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The physiology and regulation of bone minerals in the fetus and the newborn is

significantly different from children and adults. The boneminerals calcium, phosphate and

magnesium are all maintained at higher concentrations in utero to achieve adequate bone

accretion. This is an integral component of normal fetal development which facilitates

safe neonatal transition to post-natal life. When deciphering the cause of bone mineral

disorders in newborns, the potential differential diagnosis list is broad and complex,

including several extremely rare conditions. Also, significant discoveries including new

embryological molecular genetic transcription factors, the role of active placental mineral

transport, and hormone regulation factors have changed the understanding of calcium

and phosphate homeostasis in the fetus and the newborn. This article will guide clinicians

through an updated review of calcium and phosphate physiology, then review specific

conditions pertinent to successful neonatal care. Furthermore, with the advancement of

increasingly rapid molecular genetic testing, genomics will continue to play a greater role

in this area of fetal diagnostics and prognostication.
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TAKE HOME POINTS:

1. Fetal and neonatal mineral metabolism differs significantly from that in later life.
2. The regulation of sodium/phosphate cotransporter activity in the renal tubules is the primary

mechanism by which phosphate homeostasis is maintained. Major phosphaturic hormones that
regulate renal phosphate handling are PTH and FGF23.

3. Advances in genetics have identified new gene mutations in which have clarified the causes of
several conditions previously thought to be “idiopathic.”

4. A thorough understanding of the topic is essential to correct diagnosis and treatment of
disorders of calcium and phosphate in the newborn.
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INTRODUCTION

Over the past 35 years there have been significant advances
in the understanding of materno-fetal mineral homeostatic
mechanisms. Parathyroid hormone related peptide (PTHrP)
was first described in 1985 as a new compound with
parathyroid hormone (PTH)-like bioactivity that accounted for
the discrepancy between human umbilical cord and maternal
PTH levels (1). This discovery provided new insight as
to why fetal PTH levels were so low, yet fetal calcium
levels were maintained higher than and independent of
maternal calcium concentrations. Another important novel
finding was made in 2000, when bone-derived hormone
Fibroblast Growth Factor-23 (FGF23) was found to cause
autosomal dominant hypophosphataemic rickets (ADHR),
which provided the underlying mechanism for the previously
unknown “phosphaturic factor” causing hypophosphataemia (2,
3). Genomic discoveries have continued to provide new insights
into the mechanisms facilitating transplacental bone mineral
transport and unveil the causation of conditions previously
thought to be idiopathic. As the fetus accumulates 80% of its
bone mineral content in the third gestational trimester (4), this
time is critical to achieve normal skeletal mineralisation by 40
weeks gestation and support successful transition to post-natal
life. Passive and active transport of bone-minerals occurs across
the placenta to achieve higher fetal concentration of calcium,
phosphate, and magnesium compared to maternal levels. Once
the baby is born, loss of placental delivery of minerals causes
a sudden drop in serum concentrations of these bone minerals
which triggers a rise in regulating factors such as PTH, 1,25-
dihydroxyvitamin D [1,25(OH)2D, calcitriol] and FGF23 to
maintain postnatal homeostasis. This article will first examine
current understanding of fetal-to-neonatal mineral homeostasis
mechanisms, and then review specific conditions pertinent to
successful neonatal care. Magnesium and vitamin D homeostasis
will also be briefly discussed.

Fetal Calcium Homeostasis
Fetal blood calcium concentrations are maintained ∼0.3–
0.5 mmol/L higher than in maternal circulation, with the
placenta transporting 100–150 mg/kg/day of calcium during
the third trimester (4–6). To achieve this, active materno-
fetal transplacental transport is facilitated by transmembrane
calcium-selective channel TRPV6, calbindin D9k and plasma
membrane calcium-ATPase. Once calcium has been delivered
to the fetus, concentrations are tightly regulated by the calcium
sensing receptor (CaSR) which is primarily expressed in the fetal
parathyroid glands and kidneys. The CaSR activates magnesium-
dependent G-protein coupled downstream signalling cascades to
control PTH secretion and renal calcium handling. Mutations
in CASR result in distinct phenotypes causing either hyper-
or hypocalcaemia.

