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Abstract: Wide bandwidth ultrasonic devices are a necessity in high-resolution ultrasonic systems.
Therefore, constant output voltages need to be produced across the wide bandwidths of a power
amplifier. We present the first design of a wide bandwidth class-S power amplifier for ultrasonic
devices. The −6 dB bandwidth of the developed class-S power amplifier was measured at 125.07%
at 20 MHz, thus, offering a wide bandwidth for ultrasonic devices. Pulse-echo measurement is
a performance measurement method used to evaluate the performance of ultrasonic transducers,
components, or systems. The pulse-echo signals were obtained using an ultrasonic transducer with
designed power amplifiers. In the pulse-echo measurements, time and frequency analyses were
conducted to evaluate the bandwidth flatness of the power amplifiers. The frequency range of the
ultrasonic transducer was measured and compared when using the developed class-S and commercial
class-A power amplifiers with the same output voltages. The class-S power amplifiers had a relatively
flat bandwidth (109.7 mV at 17 MHz, 112.0 mV at 20 MHz, and 109.5 mV at 23 MHz). When the
commercial class-A power amplifier was evaluated under the same conditions, an uneven bandwidth
was recorded (110.6 mV at 17 MHz, 111.5 mV at 20 MHz, and 85.0 mV at 23 MHz). Thus, we
demonstrated that the designed class-S power amplifiers could prove useful for ultrasonic devices
with a wide frequency range.
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1. Introduction

An increasing number of industrial fields are currently employing ultrasonic devices [1]. In the
medical field, ultrasonic devices are used to examine the internal organs, and confirm the presence of
the fetus and assess its movement [2–5]. In the industrial fields, these devices are used for underwater
explorations, non-destructive testing, glass processing, in humidifiers, ultrasonic cleaners, and cell
phones [1,6]. The ultrasonic signals from small-sized devices are very low, requiring a high voltage
signal from the power amplifiers to properly trigger such devices [7,8].

Figure 1 shows a simplified block diagram of an ultrasonic system [9,10]. In ultrasonic systems,
the analog signal processing components (expander/limiter, power amplifier, and pre-amplifier) play a
key role in determining the overall system performance [11]. The expander and limiter can reduce
signal ring-down and block high voltage pulses, respectively [12]. The power amplifier, which is
controlled by the digital-to-analog converter (DAC) and analog-to-digital converter (ADC), is used to
achieve better energy transfer in electromechanical components, such as transducers [13]. The echo
signals generated from the transducer are sent via the ADC to the display [11,14].
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intensity focused ultrasound transducers [36]. Class–D amplifiers were implemented for a 41 kHz 
Langevin sample transducer and high-power piezoelectric loads [37,38]. The class–E power amplifier 
offers efficient switching, which is useful in radio frequency applications [31,32]. High efficiency in 
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operation [31,32]. Class–E amplifiers were implemented for the 41.5 kHz piezoelectric transducers, 
which only functioned in certain narrow frequency ranges [39]. The class-S power amplifier has wide 

Figure 1. Block diagram of the ultrasonic system.

The power amplifiers used in communication systems are an important part of the transceiver
(transmitter + receiver) systems [15]. In ultrasound (ultrasonic) systems, they also play an important
role in operating the ultrasonic transducers by transmitting the high voltage or high-power signals
in the desired frequency ranges [16,17]. A class-S type power amplifier was designed for ultrasonic
systems to obtain a wide bandwidth in the high-frequency ranges, as the frequency characteristics of
the ultrasonic transducers could be varied using a driving power amplifier [15]. Therefore, we aimed to
cover wide frequency ranges of the ultrasonic transducer using the designed class-S power amplifiers.

To increase the bandwidth of the ultrasonic devices, the mechanical damping material is one of
the design solution [18]. This material is useful to increase the bandwidth of the ultrasonic devices [19].
However, large size material, which has high acoustic impedance, could increase the bandwidth, and
lower the sensitivity of the ultrasonic devices, because the mechanical damping absorb the part of the
acoustic powers [20,21]. In addition, proper acoustic matching layers of the ultrasonic devices are used
to increase the bandwidth, but also lower the sensitivity of the ultrasonic devices [22]. The electrical
matching circuits are also useful to maximize energy transmission or increase the bandwidth of the
ultrasonic systems by placing the matching circuits between the transducers and electronics [23,24].
However, this technique might also increase the pulse width, resulting in lowering the axial resolutions
of the ultrasonic systems [25,26].

