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Introduction
It is the widespread nature of the arrangement of genome 
archi tecture that means two adjacent protein-coding genes have 
coding sequences that partially or entirely overlap.1 This phe-
nomenon has been observed in viruses,2–4 prokaryotes5–9 and 
eukaryotes.10–13 For example, it has been reported that about one-
third of all protein-coding genes across completely sequenced 
bacterial genomes are such overlapping genes (OGs).14 As to 
the role of this configuration, OGs are usually assumed to be 
potentially involved in the regulation of gene expression1,13,15,16 
or improvement of genome compaction.1,13,16,17

In our previous works, we demonstrated that OGs could 
be used as rare genomic markers for bacterial phylogeny infer-
ence.18,19 A previous study shows that gene content might 
change when gene order is altered too much.20 As phyloge-
netic markers, it is evident that OGs do not evolve as slowly 
as gene content, because of their widespread arrangement in 
prokaryotic genomes and mutation at a universal rate. How-
ever, OGs evolve more conservatively than gene order, because 
the linkage between two OGs may be preserved for functional 

constraints.11,14,21–23 Our idea is simple and intuitive that two 
closely related bacterial genomes sequenced completely are 
compared using a similarity metric, which measures the pro-
portion of the shared OGs between the two genomes. Our 
results and the results of others show that there are indeed some 
phylogenetic signals within those orthologous OGs among 
closely related bacterial genomes.24–28 However, it is obvious 
that OGs as phylogenetic markers may be inappropriate for 
comparing a set of too closely related bacterial genomes, such 
as complete strain genomes of one species, because it is pos-
sible that no evolutionary events of OGs would have occurred 
in a short time span. In addition, for too distantly related bac-
terial genomes, the OGs method used for phylogeny inference 
may also show poor performance, as a few orthologous OGs 
may be identified.

Another drawback of OGs as phylogenetic markers for 
bacterial phylogenomic analysis in our previous works is that 
current similarity metrics consider only the presence or absence 
of one pair of OGs and ignore the relationship with neighbor-
hoods. Thus, the method is usually less sensitive to capturing 
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inconsistent evolutionary events, such as intra-chromosome/
genome translocations, gains of OGs from foreign genomes or 
species, and gene losses.18,19 To solve the problem caused by gene 
losses, here we use another type of genomic feature called locally 
collinear blocks (LCBs). Each LCB, also known as a collinear 
genomic region, is a homologous region of sequence shared by 
two or more genomes.29 Clearly, LCBs from different genomes 
can be used as orthologous regions, which are likely to contain 
multiple conserved genes even in their regulatory regions when 
they are sufficiently large. In some previous studies, LCBs have 
proved to be reliable genomic features for phylogenomic analysis 
among closely related genomes on the whole-genome scale.30,31 
By combining OGs with LCBs, additional constraint is built 
into computations of the similarity between two genomes. In 
this way, we aim to partly, if not completely, mitigate the above-
mentioned drawback of OGs as phylogenetic markers and thus 
infer phylogeny more accurately.

To test this hypothesis, we studied the phylogenetic rela-
tionships of 88 Enterobacteriale genomes of the class Gam-
maproteobacteria with different genomic features. This dataset 
was selected as a case study because of our interest in the evolu-
tion of Enterobacteriale genomes.18,19,30 First, Sibelia was used 
to delineate the potential collinear genomic regions between 
each pair of genomes among the studied species.32,33 Next, the 
pairwise similarity of two genomes was measured using OGs 
as markers. Here, the similarity was computed conditional 
on the identified pairwise collinear genomic regions rather 
than on the whole genomes as in our previous works.18,19 
Then, we reconstructed the phylogeny, called OGs–LCBs 
phylogeny, from the distance matrix based on both OGs and 
LCBs. Compared with the phylogenies based on only OGs 
or only LCBs, called OGs phylogeny or LCBs phylogeny, 
respectively, our OGs–LCBs phylogeny was more similar to a 
standard 16S rRNA phylogeny and more consistent with tax-
onomy. This suggests that our OGs–LCBs phylogeny may be 
robust for phylogenomic analysis among the 88 closely related 
bacterial organisms. When dealing with inconsistent evolu-
tionary events such as gene losses, combining these two types 
of genomic features on the whole-genome scale may capture 
more accurate phylogenetic signals regarding the evolutionary 
histories. The results demonstrated here show that the analysis 
of OGs together with LCBs should be useful in accurate phy-
logeny inference of closely related bacterial genomes.

