observed in the training groups. These nonsensical (or at least conceptually counter-

intuitive) ‘crossover patterns’ of training effect [63, 65] artificially inflate the effect sizes for

individual comparisons, as well as for averaged estimates in meta-analyses. Melby-Lervåg and

colleagues [53] additionally note that the effect size of n-back training on nonverbal ability

drops below significance when only the most problematic of these five studies is removed

from the analysis. Perhaps most troublingly of all, observed gains in nonverbal ability were not

found to be significantly related to increases in WM abilities themselves, thereby casting doubt

on the proposed mechanism of far-transfer discussed by Halford et al. [27]. Overall, Melby-

Lervåg and colleagues [53] conclude that while there is convincing evidence of large improve-

ments on tasks similar to those utilized by WM training (i.e. near-transfer, and ‘intermediate

transfer’ to visual and verbal WM), there are no convincing effects of far-transfer of WM train-

ing to constructs such as nonverbal ability, verbal ability, reading comprehension or arithmetic

that could not otherwise be explained by methodological shortcomings. Importantly, and con-

trary to the suggestions in the literature regarding potential effects of individual differences,

moderator analyses revealed no evidence of moderation effects for nonverbal ability (e.g. par-

ticipant age, status, training dose, training type etc.) aside from significantly higher effect sizes

for studies utilizing untreated controls versus those implementing treated control groups. Cru-

cially, Melby-Lervåg and colleagues [53] demonstrated the effect of adequate sample size and

control group treatment by pooling effect sizes for studies falling into the four resulting per-

mutations of study design (i.e.� 20 participants and treated controls,� 20 participants and

untreated controls, < 20 participants and treated controls; < 20 participants and untreated

controls). Average effect sizes in each of these conditions showed significant effects for far-

transfer of WM training to nonverbal ability, except for the most conservative and robust

experimental design (i.e.� 20 participants and a treated control group), which showed an

average effect size close to zero (g = 0.01).

Given the rapidly expanding and evolving field of WM training, the present study seeks to

address whether or not the pattern of far-transfer of ability from WM capacity to Gf can be

replicated while addressing several of the methodological shortcomings ubiquitous to the cur-

rent literature. The most up to date meta-analytic review of the field at the time of planning
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the current study was that of Melby-Lervåg and Hulme [54], which included results from 30

comparisons from 23 studies carried out between 2002 and 2011. While more recent reviews

(discussed above) have become increasingly pessimistic about true effects of WM training,

they also have the benefit of drawing from a pool of experimental investigations almost five

times as large as that of Melby-Lervåg and Hulme’s initial work in 2013, just four years later

(recall that Melby-Lervåg et al.’s latest meta-analytic review [53] includes 145 comparisons

from 87 separate studies). Thus, while the most up to date reviews tend to support the null

hypothesis, earlier reviews were somewhat more optimistic–and particularly so for n-back

training in young adults transferring to nonverbal abilities.

On the basis of these early initial estimates of effect size in the literature, we hypothesized

that: 1) WM trained participants would demonstrate increased task performance on the train-

ing tasks themselves, 2) as well as increased WM capacity (i.e. near-transfer), compared to our

treated and untreated control comparison groups. We additionally hypothesized that: 3) par-

ticipants in the WM training group would exhibit far-transfer of ability to untrained tasks via

increased test scores on measures of Gf compared to the treated and untreated control groups.

Materials and methods

Participants and recruitment

A total of 359 healthy adults responded to printed advertisements distributed throughout the

community as part of a larger neuroimaging WM training trial. All MRI procedures and

results are discussed in two forthcoming manuscripts by these authors. The main text of the

printed advertisements read: “Participants Needed: Brain Training Neuroimaging Study. For

more information visit our website braintrainingstudy.ca” (see S1 Fig for the poster itself).

Potential participants completed online screening measures at braintrainingstudy.ca which

inquired about study exclusion criteria, including: 1) age less than 18, or greater than 40; 2)

left-handedness; 3) history of traumatic brain injury or other neurological condition causing

sensory or motor impairment; 4) self-reported presence of Axis I mental illness; 5) less than

normal or corrected-to-normal visual acuity; 6) MRI contra-indications; 7) insufficient access

to a computer and high-speed internet; and 8) recent or previous use of the n-back training

task or other online cognitive training paradigms. Of the 359 potential participants who com-

pleted the screening questionnaires, 187 were invited to participate in the study, and a total of

76 participants were ultimately included in the analyses. See Fig 1 for a flow chart depicting

the recruitment, randomization, and exclusion process. Participants were compensated $20

per cognitive testing session, and $20 per MRI session, totalling $80 for the four appointments

attended by participants randomly assigned to the MRI conditions, and $40 for the two

appointments attended by those assigned to the no-contact control condition. Written consent

was obtained from all participants, and ethics approval was obtained from the University of

Calgary’s Conjoint Health Research Ethics Board (CHREB).

Procedure

Following initial recruitment and screening, participants were randomized to one of three

groups: a WM training group (n = 25), a processing speed (PS) active control group (n = 24),

or a no-contact control group (n = 27). PS training was chosen as an active control condition

on the basis of its association with robust improvements on measures of processing speed, but

not measures of WM, inhibition, or nonverbal reasoning [66]. Thus, preliminary evidence sug-

gests that PS training may offer a viable active control condition to WM training by holding

constant the level of effort, motivation, and interaction with computers and researchers, while

impacting relatively orthogonal behavioral skillsets [66–67].
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Participants were blinded to group randomization with respect to the WM and PS training

groups. However, because assignment to the no-contact control group entailed not undergo-

ing MRI scanning sessions, and not completing online training, participants in this group

were aware of their group assignment. Efforts were made to blind experimenters to group

Fig 1. Flow chart of study design. *Two participants in MRI conditions were reassigned to the no-contact control group after

being unable to tolerate MRI scanning. †Participants removed from analysis due to training contamination, low training dosage, or

data acquisition issues.

https://doi.org/10.1371/journal.pone.0177707.g001
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assignment, though the distinction between training groups versus no-contact control was

similarly difficult to blind because of the difference in the number of scheduled appointments

(i.e. two additional MRI appointments for participants in the WM and PS training groups). In

this sense, the experimenters cannot be considered to have been truly blind to group assign-

ment. Importantly however, the experimenters were typically unable to distinguish between

those in the WM training versus PS active control groups when meeting them for MRI or cog-

nitive testing appointments. Following group assignment, participants in the WM and PS

training groups underwent their initial MRI session, and then completed initial cognitive test-

ing appointments on a separate day shortly thereafter. They were then given login access to

Lumosity.com [68] where they were asked to complete specially designed online training pro-

grams targeting either WM or PS cognitive processes. Participants were asked to allow 20–30

minutes of training per day, for five out of seven days per week, for six weeks. Progress in

training was monitored online for each participant, and individuals were removed from the

study if they did not complete at least 20 of the assigned 30 days of cognitive training over the

six week training period. Participants were also removed from the study if they erroneously

accessed Lumosity training games outside of those prescribed by their training program. How-

ever, we were unable to track whether or not participants accessed other Lumosity games

using different login credentials, or other ‘brain training’ programs entirely. Encouragement

emails were sent to participants on a weekly basis in order to facilitate compliance with the

prescribed training regimen. Following training, participants in the WM training and PS active

control groups underwent a second cognitive assessment. Participants in the no-contact con-

trol group simply completed cognitive testing on two occasions, approximately six weeks

apart.