PTH is integral for achieving normal bone mineralisation and
maintaining fetal calcium homeostasis by regulating expression
of calciotropic genes and other solute transporters within the
placenta (7). By the 10th week of gestation PTH is synthesised
from fetal parathyroid glands, but circulating concentrations

are kept low during fetal life due to relative hypercalcaemia
dictated by the CaSR. Fetal parathyroid glands differentiate from
endoderm cells in the third and fourth pharyngeal pouches, and
mutations in any of the involved genes or transcription factors
results in several genetic hypoparathyroidism conditions (8, 9).
Both PTH and PTHrP, acting on PTH1 receptor to increase
resorption of calcium from bone and kidney and expression
of 1a-hydroxylase enzyme, play a critical role in endochrondral
bone formation and stimulation of placental calcium transport
(4, 10, 11).

Birth causes disruption of the maternal-fetal calcium supply
and rapid 30% drop in serum calcium concentrations (4).
This triggers a 2–5-fold increase in PTH secretion to stimulate
calcitriol synthesis, resorption of calcium from renal tubules,
and mobilisation of calcium from skeletal stores to maintain
normocalcaemia in the first 48 postnatal hours (4, 6).
Hypocalcaemia can be much more pronounced in premature
infants due to lack of third trimester bone mineral accretion
and gestational unresponsiveness of the parathyroid glands
(6). The gastrointestinal tract then becomes the main source
of calcium for the newborn. As such, the feeding mode and
volume determines calcium availability. For example, exclusively
breast-fed infants receive ∼200 mg/day calcium (12). Active
calcium absorption is driven by calcitriol. The PTH surge drives
upregulation of calcitriol synthesis which increases serum total
calcium to adult values within 48 h which are then strictly
maintained between 2.12 and 2.62 mmol/L (12). There is
evidence, however, that the newborn gut is not fully responsive
to calcitriol until 4 weeks of age (4).

Fetal Phosphorus Homeostasis
Fetal serum phosphate is maintained ∼0.5 mmol/L higher in
the fetus compared to the mother, though the mechanisms for
placental transport are unclear (4). The majority of phosphate,
∼60–70 mg/kg/day, is also accumulated during the third
trimester of gestation and is stored primarily within bone as
hydroxyapatite (5, 6). Phosphate is integral to endochondral bone
formation by mediating hypertrophic chondrocyte apoptosis,
and in the mineralisation of fetal bone as it is incorporated into
the osteoid allowing calcium to bind to it (13).

The homeostatic mechanisms by which phosphate
concentrations are “sensed” in humans are not fully understood,
though it is possibly via a plasma membrane complex and that
intestinal lumen levels are involved in feedback-regulation on
renal phosphate reabsorption (14, 15). Elevation of extracellular
phosphate activates FGF23, the primary endocrine regulator
of phosphate that is produced by osteocytes and osteoblasts
in bone. A complex signalling cascade is then activated when
FGF23 binds with co-receptor Klotho to the FGF-receptor
(FGFR1) in the kidney (16). The three primary actions of
FGF23 are: promoting phosphaturia by phosphorylation of
the sodium/hydrogen exchange regulatory factor (NHERF1
coded by SLC9A3R1) and down-regulation of NaPi type 2a/2c
co-transporters in the renal proximal tubule (coded by SLC34A1
and SLC34A3, respectively); reducing calcitriol metabolism by
downregulation of 1-alpha-hydroxylase activity and upregulating
catabolic enzyme 24-hydroxylase activity; and have a direct effect
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on parathyroid glands to reduce PTH secretion (14–17).
Mutations in any of these genes can cause variable degrees of
nephrocalcinosis, hypophosphataemia, hypercalcaemia, and
rickets (18–20). There is emerging evidence that phosphate
also has a direct effect on the parathyroid glands and CaSR, in
that hyperphosphataemia directly inhibits CaSR activity which,
in turn, stimulates PTH secretion and thus promotes renal
phosphate wasting from the proximal renal tubule (21).