Materials and Methods
Genome data. As a case study, the dataset of this study 

consists of 88 Enterobacteriales genomes of Gammaproteobac-
teria (Supplementary Table 1). On August 30, 2015, 112 
results were retrieved from the National Center for Biotech-
nology Information (NCBI) genome dataset by searching with 
limits of selecting Gammaproteobacteria sequences located on 
the chromosome; these results stand for 112 groups or species. 
From the 112 groups, any group that had a reference genome 
to stand for the group, or any group comprising only one  

member, was chosen. With these selection criteria, 102 groups 
were selected. Then, the genomes of these selected 102 groups 
were downloaded from the NCBI database (ftp://ftp.ncbi.
nlm.nih.gov/genomes/all). For computational accuracy, only 
genomes with NCBI assembly level of complete genome or chro-
mosome were studied. Therefore, 90 complete or nearly com-
plete genomes without plasmids were studied. Following our 
re-annotation of the 16S rRNAs, two genomes without anno-
tated 16S rRNAs were excluded from the selected 90 genomes. 
Finally, 88 genomes belonging to the order Enterobacteriales, 
which cover most genera of the family Enterobacteriaceae, 
were used in further analysis.

Identification of Lcbs among multiple genomes and 
reconstruction of phylogenies. Each LCB, also known as a 
collinear genomic region, is a homologous conserved block of 
sequence among different species.29 As in our previous study,30 
the core LCBs, which are the set of collinear regions shared by 
all the species in the study, were used to reconstruct the evolu-
tionary phylogeny. The whole-genome phylogeny inferred from 
collinear genomic segments was called LCBs phylogeny. First, 
LCBs were indentified using Sibelia version 3.0.6,32,33 which 
can efficiently find LCBs among a large number of microbial 
genomes without alignment. Chromosome sequences were 
compared with parameters “-s loose -q -g -v -t tmp --gff -m 
100.” Second, for each LCB identified by Sibelia, multiple 
sequences alignment was performed using MAFFT (Multiple 
sequence Alignment based on Fast Fourier Transform) ver-
sion 7.164 with parameters “--auto ,data.,”34 and ambigu-
ously aligned regions were removed from the alignment using 
trimAl version 1.4 with default parameters.35 Those trimmed 
alignments were converted to the Multiple Alignment Format 
(MAF) to get treated LCBs. Third, the core LCBs shared by 
all the studied genomes were assembled into a concatenated 
supermatrix. The maximum likelihood (ML) tree was inferred 
from the data matrices using FastTree version 2.1.836 with 
default Jukes-Cantor + CAT (classifying sites into CATegories) 
model.19,36 Local Shimodaira–Hasegawa (SH)-like support 
was assessed using SH test with 1,000 bootstrap replicates, and 
the support values are given as names for the internal nodes.

Identification of oGs, orthologous oG pairs, and 
reconstruction of phylogenies. The phylogeny inferred from 
OGs was called OGs phylogeny.18,19,27 OGs are defined as 
adjacent genes whose coding sequences are shared with each 
other. OGs were identified from each genome annotation using 
in-house Perl (a programming language) scripts (Supplemen-
tary File 5). All genes annotated as “unknown,” “hypotheti-
cal” or “putative,” which may be misannotated in the genomes 
downloaded from the NCBI,27 were removed for more reliable 
analysis. Considering only protein-coding genes, the putative 
orthologous genes between two genomes were determined using 
the approach of bidirectional best hit (BBH). In accordance 
with previous studies,18,27 we tested two types of para meter 
settings for the NCBI BLAST (the Basic Local Alignment 
Search Tool) program37: (1) e-value ,10−4 and identity .40%, 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17
ftp://ftp.ncbi.nlm.nih.gov/genomes/all
ftp://ftp.ncbi.nlm.nih.gov/genomes/all


Phylogeny inference of closely related bacterial genomes

3Evolutionary Bioinformatics 2015:11(s2)

used by Luo et al18 and (2) e-value , 10−8, identity . 45%, and 
coverage . 85% used by Cheng et al.27 Orthologous OG pairs 
from two different genomes were defined as gene pairs that 
overlap in one genome and have respective orthologous coun-
terparts that overlap in the other genome. Then, the distance 
matrix among the studied genomes was produced accord-
ing to the definition of the distance between two genomes 
as shown in Equation 1. Finally, the neighbor-joining (NJ)38 
tree and unweighted pair-group method with arithmetic mean 
(UPGMA)39 tree were inferred from the distance matrix using 
the Phylogeny Inference Package (PHYLIP) version 3.6940,41 
with default parameters.