Cognitive testing and behavioral measures

Cognitive testing included split-half subtests from the Wechsler Adult Intelligence Scale—

Fourth Edition (WAIS-IV) [69], Raven’s Advanced Progressive Matrices (RAPM) [70–71],

and two parallel forms of Cattell’s Culture Fair Test (CCFT) [72–73]. Parallel forms (i.e. split

halves) of these cognitive measures were not randomized across pre- versus post-training

assessments, though order of administration was pseudorandomized. Thus, participants in all

groups completed odd numbered items (and form A of the CCFT) before training, and even

numbered items after (and form B of the CCFT), in the same pseudorandomized order across

both testing sessions. Computerized administrations of the Automated Operation Span Task

(AOSPAN) [74], and a Spatial Delayed Response Task (SDRT) [75] were also administered

both before and after training. Cognitive assessments were completed by PhD-level graduate

students with specific training in neuropsychological assessment, or undergraduate volunteers

trained and supervised by the graduate students. Assessment sessions were typically 100 to 120

minutes in duration.

Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV). Eight of the 10 core

subtests of the WAIS-IV were administered in order to allow calculation of all four composite

indices of intelligence assessed by the WAIS-IV: Verbal Comprehension Index (VCI), Percep-

tual Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index

(PSI). These included ‘Vocabulary’, ‘Similarities’, ‘Block Design’, ‘Matrix Reasoning’, ‘Digit

Span’, ‘Arithmetic’, ‘Symbol Search’, and ‘Coding’. All subtests were split in half for pre- versus

post-training comparison, with the exception of Digit Span, Symbol Search, and Coding,

which were administered in their entirety before and after training. Discontinue rules for split-

half subtests were halved and rounded up where necessary.
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Raven’s Advanced Progressive Matrices (RAPM). RAPM [70–71] is a reliable and well

validated paper and pencil test of general cognitive ability. Participants are asked to examine a

matrix pattern with a missing piece, and select the correct answer from eight possible answers.

RAPM is published in two sets: Set-I which contains 12 screener and/or practice items and has

a five minute time limit, and Set-II which contains 36 items and has a 40-minute time limit.

Due to the split-half protocol, at each cognitive testing session participants completed six prac-

tice items within five minutes, followed by as many of the 18 test items as they could within a

20-minute time limit.

Cattell’s Culture Fair Test (CCFT). CCFT [72–73] is a test of general reasoning and cog-

nitive abilities that was designed specifically to reduce emphasis placed on linguistic abilities

and general store of culturally specific knowledge in traditional tests of intelligence. The test

contains two equivalent forms, each consisting of four subtests: series, analogies, matrices, and

classification, and thus provides a more varied assessment of general cognitive functioning

beyond matrix reasoning ability as assessed in isolation by the RAPM [76].

Automated Operation Span Task (AOSPAN). The AOSPAN task [74] is a complex mea-

sure of WM which requires participants to remember the sequential ordering of presented sti-

muli while carrying out simple mathematic problems as a distraction. The dependent variable

of interest is the number of correctly recalled letters in each trial.

Spatial Delayed Response Task (SDRT). The SDRT [75] assesses visuospatial working

memory by briefly presenting participants with a series circles on a computer screen, and

requires that they determine whether a second set of circles is the same after a two second

delay. A second condition asks participants to determine whether the second set of circles is

the same as the first set, but flipped about the horizontal midline of the presentation space.

Across a variety of difficulties (1, 3, 5, or 7 circles presented), the variable of interest is the total

number of correct trials for both with- and without-manipulation (i.e., flipped) conditions.

Additional behavioural measures. In addition to the above cognitive assessments, partic-

ipants were also asked to complete questionnaires on a wide variety of other characteristics

which might influence observed effects of online cognitive training. These included measures

of personality (HEXACO; [77]), need for cognition [78], ‘grit’ (i.e. commitment to long term

goals; [79]), and current cognitive activities [80]. Participants in the WM training and PS

active control groups were also asked to complete training-specific measures of motivation to

complete training, and expectations of cognitive improvement as a result of training. Measur-

ing motivation and expected benefits of training is particularly important given the literature

regarding the potential for motivational factors to artificially facilitate training effects (see [81–

82]). Participants in the no-contact control group did not complete any training, and were

thus not assessed for motivation of expectancy effects. All questionnaires were administered

once at the beginning of the study, with the exception of the motivation and expectancy ques-

tionnaire which was administered three times: before, mid-way through, and after training.

Training tasks

Working memory training program. Participants randomly assigned to the WM train-

ing group completed their online training with three games selected from Lumosity’s broader

game library [68] which specifically target WM processes: 1) ‘Memory Match’ is a visual

2-back task which presents participants with an array of shapes progressing from right to left

across the screen, advancing one position per trial. As the line of randomly ordered shapes

progresses across the screen, it passes through two location indicator boxes two positions

apart (i.e. one space between them). On each trial, participants are asked to indicate via but-

ton press whether the stimuli in the rightmost box matches that in the leftmost box which
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contains the stimuli from the rightmost box from two trials previous. This would be a simple

matching task except that the shapes to the left of the first indicator box become invisible

after several correct responses. This taxes memory for which shape was presented two trials

previously, and requires continuous updating of the presented sequence. If participants

respond incorrectly, all shapes in the sequence become visible until several subsequent cor-

rect responses render these shapes invisible again. 2) ‘Memory Match Overload’ is structured

similarly to Memory Match, but leaves two spaces between position indicator boxes, thereby

making it a more difficult visual 3-back memory task. 3) Finally, ‘Memory Lane’ mimics the

logic and cognitive challenge of the dual n-back task. Participants are guided down a virtual

street in which each apartment building they pass acts as one trial of the dual n-back task. At

each apartment, a human silhouette appears in one of the windows and auditorily presents a

letter of the alphabet. Participants are instructed to indicate via button press if either or both

the location of the silhouette in the window, and auditorily presented letter, are the same as n
apartments ago. Unlike the previous two training tasks, Memory Lane is adaptive in that the

difficulty is increased when participants are successfully completing the task, and decreased

when they are not, thereby ‘adapting’ to their skill level. The size of the visual stimuli presen-

tation area (i.e. number of windows per apartment; 2x2 to 3x3), target n are (i.e. number of

apartments ago to remember; 1-back to 10-back), and stimuli modality (i.e. visual only vs.

both visual and audio) are adjusted accordingly. Game durations are 180 seconds (consisting

of three 60 second rounds) for the dual n-back game (Memory Lane), 45 seconds for the

2-back game (Memory Match), and 45 seconds for the 3-back game (Memory Match over-

load). Each training session consisted of six Memory Match games, five Memory Match

Overload games, and five Memory Lane games for a total training session time of approxi-

mately 24.5 minutes. Game order was randomized with each session and consistent between

participants. Participants were asked to complete one training session per day, on five days

per week, for six weeks.