Immediately after birth phosphate concentrations are low,
∼2.6 mmol/L, and rise during the first 48 h of life (6). This rise
is likely to be due to immature renal excretion mechanisms (4).
The main source of phosphate is dietary, so the method of infant
feeding will determine phosphate loading. After birth, normal
concentrations of phosphate are dependent on growth and
must be interpreted within the context of age-related laboratory
reference ranges.

Fetal Magnesium Homeostasis
Like calcium and phosphate, fetal magnesium concentrations
in utero are also maintained independently of maternal
concentrations, only 0.05 mmol/L higher though, and accrual of
∼3–5mg/kg/day primarily occurs in the third trimester gestation
(4, 6, 22). Magnesium is absorbed via TRPM6 and TRPM7
transcellular transporters in the gut and renal tubules, however,
and the precise mechanisms controlling placental magnesium
transfer and fetal homeostasis remain unknown (4). Magnesium
is an important cation that binds to the CaSR, causing modest
influence on PTH secretion, and hypomagnesemia can blunt
effective PTH secretion (23, 24).

Fetal Vitamin D Homeostasis
Vitamin D plays a much more important role in postnatal life
rather than assisting transplacental mineral homeostasis or fetal
mineral accretion. Whilst maternal 25-hydroxyvitamin D readily
crosses the placenta to achieve fetal concentrations that are 75–
100% of maternal concentrations (1), maternal calcitriol does not
cross the placenta but is synthesised primarily in fetal kidneys
to achieve fetal concentrations 50% that of maternal (4). These
low concentrations are likely suppressed by the elevated fetal
serum calcium and phosphate, and low concentrations of PTH.
However, it has been demonstrated in animal models that the
1,25(OH)2D vitamin D receptor (VDR), and thus by proxy
calcitriol, is not actually required in utero for the fetus to achieve
normal calcium, phosphorus, or PTH homeostasis, or for normal
skeletal mineralisation as the placenta is providing the required
mineral transfer (25, 26). It is after birth that the role of calcitriol
becomes vital.

After birth the level of vitamin D (cholecalciferol) intake
depends on the mode of feeding as the gut becomes the main
source of absorption. Breast milk primarily contains vitamin D
in the form of cholecalciferol, as very little 25(OH) vitamin D
passes from maternal serum into breast milk. Whilst there is
good correlation between maternal cholecalciferol intake and
infant serum 25(OH) vitamin D concentrations (27), breast milk
contains only a small amount of cholecalciferol – nomore than 25
IU/L – which is insufficient to meet newborn daily requirements
(28, 29). Though infant formulae are fortified with vitamin D,

TABLE 1 | Summary of the various causes of neonatal hypocalcaemia.

Early hypocalcaemia <72h

life

Late hypocalcaemia >72h life

to 10 days of life inclusive

• Prematurity

• Intrauterine growth restriction

• Sepsis

• Perinatal asphyxia causing

cellular damage and release of

intracellular phosphate

• Iatrogenic:

◦ Transfusions with citrate

blood products

◦ Lipid infusions

◦ Loop diuretics

• Maternal factors:

◦ Severe Vitamin D deficiency

◦ Pre-eclampsia

◦ Gestational diabetes

associated with

hypomagnesaemia

◦ Hyperparathyroidism

suppressing infant PTH

synthesis

◦ Anti-convulsants

◦ High dose antacids

• Vitamin D deficiency due to

inadequate synthesis, intake or

absorption

• Increased phosphate load:

◦ Enteral feeding with cow’s

milk

◦ Parenteral nutrition

• Primary Hypoparathyroidism:

◦ Isolated vs. Syndromic

• Secondary Hypoparathyroidism:

◦ Pseudohypoparathyroidism

due to renal disease or

GNAS mutations

◦ Congenital heart disease

◦ Renal disease

◦ Gastrointestinal disease

◦ Critical illness

• Osteopetrosis

it is the international consensus guidance that all infants should
be supplemented with cholecalciferol 400 IU/day for every infant
until 12 months of age regardless of feeding mode (30).