The distance between two genomes is defined by Luo 
et al, which is as follows:
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where xi is the number of OG pairs in genome i, N is the 
number of studied genomes, and xij is the number of OG 
pairs in genome i with orthologs in genome j.19 From this 
definition, an N × N distance matrix is produced for phylo-
geny inference.

combining oGs and Lcbs and reconstruction of 
phylogenies. By combining the features of OGs and collinear 
genome region, a phylogeny called OGs–LCBs phylogeny was 
inferred. First, pairwise comparison was performed to iden-
tify pairwise LCBs between any two genomes from the stud-
ied genomes using Sibelia version 3.0.6.32,33 The parameters 
were set as “-s loose -q -g -v -t tmp --gff -m 100.” Second, 
the orthologous OG pairs, identified in the process of recon-
structing the OGs phylogeny described earlier, were selected 
as follows: if all genes of one orthologous OG pair were com-
pletely along one pairwise LCB between these two genomes, 
this OG pair was selected and called a collinear orthologous 
OG pair. Then, the distance between two genomes is defined 
as shown in Equation 2 using collinear orthologous OG pairs 
instead of the orthologous OG pairs used by Luo et al.18,19 The 
distance matrix was generated according to this modified defi-
nition, and both the NJ and UPGMA phylogeny trees were 
inferred using the PHYLIP version 3.69.40,41

The distance between two genomes is defined as:
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where xi is the number of OG pairs in genome i, N is the 
number of studied genomes, and x ij

′  is the number of OG 
pairs in genome i with orthologs of genome j in the pair-
wise LCBs between these two genomes. From this defini-
tion, an N × N distance matrix is produced, which can be 
used to infer the phylogenetic relationships of the species 
being studied.

reconstruction of phylogeny with 16s rrNA. To test 
the usefulness of our method, a standard 16S rRNA phylo-
geny was reconstructed. All the OGs phylogeny, LCBs phy-
logeny, and OGs–LCBs phylogeny were compared with this 
16S rRNA phylogeny to quantitatively measure the similar-
ity with the Robinson–Foulds topological distance (Table 1 
and Supplementary Table 2).42 The 16S rRNA genes of these 
88 genomes downloaded from the NCBI may be annotated 
using different methods. In order to reduce the inference of 
differences caused by different annotation methods, rRNAs 
were re-annotated with our local annotation pipeline, in which 
Infernal release 1.143 was used to annotate possible noncod-
ing RNAs accompanying the Rfam database (release 10.1).44  
Based on the re-annotated 16S rRNA gene, a standard 16S 
rRNA phylogeny for the 88 Enterobacteriale genomes was 
reconstructed as follows. First, multiple sequences alignment 
was performed on the 16S rRNA sequences using MAFFT 
version 7.164 with the parameters “--auto ,data..”34 Then, 
ambiguously aligned regions were trimmed using trimAl ver-
sion 1.4 with default parameters.35 FastTree version 2.1.8 was 
performed36,45 using the default Jukes–Cantor + CAT model 
to construct an ML tree.46 Using the SH test with 1,000 boot-
strap replicates, local SH-like support was assessed, and the 
support values are given as names for the internal nodes. Most 
species belonging to one genus according to the taxonomy 
were well clustered in the 16S rRNA phylogeny (Fig. 1).