Processing speed training program. Participants randomly assigned to the processing

speed active control training group completed three different games from Lumosity’s broader

game library [68] that are heavily dependent on processing speed abilities: 1) ‘Speed Match’ is

a speeded visual 1-back task. It sequentially presents a series of shapes, and asks participants to

quickly indicate via button press whether or not the present shape matches the one presented

immediately before it. While this is a relatively simple task, emphasis is placed on improving

speed of responding over the course of training. 2) ‘Speed Match Overdrive’ shares a similar

structure to Speed Match, but includes a third response option for the currently presented

shape to be a ‘partial’ match to that presented directly before it (e.g. matches in colour but not

shape, or matches in shape but not colour). Finally, 3) ‘Spatial Speed Match’ shares the same

structure as Speed Match, but includes stimuli differing only in spatial orientation. For exam-

ple, two empty dots and one filled dot might be shown followed by a similar arrangement with

the filled dot in a different location. Importantly, these processing speed tasks were not directly

adaptive in the way that the dual n-back training was made more or less difficult by altering

variables of the game. However, there was an emphasis on constant improvement through

reduction of reaction times over the course of training. The three speed games (Speed Match,

Speed Match Overdrive, Spatial Speed Match) last 45 seconds each and were presented 11

times per training session for a total of approximately 24.75 minutes of training per session.

Consistent with the WM training group, game order was randomized with each session and

consistent between participants, and participants were asked to complete one training session

per day, on five days per week, for six weeks.
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Data analysis

Potential differences between the three groups before training were investigated with one-

way ANOVAs, chi-squared tests, or independent samples t-tests when comparing data per-

taining only to the two active training groups. To determine whether training had precipitated

significant changes in cognitive test scores, a mixed-design repeated measures ANOVA was

undertaken, examining time (within-subjects; before training versus after training) × group

assignment (between-subjects; WM training versus PS active control versus no-contact control

group) for each of the cognitive tests in our pre- and post-training test battery. For all adminis-

tered subtests of the WAIS-IV, scores were converted to age-appropriate scaled scores, in

order to calculate composite indices for verbal comprehension, perceptual reasoning, working

memory, processing speed (VCI, PRI, WMI, PSI), as well as full-scale intelligence (FSIQ).

In addition to this traditional null hypothesis significance testing, Bayesian factors were cal-

culated for each cognitive test via JZS Bayesian repeated measures ANOVAs in JASP version

0.8.0.0 for Windows [83–84]. JASP allows for the calculation of Bayes factors for a variety of

different models, including the null hypothesis, each main factor individually (e.g. time or

group), main factors combined (e.g. time + group), as well as the main factors combined with

the interaction effect (e.g. time + group + time × group). Here we modelled each of the main

factors as nuisance variables in order to include them with the null hypothesis, such that the

interaction effect of interest (e.g. time × group) could be compared directly with its main

explanatory rival—the null hypothesis including the main effects of time and group. Bayesian

analyses, and Bayesian factors provide relative evidence of both null and alternative hypothe-

ses, compared to the conclusions about the null hypothesis proffered by traditional null

hypothesis significance testing [85–87].

Results

Participant demographics, cognitive characteristics, and personality

variables

Participant groups were not statistically different on any variables measured pertaining to

demographics and cognitive ability, including: age [F(2,73) = 0.10, p = .90]; distribution of

males and females [χ2(2, N = 76) = 0.06, p = .97]; years of education [F(2,72) = 1.17, p = .32];

estimated full-scale intelligence quotient [F(2,73) = 0.70, p = .50], RAPM performance

[F(2,73) = 2.25, p = .11]; CCFT performance [F(2,73) = 1.62, p = .21]; AOSPAN performance

[F(2,72) = 0.28, p = .76]; and SDRT performance for both maintenance [F(2,72) = 2.32,

p = .11] and maintenance plus manipulation [F(2,72) = 1.85, p = .17] conditions. Groups

were also not statistically different on scales measuring personality characteristics, including:

the Grit scale [F(2,69) = 0.62, p = .54]; the Need for Cognition scale [F(2,70) = 0.52, p = .60];

the Cognitive Activities Questionnaire [F(2,65) = 2.22, p = .12], and all dimensions of the

HEXACO personality inventory. The two training groups were also equal in terms of their

self-rated motivation to complete training [t47 = -0.39, p = .70], and their expectations of

improvement on the training tasks themselves [t47 = 0.35, p = .73]. Table 1 summarizes these

results.

Behavioural results

Training task performance and reaction Time. Members of both the WM training

group and the PS active control group showed improvement on their assigned training mea-

sures across the training period. Training progress was measured for each training game by

calculating a difference score between their performance on their first game, and an average of
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their last five games. Participants in the WM training group achieved an average n of 1.80

(SD = 0.41) on their first attempt of the Memory Lane game, and progressed to an average n of

5.47 (SD = 2.12) across their last five games, yielding a significant average difference score of

3.67 (SD = 2.04), t(24) = 9.01, p< .001. Additionally, WM training participants demonstrated

increased proficiency on both the Memory Match, and Memory Match Overload games as

indicated quantitatively by a greater number of correct matches across their last five games,

compared to their first game. Difference scores were significant for both Memory Match t(24)

= 22.63, p< .001, and Memory Match Overload t(24) = 12.41, p< .001. Participants also

attempted a greater number of trials for these matching tasks over the course of training indi-

cating quicker reaction times, and thereby being able to fit in a greater number of trials in a

given 20-minute training session. Training progress in the PS active control group was indi-

cated by significant decreases in reaction time across the training period. On average, partici-

pants reduced their reaction times by 367.63ms (SD = 233.11) on Spatial Speed Match,

278.50ms (SD = 142.27) on Speed Match, and 589.62ms (SD = 228.14) on Speed Match Over-

drive when comparing their first game to the average of their last five games. Difference scores

indicated significant reductions in reaction time for each of these t(23) = 7.73–12.66, p< .001.

These training results are displayed graphically in Fig 2.

Table 1. Participant characteristics.