NEONATAL HYPOCALCAEMIA

Neonatal hypocalcaemia is defined in two ways: one, in term
and pre-term infants with birth weight >1,500 g as total
serum calcium <2.0 mmol/L or ionised calcium <1.1 mmol/L;
and two, in pre-term infants with low birth weight (LBW)
<1,500 g as a total serum calcium <1.75 mmol/L or ionised
calcium <1 mmol/L (31). Clinical signs of hypocalcaemia
are difficult to elicit in newborns and hypocalcaemia is often
asymptomatic within 72 h of birth. Acute hypocalcaemia can
present as apnoea, irritability, jitteriness, muscle cramps, tetany
(including laryngospasm), seizures, cardiac arrhythmias, and
QT-segment prolongation. Chronic hypocalcaemia can be more
subtle, presenting with dental enamel hypoplasia, subcapsular
cataracts, cardiomyopathy, congestive cardiac failure, and basal
ganglia calcifications.

The causes of neonatal hypocalcaemia are summarised
in Table 1. Parathyroid glands can take >48 h to become
responsive to the fetal-to-neonatal transition and important
causes of hypocalcaemia can be helpfully thought of as
early onset (<72 postnatal hours), or late onset (>72
postnatal hours) (31–33). Several genetic mutations have
been found to cause Primary Hypoparathyroidism and should
be considered when hypocalcaemia lasts >72 h. Isolated causes
of hypoparathyroidism include GMC2 or PTH-gene mutations,
autosomal dominant activating CASR or GNA11 mutations,
and X-linked SOX3 mutations (8). Mutations in CASR result
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in distinct phenotypes causing either hyper- or hypocalcaemia.
Activating (gain-of-function) CASR mutations decrease the set-
point of CaSR and PTH is not secreted when low calcium levels
would normally trigger PTH release, resulting in Autosomal
Dominant Hypocalcaemia (ADH). Clinically this presents as
hypocalcaemia associated with an inappropriately normal-high
urinary calcium excretion, presumably due to increased activity
of the CaSR in the kidney.

Hypoparathyroidism can also be associated with more
complex syndromes including: 22q Deletion Syndrome;
CHARGE association (CHD7); Autoimmune polyglandular
syndrome type 1 (AIRE); Hypoparathyroidism, sensorineural
deafness, and renal dysplasia (HDR) syndrome (GATA3);
mitochondrial disorders; Sanjad-Sakati and Kenney-Caffey
syndromes (TBCE or FAM111A) (34). The most prevalent of
these complex syndromes is DiGeorge syndrome (DGS) due
to deletions in the chromosome region 22q11 involving the
candidate gene TBX1, however microdeletions on chromosome
10 (GATA3 or NEBL) may cause similar phenotypes also
associated with cardiac abnormalities (35). Hypocalcaemia in
DGS is usually transient and due to underdeveloped parathyroid
glands, occurring in 60% of patients mostly during the neonatal
period (36). Even normocalcaemic DGS infants are likely to have
serum calcium concentrations in the lower half of the normal
range, so all should be routinely screened for hypocalcaemia (37).

Osteopetrosis is a very rare cause of neonatal hypocalcaemia,
where defective osteoclasts are unable to remodel bone.
Hypocalcaemic tetany and seizures can be a presenting feature
due to the inability to mobilise calcium stores from bone
(38). Osteopetrosis is also associated with increased bone mass,
fragility fractures, and bone marrow failure (39). It is usually
identifiable with plain radiograph with osteosclerosis and “bone-
within-bone” appearance on skeletal survey.