Several amplifiers have been developed for ultrasonic transducers. The power amplifiers driving
the ultrasonic devices should have features, such as a high output voltage with efficient bandwidth, to
obtain high image quality in the ultrasonic diagnostic systems [27–29]. However, these performances
cannot be achieved simultaneously [30]. Therefore, the selection of power amplifier classes is important.
We introduce the following characteristics based on the class of the power amplifiers. The class-A
power amplifier has very high linearity with low power efficiency, while the class-B power amplifier
has high linearity with moderately high power efficiency [31,32]. Therefore, a class-A power amplifier
was proposed for high-frequency ultrasonic transducer [33]. Class-B amplifiers were implemented
for an ultrasonic transducer [34]. The class-C power amplifier exhibits low linearity with high power
efficiency; however, this has a narrow bandwidth [31,32]. The class-C power amplifier was introduced
to increase the efficiency of portable ultrasound systems [35]. The class-D power amplifier offers
high efficiency with low power loss, while the class–E power amplifier displays low linearity with
high power efficiency, making this mode suitable for high power applications [31,32]. The class-D
power amplifiers were used to increase the electrical power for high-intensity focused ultrasound
transducers [36]. Class–D amplifiers were implemented for a 41 kHz Langevin sample transducer and
high-power piezoelectric loads [37,38]. The class–E power amplifier offers efficient switching, which is
useful in radio frequency applications [31,32]. High efficiency in the class-E power amplifier can be
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achieved by minimizing the power loss during the switching operation [31,32]. Class–E amplifiers
were implemented for the 41.5 kHz piezoelectric transducers, which only functioned in certain narrow
frequency ranges [39]. The class-S power amplifier has wide bandwidth to be used for various
non-constant input waveforms, such as the load having low bandwidth or broad bandwidth [40].

High-resolution ultrasound equipment generally has a wide bandwidth from the ultrasonic
devices, as the resolution depends on the bandwidth of these devices [7,41]. Therefore, as shown in
Figure 2, a power amplifier that triggers the ultrasonic devices is preferred to obtain a wide bandwidth.
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Figure 2. Performance comparison between the conventional class–A power amplifier and proposed
class–S power amplifier at high frequencies.

This paper is organized as follows. Section 2 analyzes the schematic and operating mechanism
of a class–S power amplifier, while Section 3 shows the measurement results obtained using the
class–S power amplifier. The outputs were verified over a wide input frequency range. Additionally,
the pulse–echo signals were evaluated using ultrasonic transducers. Pulse–echo measurement is
a performance measurement method used to evaluate the performance of ultrasonic transducers,
components, or systems [42]. Time and frequency analyses were also conducted to evaluate the
bandwidth flatness of the power amplifiers. Finally, Section 4 presents concluding remarks on the
developed research.

2. Materials and Methods

In this study, a two-stage class–S power amplifier was designed. The first stage and second stage
power amplifiers were combined to design a wider bandwidth class–S power amplifier as compared to
a class-A power amplifier. In communications applications, the input signals of the class–S power
amplifiers are used in combination with the modulated signals and adjacent narrow band frequency
signals to cover relatively wide bandwidths, which are generally <50% [43]. In this paper, we do
not use analog modulated signals. Therefore, the input signals in the wide frequency ranges (>50%)
should be used to verify the ultrasonic devices.

2.1. Schematic of the Class–S Power Amplifier

Figure 3 depicts the schematic circuit diagram of a two-stage class–S power amplifier. L9, L10, L11,
and L12 are shunt choke inductors used to minimize the drop in the DC voltage. In the resistor divider,
the bias voltages of the first and second stages were set to 4 V and 3 V, respectively. The input 50-Ω
impedance matching circuit of the first stage was built using the capacitors C1 and C2, inductors L1,
L2, and resistors R1, R2, R3, and C3. The output 50-Ω impedance matching circuit was constructed
using the capacitors C5, C4, inductors L4, L3, and resistors R5, R6, and R4. The input 50-Ω impedance
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matching circuit of the second stage was built using the capacitor C6, inductors L5, L6, and resistors R7,
R8, R9, and C7. The output 50-Ω impedance matching circuit was constructed using the capacitors C9,
C8, inductors L8, L7, and resistors R12, R11, and R10. Additionally, an electrolytic capacitor (220 µF) and
three capacitors (0.1 µF, 1000 pF, and 47 pF) were placed between the DC power supply and resistors
(R13 and R15) to reduce noises from the DC power supply. A high-power metal-oxide-semiconductor
field-effect transistor (MOSFET) was used for the power amplifier. The MOSFET (PD57006S–E,
STMicroelectronics, Geneva, Switzerland) was selected as it can handle high levels of power, which
has advantages, such as high switching speeds and a low gate drive power [31,44,45].
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Figure 3. Schematic diagram of a class–S power amplifier with a resistor divider.