Working Memory Training

Group

Processing Speed Control

Group

No-Contact Control

Group

Statistics

Demographics

N 25 24 27

Age 30.68 (6.24) 31.33 (5.78) 31.32 (5.58) F(2,73) = 0.10, p = .90

Gender (male/female) 11/14 10/14 11/16 χ2(2, N = 76) = 0.06,

p = .97

Education (years) 15.24 (2.19) 15.57 (1.93) 16.07 (1.84) F(2,72) = 1.17, p = .32

Cognitive Ability Before Training

WAIS-IV FSIQ 108.24 (15.93) 111.63 (12.34) 107.07 (13.81) F(2,73) = 0.70, p = .50

RAPM 12.60 (3.01) 13.50 (2.27) 11.89 (2.76) F(2,73) = 2.25, p = .11

CCFT 26.68 (4.43) 28.46 (3.51) 26.41 (4.93) F(2,73) = 1.62, p = .21

AOSPAN total 52.79 (14.45) 53.96 (12.69) 50.93 (16.40) F(2,72) = 0.28, p = .76

SDRT Maintenance 17.56 (1.29) 18.25 (1.39) 17.35 (1.85) F(2,72) = 2.32, p = .11

SDRT Manipulation 16.04 (2.21) 16.63 (2.10) 15.38 (2.50) F(2,72) = 1.85, p = .17

Personality Factors

Grit score 3.44 (0.69) 3.31 (0.61) 3.44 (0.45) F(2,70) = 0.36, p = .70

Need for Cognition score 69.36 (6.76) 69.06 (9.51) 66.92 (10.60) F(2,70) = 0.52, p = .60

Cognitive Activities (hours/year) 1203.80 (890.50) 1407.52 (1164.60) 816.28 (788.30) F(2,65) = 2.22, p = .12

HEXACO Honesty- Humility 3.74 (0.50) 3.80 (0.54) 3.60 (0.60) F(2,70) = 0.92, p = .40

HEXACO Emotionality 3.00 (0.66) 2.83 (0.80) 3.18 (0.60) F(2,70) = 1.53, p = .22

HEXACO Extraversion 3.37 (0.53) 3.54 (0.76) 3.23 (0.59) F(2,70) = 1.42, p = .25

HEXACO Agreeableness 3.18 (0.54) 3.37 (0.50) 3.20 (0.43) F(2,70) = 1.03, p = .36

HEXACO Conscientiousness 3.84 (0.51) 3.53 (0.64) 3.68 (0.48) F(2,70) = 1.89, p = .16

HEXACO Openness to Experience 3.62 (0.67) 3.93 (0.42) 3.62 (0.63) F(2,70) = 2.23, p = .12

Training Data

Total hours of training 13.49 (4.86) 11.69 (3.03) - t47 = 1.55, p = .13

Pre-training motivation 5.68 (0.87) 5.77 (0.78) - t47 = -0.39, p = .70

Pre-training expectation of improvement 4.52 (0.96) 4.56 (1.10) - t47 = 0.35, p = .73

https://doi.org/10.1371/journal.pone.0177707.t001
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Fig 2. Mean performance for training tasks. Performance accuracy for the working memory training group (A-C), and mean reaction

times by training game for the processing speed training group (D-F).

https://doi.org/10.1371/journal.pone.0177707.g002
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Importantly, the training groups were observed to have spent a statistically equivalent

amount of time training with their respective online training programs over the course of the

roughly six week training period: 13.69 hours for the WM training group (SD = 4.86), and

11.69 hours (SD = 3.03) for the PS active control group; t(47) = 1.55, p = .13.

Motivation to train and expectations for improvement. Analysis of participants’ self-

reported motivation to complete online training, as well as the degree to which they thought

they might improve on the training tasks over the course of the training period did not reveal

any significant time × group interactions. Results of the mixed-design repeated measures

ANOVAs indicated main effects of time for both motivation to complete training [F(2,84) =

19.40, p< .001], and expectations for improvement [F(2,84) = 5.83, p = .004]. Bayesian analy-

ses were carried out on these measures as well, and indicated strong evidence against the inter-

action effect of time × group: BF01 = 7.70 for motivation to complete training, and BF01 = 6.30

for expectation for improvement. Thus, participants in both the WM training group and PS

active control group indicated a decline in motivation across the training period, but not at sig-

nificantly different rates. Self-reported ratings of expectations for improvement followed a U-

shaped curve for both groups, with lowest expectations for improvement mid-way through

training. Fig 3 displays these metrics across the training period.

Cognitive test scores before and after training. Results of the mixed-design repeated

measures ANOVA examining time × group for performance on cognitive testing revealed sig-

nificant main effects of time for two age-normed indices of the WAIS-IV including PRI

[F(1,73) = 24.41, p< .001], PSI [F(1,73) = 31.16, p< .001] (see Fig 4), as well as the AOSPAN

task [F(1,72) = 11.85, p = .001], RAPM [F(1,73) = 4.86, p = .031], and CCFT [F(1,73) = 102.22,

p< .001]. When raw scores from WAIS-IV subtests were used rather than age-normed com-

posite index scores, main effects of time were found for Vocabulary [F(1, 73) = 13.41, p<
.001], Similarities [F(1,73) = 6.57, p = .012], Block Design [F(1,73) = 37.70, p< .001], Symbol

Search [F(1,73) = 12.16, p = 0.001], and Coding [F(1,73) = 31.35, p< .001]. Additionally, the

repeated measures ANOVA revealed main effects of group membership only for the SDRT

spatial maintenance task [F(2,72) = 3.96, p = .023], though very nearly for RAPM [F(2,73) =

3.09, p = .051], and the Coding subtest of the WAIS-IV [F(2,73) = 2.99, p = .057]. Follow-up

Fig 3. Participant motivation and expectation. Self-rated motivation to complete training (A), and expectations for improvement (B) on

the training tasks throughout the training period. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0177707.g003
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Fig 4. WAIS-IV performance by group, before and after training. Verbal Comprehension Index (A); Perceptual Reasoning

Index (B); Working Memory Index (C); Processing Speed Index (D); Full Scale Intelligence Quotient (E). Error bars represent

95% confidence intervals.

https://doi.org/10.1371/journal.pone.0177707.g004
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pairwise analyses using the Bonferroni correction revealed a significant difference only

between the PS active control group (higher scores), and the no-contact control group (lower

scores) for the SDRT maintenance task. This finding is corroborated by visual inspection of

the obtained data for the SDRT maintenance task (see Fig 5 panel B). In contrast to these few

Fig 5. Measures of working memory capacity and fluid intelligence before and after training. Automated Operation Span (A),

Spatial Delayed Response Task (B-C), Raven’s Advanced Progressive Matrices (D), and Cattell’s Culture Fair Test (E) performance

by group before and after training. Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0177707.g005
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main effects, none of the cognitive tests administered revealed a time × group interaction effect

which would be expected under the hypothesis of differential cognitive test score change by

group. S1 Table displays Hedges’ g effect size estimates for all transfer tasks.