NEONATAL HYPERCALCAEMIA

Whilst there is no consensus on definition, neonatal
hypercalcaemia may be considered when calcium is greater
than two standard deviations above the normal mean (ionised
calcium above 1.32 mmol/L or adjusted serum calcium >2.6
mmol/L) (40), or a total serum calcium >2.9 mmol/L (41).
Clinical features in the newborn can be difficult to identify and
may include polyuria, polydipsia, lethargy, vomiting, abdominal
pain, failure to thrive, irritability, and seizures. The causes of
hypercalcaemia associated with appropriately suppressed PTH
secretion are extensive. Neonatal sepsis is the most common
cause that lasts longer than two consecutive days, possibly
due to extra-renal macrophage production of calcitriol and/or
increased cytokine activity (41). Other important common
causes include: subcutaneous fat necrosis where granulomatous
inflammatory cells express increased calcitriol; increased calcium
and phosphate intake in infants receiving parenteral nutrition;
Vitamin D intoxication; and Williams-Beuren Syndrome due
to gene deletion on chromosome 7q11.23, which classically
present with mild hypercalcaemia (2.9 mmol/L) associated with
supravalvar aortic stenosis and distinctive facial features (42).

There has been a number of new genetic discoveries for
various causes of neonatal hypercalcaemia. Identification of the
active calcium placental transport mechanism, transmembrane
calcium-selective channel TRPV6, provides genetic explanation
for a condition previously labelled “Transient Neonatal
Hyperparathyroidism,” which was thought to be have been
caused by congenital vitamin D deficiency. Newly identified
compound heterozygous missense mutations in TRPV6 were
found to prevent adequate transplacental calcium transport and
cause potentially lethal skeletal abnormalities (undermineralised
bone, fractures, periosteal, and metaphyseal changes), elevated
PTH, hypomagnesaemia and hypovitaminosis D (33, 43–45).
New genetic mutations in vitamin D metabolism and urinary
phosphate excretion have also been identified as causes of
previously labelled “Idiopathic Infantile Hypercalcaemia.”
Loss-of-function mutation in CYP24A1 [encoding vitamin D
breakdown enzyme 25(OH) vitamin D3 24-hydroxylase] and in
SLC34A1 (encoding renal proximal tubular NaPi co-transporter)
and NHERF1 (a modifier of SLC34A1) cause accumulation of
calcitriol, hypercalcaemia, hypercalciuria, and nephrocalcinosis
(19, 46). An awareness of these last two conditions is important
in reducing long-term kidney disease in adulthood. Other causes
of neonatal hypercalcaemia currently do not have an identifiable
cause and are truly idiopathic.

When hypercalcaemia is associated with inappropriately
detectable PTH (within laboratory “normal” range or
elevated), then causes to consider include rare inactivating
(loss-of-function) CASR gene mutations which result in CaSR
insensitivity and thus PTH secretion is not switched-off until
higher-than-normal calcium concentrations, causing Familial
Hypocalciuric Hypercalcaemia (FHH). Clinically this presents
as generally asymptomatic hypercalcaemia, inappropriately
detectable concentrations of PTH, associated with reduced renal
calcium excretion. The mode of inheritance appears to cause
a “dosage effect” with regard to the severity of hypercalcaemia
(47). In contrast, homozygous or compound heterozygous
loss-of-function CASR mutations, or heterozygous mutations
where the mother is not affected, cause Neonatal Severe
Hyperparathyroidism (NSHPT), which is a severe phenotype
that is associated with life-threatening hypercalcaemia,
hyperparathyroid bone disease and multiple fractures. Early
diagnosis is critical to prevent death or neuromotor delay (48).