results and discussion
The Lcbs phylogeny for 88 enterobacteriales 

genomes. As a type of phylogenomic marker, LCBs have been 
proven useful for phylogenomic analysis among closely related 
genomes or intraspecific prokaryotic genomes on the whole-
genome scale.30,31 The phylogeny was constructed as described 
in the “Materials and methods” section to explore the perfor-
mance of LCBs in phylogeny reconstruction among genomes 
in the Enterobacterials. For the 88 Enterobacteriales genomes, 
four-core LCBs with the total length of 1,392 bp were identi-
fied and comprised 0.02%–0.26% of the lengths of the stud-
ied genomes (Supplementary Tables 3 and 4). The phylogeny 
was constructed using the four-core LCBs and was called 
the LCBs phylogeny. To quantitatively measure the similar-
ity of the LCBs phylogeny and the 16S rRNA phylogeny, the  
Robinson–Foulds topological distance was calculated (Table 1). 
By comparing these two types of phylogenies, we found that 
many species were not well clustered according to their genera 
in our LCBs phylogeny, but they were well grouped in the 16S 
rRNA phylogeny. Especially for the genera Yersinia, Xeno-
rhabdus, and Enterobacter, species from each genus were scat-
tered across different clades in the LCB phylogeny (Fig. 2). 
This observation indicates that more attention should be paid 
when using core LCBs as markers to analyze the phylogenetic 
relationship of species in one order. Although core LCBs are 
reliable phylogenetic markers of intraspecific relationship 
mentioned by Zhang et al,30 minimal conservation of LCBs 
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Table 1. the robinson–foulds topological distances between 
different types of phylogenies.

LCBs  
PhYLOGENYa

OGs  
PhYLOGENYb

OGs-LCBs  
PhYLOGENYb

16s rrna  
phylogenya

144 128 118

Notes: a16s rrna phylogeny and lcBs phylogeny were constructed 
with fasttree version 2.1.8.36 bOrthologous genes were identified using 
the approach of BBH by setting the parameters with e-value ,10−8, 
identity .45%, and coverage .5% used by cheng et al.27 the oGs phylogeny 
and oGs–lcBs phylogeny were constructed with the nJ38 method using the 
PHyliP version 3.69.41
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Pluralibacter gergoviae [Pluralibacter]
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Cedecea neteri [Cedecea]

Photorhabdus luminescens subsp. laumondii TTO1 [Photorhabdus]

Yersinia pseudotuberculosis [Yersinia]
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Brenneria [Brenneria]

Enterobacter asburiae L1 [Enterobacter]

Serratia symbiotica str. ‘Cinara cedri’ [Serratia]
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Figure 1. the phylogeny of 88 Enterobacteriales genomes inferred using 16s rrna. the maximum likelihood tree was constructed, called 16s rrna 
phylogeny, using the 16s rrna gene. the 16s rrna phylogeny was inferred from this single gene using fasttree version 2.1.836 with default Jukes–
cantor + cat model. local sH-like support was assessed using the sH test with 1,000 bootstrap replicates, and the support values are given as names 
for the internal nodes. species are denoted with their taxa names in the ncBi, and the corresponding genera are indicated in the square brackets. 
species in the same genus are colored with the same color. those genera with only one member in the study were colored with black.

may not provide sufficient information and resolution for the 
analysis of phylogenetic relationship among bacterial genomes 
in the order Enterobacteriales.

The oGs phylogeny for 88 enterobacteriales genomes. 
In addition, another type of phylogeny for the 88 Enterobac-
teriales genomes was inferred based on OGs, which was called 
OGs phylogeny. As described in the “Materials and methods” 
section, two types of parameter settings were tested to iden-
tify orthologous protein-coding genes. Therefore, two types 
of OGs phylogeny were reconstructed with the NJ method 
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using the PHYLIP software package (Supplementary Fig. 1 
and Fig. 3). Comparing these two OGs phylogenies with the 
standard 16S rRNA phylogeny using Robinson–Foulds topo-
logical distance, we found that the OGs phylogeny with the 
second parameter setting was more similar to the 16S rRNA 
phylogeny (Supplementary Table 2). Furthermore, the sec-
ond OGs phylogeny (Fig. 3) showed more consistency with 
taxonomy than the first one. Thus, we opted for the second 
parameter setting and the second OGs phylogeny was used 