Further analyses with JZS Bayesian repeated measures ANOVAs were largely consistent

with the results of these traditional null hypothesis significance tests. Bayes factors comparing

the fit of the data under models containing the interaction term (i.e. time × group) versus the

model containing only main effects by themselves (i.e. time + group) consistently indicated

evidence against the interaction effect for each of the cognitive indices and subtests discussed

above. Specific Bayes factors ranged from 1.06 to 9.09, indicating that the observed data are

that many times more likely to occur under a model without the interaction effect, versus one

that does include it. Bayes factors between 3 and 10 are thought to provide ‘substantial’ [88], or

‘positive’ [89] evidence against the interaction effect, which describes the pattern of evidence

for all but two of the cognitive tests in this case: WAIS-IV Vocabulary subtest (BF01 = 1.06),

and SDRT spatial maintenance and manipulation (BF01 = 2.45). These Bayes factors below 3.0

are thought to offer ‘anecdotal’ [88] or ‘weak’ [89] evidence against the interaction effect. Fur-

ther, inspection of the descriptive statistics for these latter two cognitive tests for which evi-

dence against the interaction is weakest revealed patterns of score change antithetical to gains

resulting from training. These include differential decreases in test scores between groups over

the training period for WAIS-IV vocabulary, and increases in the no-contact control group

scores for the SDRT spatial maintenance and manipulation task. A table of all Bayes factor

results can be found in S2 Table.

Thus, these results suggest that while participants showed facilitation of performance at the

second administration after training on some cognitive tasks, none of these effects were

observed to significantly vary by group.

Training time correlations. Interestingly, despite overall non-significant findings con-

cerning time × group interaction effects for cognitive test scores, correlation analysis of total

time spent training reveals differences between groups, and potential individual differences

within the WM training group. Specifically, the total amount of time members of the WM

training group spent training was significantly correlated with gains in measured WAIS-IV

FSIQ (r = .42, p = .039), however, not for any of the constituent composite indices (VCI, PRI,

WMI, PSI; r’s = .13–.38, p’s = .06.28), nor intermediate measures of working memory ability

(AOSPAN task and SDRT; r’s = -.31–.31, p’s = .14–.89), nor either measure of nonverbal ability

administered (RAPM, CCFT; r’s = -.07–.06, p’s = .75–.76). Conversely, total time spent train-

ing by members of the PS active control group was not found to be significantly associated

with observed gains in FSIQ, nor any of the above listed measures (r’s = -.36–.33, p’s = .08–.81)

with the one exception of VCI (r = .42, p = .039).

Discussion

The goal of the present study was to evaluate the weight of evidence for or against the contro-

versial claim that WM training ‘works’; or more specifically that training of WM transfers to

untrained cognitive tasks in the domain of fluid intelligence. We evaluated this hypothesis in a

community-recruited sample of healthy young adults, aged 18–40, in a randomized controlled

six week trial of online WM training compared to both active and no-contact control groups.

The present results provide no convincing evidence of near-transfer of WM training to

WM capacity, or far-transfer to Gf despite significant improvement on all training tasks across

both groups. Similarly, improved performance on the WM or PS training tasks did not dem-

onstrate far-transfer to a broad range of cognitive domains measured by a traditional compre-

hensive test of intelligence. Stated plainly, participants randomized to six weeks of online
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working memory training fared no better on these cognitive tasks after training, when com-

pared to those randomized to a processing speed active control condition, or even compared

to those randomized to a no-contact control condition. Several cognitive tests and indices

evinced higher scores at the post-training cognitive assessment relative to the pre-training

assessment (e.g. WAIS-IV PRI, PSI; AOSPAN; RAPM; CCFT); however, in each case, the

effect did not significantly differ by group, suggesting practice effects for the tests themselves

versus true training-related gains in performance [90]. Overall, this pattern of results supports

our first hypothesis (that participants would improve on training tasks), though provides sub-

stantial evidence against our more consequential second hypothesis (that WM training would

precipitate near-transfer to WM capacity), and third hypothesis (that WM training would pre-

cipitate far-transfer to Gf).
Counter to these results, post-hoc analyses revealed that total time spent training by mem-

bers of the WM training group was positively and significantly correlated in observed gains in

overall intelligence as measured by the WAIS-IV full-scale intelligence quotient (FSIQ) index.

This pattern did not obtain for the PS active control condition. However, two indicators sug-

gest that this finding should be interpreted with caution, if not completely disregarded. First,

similar correlations did not hold for constituent indices of the FSIQ (i.e. VCI, PRI, WMI, or

PSI). Second, total time spent training by members of the PS active control group was posi-

tively and significantly correlated with gains on WAIS-IV VCI (composed of tests of vocabu-

lary and abstract verbal reasoning) for which there is no theoretical basis for improvement

following training of processing speed. Rather, both of these correlations are more than likely

spurious, resulting from measurement error and/or psychometric imprecision (discussed

below).

Looking to the literature, these results are consistent with a large and growing body of

empirical work in support of the null for WM training [see 26, 36–45]. However, due to the

largely divided or ‘reliably ambiguous’ [60] nature of the current WM training literature, these

results are also inconsistent with a large and growing opposing body of empirical work that

has demonstrated evidence for both near- and far-transfer effects resulting from WM training

in healthy adults [28–35, 43].

While the present results land firmly and unambiguously on the former side of this split lit-

erature, the addition of our single empirical result cannot hope to ultimately settle the debate

on WM training efficacy. However, a more targeted comparison of study methodology may

provide several clues as to why it found support for the null. For example, following Melby-

Lervåg and colleagues [53] analysis, narrowing the broader WM training literature to only the

34 comparisons to date which have included 20 or greater participants per group, and also uti-

lized an active control condition revealed a negligible mean effect size. In comparison, every

other combination of experimental design (e.g. < 20 participants per group, with untreated

controls etc.) yielded significant mean effect sizes. In other words, the literature composed of

methodologically rigorous studies is not so split or divided as the broader WM training litera-

ture, and the present results are indeed consistent with these similarly rigorous experimental

trials.

Despite methodological rigor on these important points, limitations of the current study

include equivalence of pre- and post-training cognitive test forms, as well as a high degree of

participant attrition from the both the WM training group and the PS active control group.

First, regarding the equivalence of test forms, here we split singular tests into roughly equiva-

lent versions according to even and odd item numbers. However, because most of these cogni-

tive tests are designed such that each successive question is incrementally more difficult than

the last, it remains possible that the form containing even-numbered items is slightly more dif-

ficult than the one containing odd-numbered items despite good psychometric properties in
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terms of split-half reliabilities. In the present experimental design, we decided on the most

conservative option which is to use the odd-numbered items at pre-training assessment, and

even-numbered items at post-training assessments.