RICKETS AND RICKETS-LIKE DISORDERS

Rickets is a disorder of the growth plate resulting from defective
chondrocyte apoptosis and osteoid mineralisation. Rickets can
be sub-classified as: calciopenic (due to dietary deficiency
of vitamin D or calcium, or due to defects of vitamin D
metabolism or action); or phosphopenic (due to renal phosphate
wasting or deficiency of phosphate intake). A concurrent serum
PTH measurement can be useful when distinguishing between
calciopenic (PTH should be elevated) and phosphopenic rickets
(PTH likely within normal laboratory reference range or only
modest elevation). The radiological and clinical features depend
on the child’s age at presentation and underlying cause, but
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include metaphyseal widening, under-mineralised bone matrix
(osteomalacia), delayed closure of fontanelles, softening of the
skull bones (craniotabes), parietal and frontal bone bossing,
craniosynostosis, bowing of long bones, pseudofracture (Looser
zones) and fractures, sequelae of hypocalcaemia (seizures, tetany,
dilated cardiomyopathy), failure to thrive, decreasedmuscle tone,
and delayed motor milestones (30, 48, 49). It is important to note
that craniotabes and ulnar cupping can be normal variants seen
in healthy neonates without correlation to maternal or neonatal
vitamin D concentrations (4).

Nutritional rickets are the most common form of rickets
in the newborn period, and consensus guidelines recommend
vitamin D sufficiency of 25(OH) vitamin D >50 nmol/L (30).
Breastfed infants of vitamin D deficient mothers, especially
with darker skin pigmentation, are high risk and should be
routinely screened. The resulting hypocalcaemia is exacerbated
by an immature newborn PTH-response. There is significant
controversy about the appropriateness of the term “congenital
rickets,” as mothers were found to have compounding conditions
(such as malnutrition or malabsorption) that interfered with
vitamin D metabolism. Therefore, “neonatal rickets” is the
preferred terminology (4). Genetic mutations in vitamin D
synthesis (25-hydroxylase and 1-alpha-hydroxylase deficiencies)
or action (VDR mutations) are rarer causes of vitamin D
associated rickets. The demand for skeletal mineral delivery is
high, especially in preterm babies, and rachitic skeletal changes
that are absent at birth can develop rapidly within 16 days after
delivery (50).

Hypophosphataemic rickets uncommonly presents in the
newborn. Special consideration is needed, however, to ensure
adequate enteral or parenteral supplementation meets the
increased skeletal mineralisation demands. Feeding with amino-
acid elemental formulas, such as Neocate R©, and high-dose
antacids, has been associated with reduced bioavailability
of phosphate resulting in hypophosphataemic rickets and
fractures (51, 52). Hemizygous mutations in phosphate-
regulating endopeptidase (PHEX) gene lead to overexpression of
FGF23 and cause X-Linked hypophosphataemic rickets (XLH)
(53). While the renal phosphate wasting is present from birth,
XLH does not tend to become clinically apparent until child
begins to weight-bear.

The differential diagnosis for rachitic-appearing skeletal
changes in newborns is large and includes neonatal
hyperparathyroidism, skeletal dysplasias, hypophosphatasia,
metaphyseal chondrodysplasia, osteogenesis imperfecta
(OI), and vitamin C deficiency (Scurvy) (49). Of these,
hypophosphatasia caused by loss-of-function TNSALP
mutations, in its severest forms (perinatal and infantile)
can present with profound skeletal hypomineralisation and bone
deformity, hypercalcaemia with downregulation of PTH, and
hypercalciuria (54).

BONE FRAGILITY

When considering conditions that present in utero and the
neonatal period with bone fragility, OI and OI-like disorders

TABLE 2 | Factors contributing to Metabolic Bone Disease of Prematurity.