Figure 4 shows the fabricated printed circuit board (PCB) of a two-stage class-S power amplifier.
The power amplifier is composed of power resistors, electrolytic capacitors, and high-power choke
inductors to function appropriately in a high voltage environment. Additionally, a heat sink can be used
with an external cooling fan to alleviate the heat generation problem associated with the current-heavy
device. Table 1 shows the numerical values of the circuit element for class-S power amplifiers.
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Table 1. Numerical values of the circuit elements depicted in Figure 3.

Components Values Components Values

C1 300 pF L1, L2, L3, L4 1.2 µH
C2, C5, 1000 pF L5, L6, L7, L8 1.2 µH
C3, C7 82 pF L9, L10, L11, L12 1 µH

C4 170 pF R1, R2, R7, R8 50 Ω
C6 20 pF R3, R9 120 Ω
C8 60 pF R4, R10 50 Ω
C9 200 pF R5, R6 5 Ω
R13 320 Ω R11, R12 3 Ω

R14, R15 110 Ω R15 1.1 kΩ

2.2. Analysis of the Class–S Power Amplifier

2.2.1. First Stage Power Amplifier

The selected bias level allowed the transistor to operate as linearly as possible. The first stage of the
power amplifier circuit uses 100% of the input signal for full linear operation, resulting in a conduction
angle of 360◦ [46]. Therefore, the active devices are always in a conduction state. Additionally, the
amplifiers in the first stage operate over the full range of input cycles, thus, minimizing distortion
and providing high linearity. However, as the power supply current (IDC) is generated regardless
of the input signal and active element, the efficiency is low, leading to increased heat and power
consumption [32]. The drain current (iD) is given by [46]

iD = IDC + irf sinωot, (1)

where IDC is the bias current, irf is the signal amplitude of the drain current, andωo is the frequency of
the signal. The output voltage (vout) can be obtained by multiplying the signal current (irf) and load
(R) [46].

vout = −irf·R sinωot. (2)

The power (Pout) of the signal delivered to the load, R is given by [46]

Pout =
irf

2
·R

2
. (3)

Additionally, irf is the same as IDC, so the DC power (PDC) is given by [46]

PDC = IDC·VDD = irf·VDD. (4)

2.2.2. Second Stage Power Amplifier

The operating point is a cutoff point assuming that the drain current (IDQ) = 0 and drain voltage
(VDQ) = drain–source voltage (VDS (cutoff)) in the second stage of the power amplifier circuit. This
ensures that a sinewave operates during the positive half cycle, with the negative half cycle equal to zero.
Signal distortion is relatively high as a negative half cycle of the signal does not exist [46]. Additionally,
the power loss increases with an increase in the conduction angle. However, the output efficiency
is high in comparison with the first stage of the power amplifier. To minimize the above problem,
symmetrical transistors and switching transistors are required, which also operate during the negative
half cycles. However, this would not be suitable for the ultrasonic devices, which minimize/reduce the
transformer ring-down caused by the symmetrical transistors. The drain current (iD) is given by [46]

iD = irf· sinωot, iD > 0, (5)
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The output voltage (vout) and output power (Pout) over half a cycle can be represented in terms of
the load (R) [46]:

vout =
irf

2
·R sinωot, (6)

Pout =
vout

2

2R
, Pout(max) =

vDD
2

2R
. (7)

Additionally, the maximum value of the output power (Pout(max)) is related to the output voltage
(vout) and drain voltage (VDD), so it can be expressed, as shown in Equation (7) [46]. The power
(PDC) of the DC power supply is calculated based on the average value of the drain current (iD.A) and
depends on the phase [46].

iD.A =
1
T

T
2∫

0

2VDD

R
sinωot dt =

2VDD

πR
, (8)

PDC =
2VDD

2

πR
. (9)