Regarding participant attrition, it should be noted here that while only 7 and 8 participants

withdrew from the WM training and PS active control conditions (or abandoned their pre-

scribed training plan) respectively, these numbers represent a rather large proportion of the

total group sizes (7/32 = 21.89% for the WM group, and 8/32 = 25% for the PS group). This

drop-out may speak to any number of factors about the tolerability of the interventions, and

leaves the current results open to speculation about potential systematic differences between

trial completers and trial abandoners. Anecdotally, several participants noted in conversation

with the experimenters that training became less exciting and somewhat repetitive across the

six week training period. These sentiments are corroborated quantitatively for both the WM

training group and PS active control group by substantial decreases in self-rated motivation

and expectations of improvement from training between the start of the trial and even halfway

through. Several participants (from both the WM and PS groups) expressed that adding more

variety to the training regimen may have served to enhance its appeal. Regardless of whether

the repetitive nature of the highly circumscribed sets of training tasks accounts for any of the

participant drop-out, Straus, Glasziou, Richardson & Haynes [91] discuss the implications of

attrition from RCTs, and point out that many medical journals will refuse to publish trials

with attrition rates above 20%. Examination of the factors that lead to WM training adherence

and attrition will be important topics of future research (see [92]). Post-hoc analyses revealed

few statistically significant differences between cognitive and questionnaire baseline character-

istics of participants who abandoned the study after randomization, and those who completed

the trial. Specifically, those who dropped out of the study were found to have higher scores on

the AOSPAN task, and lower scores on the ‘fearfulness’ facet of the HEXACO personality

inventory. Importantly however neither of these significant results survive the Bonferonni cor-

rection for multiple comparisons (i.e. ~50 separate t-tests).

Finally, while the current study includes just over the minimum number of 20 participants

per group recommended by the literature [62], it should be pointed out that power analyses

based on an early estimate of a moderate mean effect size of d = 0.34 for n-back training stud-

ies [56] would require samples sizes of 108 participants per group in order to achieve a power

of 0.8 with an α = .05 in a 1-tailed independent samples t-test with equal sample sizes. Given

group sizes of 24, the power of the present study sits at roughly 0.3. The danger here of course

is that low values for statistical power such as this lead to poorer chances of detecting an effect

if it truly exists, and also poorer chances that any found effects are indeed genuine [93–95].

Thus, regardless of minimum participant number suggestions from the literature, this power

analysis indicates a meager ~30% chance of the present study finding a moderate effect of WM

training if it actually exists. Future research on WM training efficacy will benefit from greater

statistical power resulting from larger sample sizes. Online tools for homogenizing study

design and streamlining participant training will certainly aid in organizing larger multi-site

WM training studies (see [96] for an early example).

These limitations notwithstanding, our trial includes several strengths that work to improve

upon methodological shortcomings that have been described as ubiquitous or pervasive in the

existing WM training literature [53, 66, 63, 95]. In addition to utilizing minimum suggested

sample sizes, and employing an active control condition, the present study sought to reduce

the ambiguity of potential positive findings by measuring a number of intra-individual vari-

ables that have been suggested to moderate WM training effect, including: self-rated motiva-

tion to complete training, self-rated expectations of cognitive improvement from training,

major personality traits, grit, need for cognition, as well as current cognitive activities. By
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measuring and ensuring equivalence between groups on these potentially important intra-per-

sonal variables, in addition to vital demographic characteristics (i.e. age, sex, education, and

IQ), their impact on any potential gains in cognitive ability can be effectively ruled out. No

such gains in ability were observed in this case, however because these traits were measured,

we can state with some confidence that our null findings were not due to unmeasured differ-

ences in these variables between our three groups. The near-perfect equivalence of our three

groups on all of the above variables precludes the necessity to statistically model pre-training

group differences in our analyses. Additionally, and contrary to much of the previous litera-

ture, we utilized multiple measures of the cognitive domains of interest: working memory

(WAIS-IV Digit Span, and Arithmetic, AOSPAN, SDRT), and fluid intelligence (WAIS-IV

Matrix Reasoning, and Block Design, RAPM, and CCFT which is composed of four separate

tests of Gf ability). Each of these measures within these given domains of interest returned con-

sistent results in support of the null regarding WM training.

A final strength of our trial is that cognitive test scores were not observed to decrease over

the course of the training period for either of the control groups, which Redick [66] has

pointed out as a contributing factor to significant time × group interactions in several success-

ful WM training studies. It is interesting to point out however, that while including an active

control condition that closely matches all but the proposed intervention of the treatment

group is certainly a methodological asset, our active and passive control groups obtained very

much the same result–i.e. no significant improvement on any cognitive test which could not

otherwise be due to expected practice effects. This is an interesting and somewhat unexpected

result given the large discrepancies in average mean effect sizes listed in meta-analytic reviews.

Recall that Melby-Lervåg and colleagues [53] found effect sizes of 0.15 and 0.26 for n-back

training on nonverbal ability for treated and untreated controls, whereas Au and colleagues

[55] found an even larger discrepancy with effect sizes of 0.06 and 0.44 for treated versus

untreated controls in their more targeted review. Heterogeneity of study design in the WM

training literature makes it difficult to compare the equivalence of our active and passive con-

trol conditions to previous studies. An in depth examination of Melby-Lervåg and colleagues

[53] supplementary material yielded no comparable studies meeting the following criteria: 1)

sample of young adults (vs. children or older adults); 2) 20 or greater participants per group; 3)

participants randomized to both active and passive control groups in addition to the treatment

group(s); 4) utilization of the dual n-back task for training; 5) examination of fluid intelligence

as an outcome measure. The closest experimental trial to these criteria is that of Redick et al.

[40], which meets all of the above conditions except true group randomization. Interestingly,

their results indicated a similar pattern to those found here: non-significant differences

between all three groups, including both active and passive control conditions. These results

raise the thorny question of whether other trial- or researcher-specific factors may account for

some of the variance observed between studies which include active control conditions, and

those that do not (e.g. experimenter bias, publication bias etc.). Notably, Redick et al.’s [40]

trial also shares in common with the current study, the failure to find near-transfer of training

to measures of WM span, or WM capacity, contrary to many findings to this effect in the liter-

ature [28, 49–50].

In sum, the present study found no convincing evidence of far-transfer of WM training to

untrained measures of Gf, nor near-transfer of training to intermediate cognitive domains (i.e.

WM capacity) thought to mediate increases of Gf in young adults. Importantly, we imple-

mented a methodologically rigorous design following recommendations from recent litera-

ture, and also measured a variety of intra-personal factors that have been proposed to

moderate treatment effect. Overall, while the present results in support of the null cannot hope

to singly resolve the heated debate over the controversial claims of WM training efficacy, they
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do contribute meaningfully to the rapidly growing corpus of research on the topic. Crucially,

by providing additional and incremental evidence against the efficacy of dual n-back training

in healthy young adults, subsequent research can intensify the search for alternative interven-

tions that may produce the desired effects in this population (see [97]), or alternative popula-

tions or patient groups for which dual n-back training may actually be effective (see [98] for a

review, and [57] for a meta-analysis).
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60. Urbánek T, Marček V. Investigating the effectiveness of working memory training in the context of Per-

sonality Systems Interaction theory. Psychological Research 2016; 80:877–88. https://doi.org/10.1007/

s00426-015-0687-4 PMID: 26208631

61. Sternberg RJ. Increasing fluid intelligence is possible after all. Proceedings of the National Academy of

Sciences 2008; 105:6791–2. https://doi.org/10.1073/pnas.0803396105 PMID: 18474863

62. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: Undisclosed flexibility in data col-

lection and Analysis Allows presenting anything as significant. Psychological Science 2011; 22:1359–

66. https://doi.org/10.1177/0956797611417632 PMID: 22006061

63. Redick TS. Working memory training and interpreting interactions in intelligence interventions. Intelli-

gence 2015; 50:14–20. https://doi.org/10.1016/j.intell.2015.01.014

64. Karbach J, Verhaeghen P. Making working memory work: A meta-analysis of executive-control and

working memory training in older adults. Psychological Science 2014; 25:2027–37. https://doi.org/10.