Antenatal factors Postnatal factors

• Prematurity <34 weeks of

gestation

• LBW <1,500 grams

• Pathological condition inhibiting

macro- and micronutrient placental

transfer (chorioamnionitis,

pre-eclampsia, intrauterine

growth restriction)

• Necrotising enterocolitis

• Liver or Renal disease

• Late establishment of enteral

feeds/prolonged total PN >4 weeks

• Chronic lung disease/

bronchopulmonary dysplasia

• Medications causing bone

resorption (loop diuretics,

glucocorticoids)

• Antacids

• Methylxanthines (caffeine for

apnoea of prematurity)

may jump to mind. However, they do not tend to present
with biochemical mineral disturbance. The most likely cause
of fragile or poorly mineralised bones associated with mineral
disturbance in the newborn is Metabolic Bone Disease of
Prematurity (MBDP), which has multiple contributors to its
characteristic biochemical and radiological findings, see Table 2.
Clinical features can develop between 3 and 12 weeks of age,
so it is important to screen routinely for biochemical evidence
of MBDP with serum alkaline phosphatase (ALP), albumin-
adjusted calcium, phosphate, and PTH concentrations from
4 weeks of age in at-risk groups (5, 55). In the premature
infant gut phosphate is more readily absorbed than calcium
so it is important to ascertain whether MBDP is due to
hypophosphatemia or hypocalcaemia. A PTH level paired with
serum calcium and phosphate, and urine renal tubular resorption
of phosphate (TRP) measurement will help differentiate between
hypophosphatemia or hypocalcaemia. Secondary elevation of
PTH will occur to maintain normocalcaemia, whereas this
compensation does not tend to occur with hypophosphatemia
and is associated with decreased phosphaturia (56). Initiating the
correct supplementation depending on deficiency is important,
as phosphate supplementation in the hypocalcaemic state
will bind ionised calcium, exacerbating hypocalcaemia, driving
PTH higher, exacerbating renal phosphate loss, and worsening
MBPD. While there is no biochemical cut-off consensus to
diagnose MBDP, in preterm infants <33 weeks of gestation the
combination of bone turnover marker ALP >900 IU/L and
phosphate <1.8 mmol/L is associated with sensitivity of 70%
and specificity of 100% of having low bone mineral density at 3
months corrected age (57). In practice, lower threshold ALP 500–
800 IU/L in infants <34 weeks of gestation is used to implement
supplementation (58, 59).

Radiological changes occur late as bones will only appear
generally osteopenic on X-ray when >20% of bone mineral is
lost (60). Fragility fractures can occur with incidence reported
between 17 and 34%, usually after 10 weeks of age in long bones
or ribs up until 6 months of uncorrected gestational age (5).
Although all fractures are painful, rib fractures often remain
undetected by parents and clinical staff until found incidentally
on routine chest X-ray (61). Routine screening with X-ray for
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MBDP is not indicated in the absence of biochemical disease.
Techniques such as dual energy X-ray absorptiometry, peripheral
quantitative computed tomography, and quantitative ultrasound
have been utilised in research settings (60). There are, however,
no normative data <5 years of age, which limits their widespread
clinical use.

Prevention of MBDP is limited by multiple factors including
the inability of premature infants to tolerate full enteral
feeding volumes, the inability to deliver high-dose calcium and
phosphate via parenteral nutrition (PN) due to solubility and
precipitation limits, and reduced gut absorption of calcium and
phosphate. The recommended range delivered via PN route is
calcium 40–120 mg/kg/day (1.3–3 mmol/kg/day) and phosphate
31–71 mg/kg/day (1–2.3 mmol/kg/day), and via enteral route is
calcium 120–200 mg/kg/day and phosphate 60–140 mg/kg/day
(62, 63). Enteral calcium and phosphate supplementation
should not be given simultaneously or with milk-meals, to
avoid precipitation (56). Effective treatment of MBDP should
include routine supplementation with cholecalciferol once on
full enteral feeding, aiming for serum 25(OH) vitamin D
>50 nmol/L (56, 58). Once treatment of MBDP has been
initiated ongoing monitoring of ALP, albumin-adjusted calcium,
phosphate, serum creatinine levels, and urine creatinine and
TRP is important to avoid hypercalcaemia, hyperphosphataemia,
and nephrocalcinosis.