2.2.3. Equivalent Circuit Analysis of a Two-Stage Power Amplifier

To simplify the equivalent circuit analysis, the small internal resistance and inductance values of
each gate, drain, and source stage of the transistor in two-stage amplifier were ignored in the large
signal nonlinear MOSFET model [46]. Figure 5 shows the equivalent circuit model of a simplified
two-stage class–S power amplifier. The model consists of two stages, where Vin,A and Vin,B represent
the voltage inputs of the first and second stages, respectively. Vout,A and Vout,B represent the voltage
outputs of the first and second stages, respectively. Zin,A and Zout,B represent the impedance inputs of
the first and second stages, respectively. Zin,A and Zout,B represent the impedance outputs of the first
and second stages, respectively. CGS1 and CGS2 are the gate–source capacitors of the transistor. CDS1

and CDS2 are the drain–source capacitors of the transistor. CGD1 and CGD2 are the gate–drain capacitors
of the transistor. CGD1, CGD2, CGS1, CGS2, CDS1, and CDS2 are the internal parasitic capacitors of the
transistor, and their values depend on the applied gate source and gate drain voltages, and the load.
The power gain of an amplifier is given by the ratio of the output power to the input power. In general,
the equation for the power gain (PGain) can be expressed as [46]:

PGain =
Vout,A

2

Vin,A
2 ·

Vout,B
2

Vin,B
2 (

Rin

Rout
). (10)
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Rin and Rout are the input and output impedances (Z) of 50-Ω in the function generator and
oscilloscope. Thus, PGain can be expressed as follows [46]:

PGain =
Vout,A

2

Vin,A
2 ·

Vout,B
2

Vin,B
2 . (11)

The power gains can be calculated using the equivalent circuits. The gain is obtained from
the input and output voltages. The transfer functions ωin and ωout represent the input and output
frequencies of each power amplifier stage [46]:

ωin =
1

Zin[CGS + (1 + gmZout)CGD]
, (12)

ωout =
1

Zout(CDB + CGD)
, (13)

whereω is equal to 2πfc and gm represents the transconductance of the transistor. To obtain the transfer
functionsωin andωout, the input and output impedances Zin and Zout are required. As depicted in
Figure 6, the power amplifier is composed of two stages, so the input and output impedances of the
first and second stages, Zin,A, Zout,A, Zin,B, and Zout,B, can be obtained as follows:

Zin,A = [
1

sC1
+ (sL1 + R1)‖

1
sC2

] + [(sL2 + R2)‖R3‖
1

sC3
], (14)

where s is equal to j2πfc, s2 is equal to −4πfc, fc is the center frequency of the power amplifier, and
Zin,A is the input impedance of the first stage.

On the input side, the impedance can be calculated using the capacitor C1 connected in parallel
with capacitor C2, inductor L1 and resistor R1, resistor R3 and capacitor C3 connected in parallel, and
inductor L2 and resistor R2 present in the input matching circuit of the first stage.

Zout,A = [R4 + (sL3 + R6)‖
1

sC4
] + [(sL4 + R5)‖

1
sC5

], (15)

where Zout,A is the output impedance of the first stage. On the output side, the impedance can be
calculated using the resistor R4 connected in parallel with capacitor C4, inductor L3 and resistor R6

connected in parallel with capacitor C5, and inductor L4 and resistor R5 present in the output matching
circuit of the first stage.

Zin,B = [(R7 + sL5)‖
1

sC6
] + [(R8 + sL6)‖R9‖

1
sC7

], (16)

where Zin,B is the input impedance of the second stage. On the input side, the impedance can be
calculated using the capacitor C6 connected in parallel with inductor L5 and resistor R7, resistor R9

and capacitor C7 connected in parallel, and inductor L6 and resistor R8 present in the input matching
circuit of the second stage.