in the remainder of our study. The OG information used for 
phylogeny inference with the second parameter setting was 
shown in Supplementary Table 5 (Workbooks 1 and 3). Simi-
lar to the 16S rRNA phylogeny, most of the genera in our 
OGs phylogeny were well grouped, except the ant endosym-
bionts. The seven species of ant endosymbionts were divided 
into three groups, which is inconsistent with the topol-
ogy of the 16S rRNA phylogeny. We examined the genome 
sizes of the 88 genomes. Strikingly, the genome sizes of ant 
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Figure 2. Whole-genome phylogeny of 88 Enterobacteriales genomes inferred using lcBs. the maximum likelihood tree was constructed, called lcBs 
phylogeny, using the core lcBs shared by the 88 Enterobacteriales genomes. the lcBs phylogeny was inferred from the core lcBs using fasttree 
version 2.1.836 with default Jukes–cantor + cat model. local sH-like support was assessed using the sH test with 1,000 bootstrap replicates, and the 
support values are given as names for the internal nodes. species are denoted with their taxa names in the ncBi, and the corresponding genera are 
indicated in the square brackets. species in the same genus are colored with the same color. those genera with only one member in the study were 
colored with black.
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endosymbionts were much smaller than most other species 
(Supplementary Table 1). Previous studies have shown that 
species of ant endosymbionts have experienced substantial 
gene losses.47–50 As Luo et al stated,18 the OGs method might 
be less sensitive to inconsistent evolutionary events, such as a 
lot of reduction (gene losses). These results indicate that the 
genomic feature of OGs can contain useful phylogenomic 
signals for inferring the evolutionary histories of closely 
related genomes. However, inconsistent evolutionary events 

probably reduce the phylogenomic signals of OGs, leading to 
some conflicts or confusion of the evolutionary relationships. 
Based on the same distance matrix, UPGMA trees were also 
reconstructed with the UPGMA method using the PHYLIP. 
Similar results were also found in the UPGMA trees (Supple-
mentary Figs. 2 and 3 and Supplementary Table 2).

As our results show, both OGs and LCBs used for the 
phylogeny inference of the 88 Enterobacteriales organisms 
revealed some merits and drawbacks. In seeking to maximize 
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Figure 3. Whole-genome phylogeny of 88 Enterobacteriales genomes based on oGs with the nJ method. the nJ tree was constructed, called oGs 
phylogeny, based on OGs for the 88 Enterobacteriales genomes. Orthologous genes were identified using the approach of BBH by setting the parameters 
with e-value ,10−8, identity .45%, and coverage .85% used by cheng et al.27 the oGs phylogeny was constructed based on orthologous oG pairs with 
the nJ38 method using the PHyliP version 3.69.41 species are denoted with their taxa names in the ncBi, whose corresponding genera are indicated 
in the square brackets. species in the same genus are colored with the same color. those genera with only one member in the study were colored 
with black.
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the extraction of genomic information on the whole-genome 
scale, we assume that the analysis of combining OGs and 
LCBs should reveal a comprehensive history of closely related 
bacterial organisms.

The oGs–Lcbs phylogeny for 88 enterobacteriales 
genomes. To test our hypothesis, pairwise comparison was per-
formed between any two genomes from the 88 Entero bacteriales  