Investigations to Arrange
Essential investigations to assess calcium and phosphate
homeostasis include concurrent serum calcium, phosphate,
magnesium, PTH, albumin, ALP, electrolytes and renal function,
and 25-hydroxyvitamin D levels. Most laboratories provide a
calcium corrected for albumin concentration, if not then the
following formula will give you the albumin-adjusted serum
calcium mmol/L: measured total serum calcium mmol/L +

0.02 × (40 gm/L – measured serum albumin gm/L). High risk
infants such as LBW, prematurity <34 weeks, infant of diabetic
mother, and prenatal asphyxia should be routinely screened for
hypocalcaemia within the first 48 h of age.

If neonatal blood quantities are particularly scarce, then a
capillary or venous blood gas will give an ionised calcium value,
and serum phosphate can be used as an indirect marker of
PTH activity (i.e., low phosphate concentrations reflect high
PTH activity and vice versa). Additional investigations such
as 1,25(OH)2D and serum DNA for genetic analysis may be
required but this should follow discussion with local Paediatric
Endocrinology service.

Urinary electrolytes and glucose should be part of routine
analysis, to calculate renal calcium: creatinine ratio, and to assess
renal tubular function.

Radiology should be considered in specific circumstances,
namely when bone mineralisation or skeletal dysplasia is a
concern. Usually, diagnosis can be made on a limited series to
reduce the neonate’s radiation exposure including plain films
of anterior-posterior chest and metaphysis of a long bone (e.g.,
unilateral distal femur or wrist). Specific skull films (looking for

Wormian bones) or a full skeletal survey are required if bone
fragility or skeletal dysplasia are a concern. The need for these
more extensive investigations should be discussed with a local
specialist paediatric Radiologist.

TREATMENT

Appropriate treatment depends on the cause. Where the primary
cause is mineral deficiency, additional supplements of calcium,
phosphate and, if necessary, magnesium should be given. This
can usually be achieved orally but, if demineralisation is severe
then intravenous infusion may be required. Vitamin D deficiency
should always be corrected.

Hypoparathyroidism, particularly if symptomatic, may
require treatment with vitamin D analogues calcitriol or
its prohormone alfacalcidol, but caution must be taken to
ensure that hypercalciuria and nephrocalcinosis do not result
from this treatment. New treatment options in the form of
subcutaneous injections of synthetic human PTH teriparatide
(hPTH 1-34) and recombinant human PTH (rhPTH 1-84)
have been used, particularly where activating mutations of
CaSR are the cause of the hypoparathyroidism (23, 64, 65).
Calcilytic agents, which reduce the sensitivity of CaSR, are
also being investigated as novel therapies for activating CaSR
mutations (66).

Hyperparathyroidism can sometimes be corrected with the
use of bisphosphonate therapy (although this can lead to
an increase in PTH secretion) and/or calcimimetic agents
such as cinacalcet (which activate the CaSR, thus increasing
the receptor’s sensitivity and reducing PTH secretion). Total
parathyroidectomy may occasionally be required for intractable
NSHPT. Burosumab, a monoclonal antibody to FGF23, is not
yet licensed for infants with XLH under 1 year of age but
is available in the United Kingdom under an Early Access to
Medicines scheme.

ROLE OF GENOMICS

Genetics plays an important part in diagnosis as an increasing
proportion of cases have been found to have a genetic basis.
Liaison with a clinical geneticist can be invaluable.

CONCLUSION

The physiology of mineral metabolism differs considerably
between fetal and post-natal life. The neonatal period is one of
transition from one to the other and a thorough understanding
of these processes is required to be able to diagnose and treat the
various conditions when they arise.
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