1177/0956797614548725 PMID: 25298292

65. Wagenmakers E-J. A quartet of interactions. Cortex 2015; 73:334–5. https://doi.org/10.1016/j.cortex.

2015.07.031 PMID: 26323655

66. Takeuchi H, Kawashima R. Effects of processing speed training on cognitive fucntions and neural sys-

tems. Reviews in the Neurosciences 2012; 23:289–301. https://doi.org/10.1515/revneuro-2012-0035

PMID: 22752786

Working memory training and transfer

PLOS ONE | https://doi.org/10.1371/journal.pone.0177707 May 30, 2017 23 / 25

https://doi.org/10.1371/journal.pone.0151817
https://doi.org/10.1371/journal.pone.0151817
http://www.ncbi.nlm.nih.gov/pubmed/27043141
https://doi.org/10.1016/j.cub.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/21749957
http://www.ncbi.nlm.nih.gov/pubmed/21438192
https://doi.org/10.3758/s13423-010-0034-0
https://doi.org/10.3758/s13423-010-0034-0
http://www.ncbi.nlm.nih.gov/pubmed/21327348
https://doi.org/10.1007/s00426-013-0524-6
http://www.ncbi.nlm.nih.gov/pubmed/24213250
https://doi.org/10.1007/s10648-015-9314-6
http://www.ncbi.nlm.nih.gov/pubmed/26640352
https://doi.org/10.1177/1745691616635612
http://www.ncbi.nlm.nih.gov/pubmed/27474138
https://doi.org/10.1037/a0028228
http://www.ncbi.nlm.nih.gov/pubmed/22612437
https://doi.org/10.3758/s13423-014-0699-x
https://doi.org/10.3758/s13423-014-0699-x
http://www.ncbi.nlm.nih.gov/pubmed/25102926
https://doi.org/10.1080/00461520.2015.1036274
https://doi.org/10.1080/00461520.2015.1036274
https://doi.org/10.1037/neu0000227
http://www.ncbi.nlm.nih.gov/pubmed/26237626
https://doi.org/10.3758/s13423-015-0862-z
https://doi.org/10.3758/s13423-015-0967-4
http://www.ncbi.nlm.nih.gov/pubmed/26518308
https://doi.org/10.1007/s00426-015-0687-4
https://doi.org/10.1007/s00426-015-0687-4
http://www.ncbi.nlm.nih.gov/pubmed/26208631
https://doi.org/10.1073/pnas.0803396105
http://www.ncbi.nlm.nih.gov/pubmed/18474863
https://doi.org/10.1177/0956797611417632
http://www.ncbi.nlm.nih.gov/pubmed/22006061
https://doi.org/10.1016/j.intell.2015.01.014
https://doi.org/10.1177/0956797614548725
https://doi.org/10.1177/0956797614548725
http://www.ncbi.nlm.nih.gov/pubmed/25298292
https://doi.org/10.1016/j.cortex.2015.07.031
https://doi.org/10.1016/j.cortex.2015.07.031
http://www.ncbi.nlm.nih.gov/pubmed/26323655
https://doi.org/10.1515/revneuro-2012-0035
http://www.ncbi.nlm.nih.gov/pubmed/22752786
https://doi.org/10.1371/journal.pone.0177707


67. Takeuchi H, Taki Y, Hashizume H, Sassa Y, Nagase T, Nouchi R, et al. Effects of training of processing

speed on neural systems. Journal of Neuroscience 2011; 31:12139–48. https://doi.org/10.1523/

JNEUROSCI.2948-11.2011 PMID: 21865456

68. Lumos Labs Inc. Retrieved February, 2013 from www.lumosity.com

69. Wechsler D. Wechsler Adult Intelligence Scale—Fourth Edition: Technical and interpretive manual.

San Antonio, TX: Pearson Assessment 2008

70. Raven JC. Advanced progressive matrices sets I and II: Plan and use of the scale with a report of exper-

imental work. London: H.K. Lewis & Co. Ltd; 1975.

71. Raven JC, Raven J, Court JH. Advanced progressive matrices: sets I & II: background. . . Oxford:

Oxford Psychologists Press; 1994.

72. Cattell RB, Cattell AKS. Handbook for the culture fair intelligence test: A measure of "g", scale 3, forms

A and B. Champaign, IL: Institute for Personality and Ability Testing 1959

73. Cattell RB, Cattell AKS. Measuring intelligence with the culture fair tests. Champaign, IL: Institute for

Personality and Ability Testing 1973.

74. Unsworth N, Heitz RP, Schrock JC, Engle RW. An automated version of the operation span task.

Behavior Research Methods 2005; 37:498–505. https://doi.org/10.3758/bf03192720 PMID: 16405146

75. Glahn D, Kim J, Cohen M, Poutanen V-P, Therman S, Bava S, et al. Maintenance and manipulation in

spatial working memory: Dissociations in the prefrontal cortex. NeuroImage 2002; 17:201–13. https://

doi.org/10.1006/nimg.2002.1161 PMID: 12482077

76. Colom R, Garcia-Lopez O. Secular gains in fluid intelligence: Evidence from the Culture-Fair Intelli-

gence Test. Journal of Biosocial Science 2003; 35:33–9. https://doi.org/10.1017/s0021932003000336

PMID: 12537154

77. Ashton M, Lee K. The HEXACO-60: A short measure of the major dimensions of personality. Journal of

Personality Assessment 2009; 91:340–5. https://doi.org/10.1080/00223890902935878 PMID:

20017063

78. Cacioppo JT, Petty RE, Kao CF. The efficient assessment of Need for Cognition. Journal of Personality

Assessment 1984; 48:306–7. https://doi.org/10.1207/s15327752jpa4803_13 PMID: 16367530

79. Duckworth AL, Quinn P. Development and validation of the short Grit Scale (Grit-S). Journal of Person-

ality Assessment 2009; 91:166–74. https://doi.org/10.1080/00223890802634290 PMID: 19205937

80. Eskes GA, Longman S, Brown AD, McMorris CA, Langdon KD, Hogan DB, et al. Contribution of physi-

cal fitness, cerebrovascular reserve and cognitive stimulation to cognitive function in post-menopausal

women. Frontiers in Aging Neuroscience 2010; 2:1–7.