genomes to identify LCBs of pairwise genomes. Collinear 
orthologous OG pairs were identified according to the 
“Materials and methods” section. Combining the two types 
of genomic features (OGs and LCBs), we constructed the 
OGs–LCBs phylogeny using orthologous OGs within their 
collinear genomic regions. The NJ tree (Fig. 4) was inferred 
with the NJ method using the PHYLIP, based on the distance 
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Figure 4. Whole-genome phylogeny of 88 Enterobacteriales genomes based on both oGs and lcBs with the nJ method. the nJ tree was inferred 
for the 88 Enterobacteriales genomes called oGs–lcBs phylogeny, combing two types of genomic features oGs and lcBs. orthologous genes were 
identified using the approach of BBH by setting the parameters with e-value ,10−8, identity .5%, and coverage .85% used by cheng et al.27 Based on 
the orthologous oG pairs in collinear regions, the oGs–lcBs phylogeny was constructed with the nJ38 method using PHyliP version 3.69.41 species are 
denoted with their taxa names in the ncBi, and the corresponding genera are indicated in the square brackets. species in the same genus are colored 
with the same color. those genera with only one member in the study were colored with black.
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matrix produced according to the methods (Supplementary 
Table 5: Workbook 2 and 3). Similarly, the UPGMA trees 
were also reconstructed with UPGMA method using the 
PHYLIP (Supplementary Fig. 4). According to the measure-
ment of Robinson–Foulds topological distance, our OGs–
LCBs phylogeny seems to be the most similar to the 16S 
rRNA phylogeny (Table 1). Consistent with the 16S rRNA 
phylogeny, almost all species in our OGs–LCBs phylogeny 
were clustered into groups according to their genera. In con-
trast to the OGs phylogeny, the species of ant endosymbionts, 
having experienced gene losses in their evolutionary histo-
ries,47–50 were better grouped in our OGs–LCBs phylogeny 
(Fig. 4). This pattern suggests that combining both the OGs 
and LCBs features, to a certain extent, can reduce the effect of 
inconsistent evolutionary events and increase the robustness of 
the OGs methods for phylogenomic analysis. When the loss 
of genes had occurred within these genomes, smaller num-
bers of orthologous OGs pairs were identified, which might 
reduce the accuracy of their positions in the phylogenies when 
comparing with other genomes. However, if we use ortholo-
gous OGs pairs conditional on their collinear genomic regions 
rather than their whole genomes, the influence of gene loss 
on the accuracy of phylogeny inference may be mitigated. In 
addition, we also observed that Serratia symbiotica str. Cinara 
cedri, which belongs to Serratia genus, was clustered in a dif-
ferent group rather than the Serrate group in our OGs–LCBs 
phylogeny. Similarly, S. symbiotica str. C. cedri and other spe-
cies of Serratia were clustered into different clades in our LCBs 
phylogeny, OGs phylogeny, and the 16S rRNA phylogeny. 
This observation may suggest that S. symbiotica str. C. cedri 
probably has undergone some inconsistent evolutionary events 
and evolved distantly with other species in the genus Serratia. 
We observed that the genome size of S. symbiotica str. C. cedri 
was much smaller than other Serratia species, indicating that 
genome reduction might have occurred in S. symbiotica str. 
C. cedri. Indeed, Lamelas et al showed that massive genomic 
decay had occurred in S. symbiotica.51,52 Interestingly, for the 
clade of the genus Escherichia and Shigella, our OGs–LCBs 
phylogeny seems to be more in agreement with previous stud-
ies than the 16S rRNA phylogeny.30,53,54

There are many methods designed for the reconstruc-
tion of phylogenies among species.30 A recent study by Facey 
et al introduced a comparative genomics approach to recon-
struct a phylogeny of similar bacterial species, which compiled 
a dataset of loci shared by 9% of bacteria under study.55 All 
these previous studies are generally separated into two cat-
egories: those based on the core genes or features, similar to 
the LCBs phylogeny, and those based on the variable gene 
content or other genomic features or metabolic pathways, such 
as the OGs phylogeny and OGs–LCBs phylogeny. In this 
study, we provide some evaluation of using only LCBs, only 
OGs, and the combination of OGs and LCBs in reconstruct-
ing phylogenies. All the results suggest that the reconstruc-
tion of phylogeny combining both OGs and LCBs should 

be reliable for phylogenomic analysis among closely related 
bacterial genomes. However, there are some limitations for 
our OGs–LCBs method. For example, currently, we have 
analyzed only the complete genomes, and further improve-
ment may be needed to analyze the draft genomes.

conclusions
In this work, we attempt to combine two types of genomic fea-
tures (OGs and LCBs) for the phylogenomic analysis of closely 
related bacterial genomes. As a case study, we analyzed the 
phylogenetic relationship of 88 species in the order Enterobac-
teriales. Three different types of phylogenies were constructed 
based on OGs and LCBs. Our results demonstrated that by 
combining OGs with LCBs, more accurate phylogenetic sig-
nals were detected, which enabled us to construct more precise 
and robust phylogenies of the 88 genomes. The OGs method 
for phylogenomic analysis is usually less sensitive to some 
inconsistent evolutionary events, such as gene losses. Interest-
ingly, combining OGs and LCBs as phylogenetic markers may 
reduce, to some extent, the influence of gene loss on phylogeny 
inference. In the OGs–LCBs phylogeny of 88 Enterobacteri-
ales genomes, the species of ant endosymbionts, which have 
experienced substantial gene losses, were better clustered  
than in the OGs phylogeny. Thus, mining the phylogenetic 
signals of OGs, together with collinear genome regions, 
should be an effective approach to increasing the robustness of 
the OGs methods for phylogenomic analysis of closely related 
bacterial organisms.
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