Zout,B = [R10 + (sL7 + R11)‖
1

sC8
] + [(sL8 + R12)‖

1
sC9

], (17)

where Zout,B is the output impedance of the second stage. On the output side, the impedance was
calculated using the resistor R10 connected in parallel with capacitor C8, inductor L7 and resistor
R11 connected in parallel with capacitor C9, and inductor L8 and resistor R12 present in the output
matching circuit of the second stage.
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The input and output impedances Zin,A, Zout,A, Zin,B, and Zout,B are obtained and then substituted
into Equations (12) and (13). Therefore, the transfer functions of each stage can be obtained. The
transfer functionωin,A corresponding to the input side of the first stage is given by:

ωin,A =
[sC1+s2C1C2(sL1+R1)]·[R2+R3+sL2+sC3(R2R3+sL2R3)]·(s2C4L3+sC4R5+1)·(s2C5L4+sR6C5+1)

[(R2R3 + sL2R3)
{
sC1 + s2C1C2(sL1 + R1)

}
+ (1 + s2L1C2 + sC2R1 + s2C1L1 + sC1R1)

{
R2 + R3 + sL2 + sC3(R2 + R3 + sL2R3]

·CGS(s2C4L3 + sC4R5 + 1)(s2C5L4 + sR6C5 + 1) + CGD[(s2C4L3 + sC4R5 + 1)(s2C5L4 + sR6C5 + 1)
+gm

{
(R6 + sL4)(s2C5L4 + sR5C4 + 1) + (s2C5L4 + sR6C5 + 1)(s2C4R4R5 + R4 + R5 + sL3)

}
]

. (18)

The transfer functionωout,A corresponding to the output side of the first stage is given by:

ωout,A =
(s2C4L3+sC4R6+1)(s2C5L4+sR5C5+1)

[(R5+sL4)(s2C4L3+sC4R6+1)+(s2C5L4+sR5C5+1)(s2C4C3R4+sC4R4R6+R4+R6+sL3)]·(CDB+CGD)
. (19)

The transfer functionωin,B corresponding to the input side of the second stage can be expressed as:

ωin,B =
(s2C6L5+sC6R7+1)·[R8+R9+sL6+sC7(R8R9+sL6R9)]·[(s2C8L7+sC8R11+1)(s2C9L8+sR12C9+1)]

[(R7 + sL5)
{
R8 + R9 + sL6 + sC7(R8R9 + sL6R9)

}
+ (R8R9 + sL6R9)(s2C6L5 + sC6R7 + 1)]

·[CGS(s2C8L7 + sC8R11 + 1)(s2C9L8 + sR12C9 + 1) + CGD

{
(s2C8L7 + sC8R11 + 1)(s2C9L8 + sC9R12 + 1)

+gm

{
(R12 + sL8)(s2C9L8 + sRC + 1) + (s2C8L7 + sC8R11 + 1)(s2C8L7R10 + sC8R10R11 + R10 + R11 + sL7)

}
]

(20)

The transfer functionωout,B corresponding to the output side of the second stage is given by:

ωout,B =
(s2C8L7+sC8R11+1)(s2C9L8+sR12C9+1)

[(R12+sL8)(s2C9L8+sR12C9+1)+(s2C8L7+sR11C8+1)(s2C8L7R10+sC8R10R11+R10+R11+sL7)]·(CDB+CGD)
, (21)
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where s = j2πfc and s2= −4πfc. As the gain equals Vout/Vin, it can be represented as follows [46]:

Vout

Vin
(s) =

−gmZout

(1 + s
ωin

)(1 + s
ωout

)
. (22)

The transfer functions ωin,A, ωout,A, ωin,B, and ωout,B are then substituted into Equation (22).
This power amplifier circuit consists of two stages, and the total gain of Vout/Vin of each stage can be
obtained as follows. Using Equations (15), (18), and (19), the gain of the first stage is

Vout,A
Vin,A

(s) = −gm(R5+sL4)(s2C4L3+sC4R6+1)+(s2C5L4+sC5R5+1)(s2C4L3R4+sC4R4R6+R4+R6+sL3)

(s2C4L3+sC4R6+1)·(s2C5L4+sR5C5+1)·(1+ s
ωin,A

)(1+ s
ωout,A

)
. (23)

Using Equations (17), (20), and (21), the gain of the second stage is

Vout,B
Vin,B

(s) = −gm(R12+sL8)(s2C9L8+sC9R12+1)+(s2C8L7+sC8R11+1)(s2C8L7R10+sC8R10R11+R10+R11+sL7)

(s2C8L7+sC8R11+1)(s2C9L8+sR12C9+1)∗(1+ s
ωin,B

)(1+ s
ωout,B

)
. (24)

The first and second stages are connected in series. Therefore, the gain (Gain) and power gain
(PGain) can be represented as:

Gain =
Vout,A

Vin,A
·
Vout,B

Vin,B
, PGain = Gain2. (25)

The basic gain function can be obtained from Equation (22). The final gain of the two-stage
power amplifiers can be obtained by multiplying the gain of the first stage with the gain of the second
stage, as shown in Equation (25). The power gain can be obtained by squaring the gain according to
Equation (11).