81. Foroughi CK, Monfort SS, Paczynski M, Mcknight PE, Greenwood PM. Placebo effects in cognitive

training. Proceedings of the National Academy of Sciences 2016; 113:7470–4. https://doi.org/10.1073/

pnas.1601243113 PMID: 27325761

82. Boot WR, Simons DJ, Stothart C, Stutts C. The pervasive problem with placebos in psychology: Why

active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Sci-

ence 2013; 8:445–54. https://doi.org/10.1177/1745691613491271 PMID: 26173122

83. Love JP, Selker R, Verhagen AJ, Marsman M, Gronau QF, Jamil T, et al. APS Observer. APS Observer

2015; 28.

84. JASP Team. JASP (version 0.8.0.0) [computer software] 2016. Retrieved from https://jasp-stats.org/

85. Masson MEJ. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.

Behavior Research Methods 2011; 43:679–90. https://doi.org/10.3758/s13428-010-0049-5 PMID:

21302025

86. Jarosz AF, Wiley J. What are the odds? A practical guide to computing and reporting Bayes factors.

The Journal of Problem Solving 2014; 7. https://doi.org/10.7771/1932-6246.1167

87. Rouder JN, Morey RD, Verhagen J, Swagman AR, Wagenmakers E-J. Bayesian analysis of factorial

designs. Psychological Methods 2016. https://doi.org/10.1037/met0000057 PMID: 27280448

88. Jeffreys H. Theory of probability. Oxford: Clarendon Press; 1961.

89. Raftery AE. Bayesian model selection in social research. In: Marsden PV, editor. Sociological methodol-

ogy 1995, Cambridge, MA: Blackwell; 1995.

90. Salthouse TA, Tucker-Drob EM. Implications of short-term retest effects for the interpretation of longitu-

dinal change. Neuropsychology 2008; 22:800–11. https://doi.org/10.1037/a0013091 PMID: 18999354

91. Straus SE, Glasziou P, Richardson WS, Haynes RB. Evidence-based medicine: how to practice and

teach it. Edinburgh: Elsevier Churchill Livingstone; 2011.

Working memory training and transfer

PLOS ONE | https://doi.org/10.1371/journal.pone.0177707 May 30, 2017 24 / 25

https://doi.org/10.1523/JNEUROSCI.2948-11.2011
https://doi.org/10.1523/JNEUROSCI.2948-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21865456
http://www.lumosity.com
https://doi.org/10.3758/bf03192720
http://www.ncbi.nlm.nih.gov/pubmed/16405146
https://doi.org/10.1006/nimg.2002.1161
https://doi.org/10.1006/nimg.2002.1161
http://www.ncbi.nlm.nih.gov/pubmed/12482077
https://doi.org/10.1017/s0021932003000336
http://www.ncbi.nlm.nih.gov/pubmed/12537154
https://doi.org/10.1080/00223890902935878
http://www.ncbi.nlm.nih.gov/pubmed/20017063
https://doi.org/10.1207/s15327752jpa4803_13
http://www.ncbi.nlm.nih.gov/pubmed/16367530
https://doi.org/10.1080/00223890802634290
http://www.ncbi.nlm.nih.gov/pubmed/19205937
https://doi.org/10.1073/pnas.1601243113
https://doi.org/10.1073/pnas.1601243113
http://www.ncbi.nlm.nih.gov/pubmed/27325761
https://doi.org/10.1177/1745691613491271
http://www.ncbi.nlm.nih.gov/pubmed/26173122
https://jasp-stats.org/
https://doi.org/10.3758/s13428-010-0049-5
http://www.ncbi.nlm.nih.gov/pubmed/21302025
https://doi.org/10.7771/1932-6246.1167
https://doi.org/10.1037/met0000057
http://www.ncbi.nlm.nih.gov/pubmed/27280448
https://doi.org/10.1037/a0013091
http://www.ncbi.nlm.nih.gov/pubmed/18999354
https://doi.org/10.1371/journal.pone.0177707


92. Double KS, Birney DP. The effects of personality and metacognitive beliefs on cognitive training adher-

ence and performance. Personality and Individual Differences 2016; 102:7–12. https://doi.org/10.1016/

j.paid.2016.04.101

93. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: Why small

sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience 2013; 14:365–

76. https://doi.org/10.1038/nrn3475 PMID: 23571845

94. Bogg T, Lasecki L. Reliable gains? Evidence for substantially underpowered designs in studies of work-

ing memory training transfer to fluid intelligence. Frontiers in Psychology Front Psychol 2015; 5. https://

doi.org/10.3389/fpsyg.2014.01589 PMID: 25657629

95. Moreau D, Kirk IJ, Waldie KE. Seven pervasive statistical flaws in cognitive training interventions. Fron-

tiers in Human Neuroscience Front Hum Neurosci 2016; 10. https://doi.org/10.3389/fnhum.2016.00153

PMID: 27148010

96. Bastian CCV, Locher A, Ruflin M. Tatool: A Java-based open-source programming framework for psy-

chological studies. Behavior Research Methods 2012; 45:108–15. https://doi.org/10.3758/s13428-012-

0224-y PMID: 22723043

97. McCabe JA, Redick TS, Engle RW. Brain-training pessimism, but applied-memory optimism. Psycho-

logical Science in the Public Interest 2016; 17:187–91. https://doi.org/10.1177/1529100616664716

PMID: 27697852

98. Ansari S. The therapeutic potential of working memory training for treating mental disorders. Frontiers

in Human Neuroscience Front Hum Neurosci 2015; 9. https://doi.org/10.3389/fnhum.2015.00481

PMID: 26388759

Working memory training and transfer

PLOS ONE | https://doi.org/10.1371/journal.pone.0177707 May 30, 2017 25 / 25

https://doi.org/10.1016/j.paid.2016.04.101
https://doi.org/10.1016/j.paid.2016.04.101
https://doi.org/10.1038/nrn3475
http://www.ncbi.nlm.nih.gov/pubmed/23571845
https://doi.org/10.3389/fpsyg.2014.01589
https://doi.org/10.3389/fpsyg.2014.01589
http://www.ncbi.nlm.nih.gov/pubmed/25657629
https://doi.org/10.3389/fnhum.2016.00153
http://www.ncbi.nlm.nih.gov/pubmed/27148010
https://doi.org/10.3758/s13428-012-0224-y
https://doi.org/10.3758/s13428-012-0224-y
http://www.ncbi.nlm.nih.gov/pubmed/22723043
https://doi.org/10.1177/1529100616664716
http://www.ncbi.nlm.nih.gov/pubmed/27697852
https://doi.org/10.3389/fnhum.2015.00481
http://www.ncbi.nlm.nih.gov/pubmed/26388759
https://doi.org/10.1371/journal.pone.0177707