However, this theoretical analysis may differ from the actual experimental results, as the
simulations cannot accurately predict the signal distortion in power amplifier design, particularly in
high-voltage environments [47]. Temperature parameters, heat generation, and external environmental
factors can critically change the theoretical output performance of the amplifier. The transistors
(MOSFETs) exhibit varied performance and accuracy depending on the high DC voltage and
temperature [31]. In summary, the power amplifier analysis yields a theoretical value, which must be
verified using actual measurement data to prove our proposed idea [47].

3. Results

3.1. Performance Analysis

Figure 6 shows the experimental measurement method employed in this study including the
pulse-echo. The five–cycle sinewave was generated using a function generator, and the operating
frequency and amplitude of the input voltage were increased. The power gain was obtained by
measuring the output voltage of the power amplifier using an oscilloscope. Additionally, an attenuator
was used to prevent overvoltage on the oscilloscope. Experiments were performed using a 40 dB
attenuator with a 100× reduction in the signal amplitude. External coolers and heat sinks were used to
alleviate the heat generation problems associated with the transistors and devices. The output voltage,
power gain, and bandwidth were measured as a function of the input voltage and frequency.

Table 2 shows the simulated and measured results for the class-S power amplifier circuits. Figure 7
shows the measured results for the class-S power amplifiers. Figure 7a depicts the performance
measurements when the input voltage of the class-S power amplifier was in the range of −2 to 18 dBm at
20 MHz. At an input of 13.5 dBm, the DC current was 539 mA with an output of 31.87 dBm. At an input
of 10 dBm, the measured output was 30.67 dBm, while at an input of −2 dBm, the measured output was
19.4 dBm. Figure 7b depicts the performance measurement when the input voltage of the class-S power
amplifier was between −2 and 18 dBm at 20 MHz. At an input of 13.5 dBm, the measured power gain
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was 18.35 dB. At the maximum input of 18 dBm, the output power was 33.04 dBm with a DC current of
539 mA. The measured power gain was 15.09 dB. At an input of −2 dBm, the measured power gain
was 21.44 dB. Figure 7c shows the power gain versus frequency at an input of 3 VP-P. The graph shows
that we could achieve sufficient broad gain bandwidth from 15 MHz to 30 MHz. The maximum gain
was 18.35 dB at 20 and 25 MHz, and an approximately uniform gain was measured from 17.15 dB
at 15 MHz to 17.69 dB at 30 MHz. The −3 dB and −6 dB bandwidths were measured as 82.89% and
125.07%, respectively. Table 3 presents the measured current, output power, and power gain.
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Figure 7. (a) Input power versus output power and (b) input power versus power gain observed in a
class-S power amplifier with an input frequency of 20 MHz; (c) frequency versus output power of a
class–S power amplifier with an input voltage of 3 VP-P.

Table 2. Simulated and measured results of class-S power amplifier.

Simulated Measured

Pin (dBm) Pout (dBm) Pout (dBm)
10 29.383 30.67
13.52 30.842 31.87

Pin (dBm) Power gain (dB) Power gain (dB)
10 19.383 18.35
13.52 19.404 15.09

Table 3. Class-S power amplifier measurements, corresponding to different inputs.

Pin (dBm) Current (mA) Pout (dBm) Power Gain (dB)

−2 531 19.4 21.44
4 531 24.88 21.29

7.5 539 28.69 21.19
10 539 30.67 20.67

11.94 539 30.98 19.05
13.52 539 31.87 18.35
14.86 539 31.73 16.87

16 539 32.28 16.26
17 539 32.92 15.88
18 539 33.04 15.09

Table 3 shows the measured values from Figure 7a,b. The current, output power, and power gain
varied according to the different inputs at 20 MHz.

Table 4 shows the measured values from Figure 7c, representing the measured power gain and
output power at different frequencies.
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Table 4. Class-S power amplifier measurements, corresponding to different frequencies.

Frequency (MHz) Pin (dBm) Pout (dBm) Power Gain (dB)

5 13.52 21.13 7.61
10 13.52 30.67 17.15
15 13.52 31.87 18.35
20 13.52 31.87 18.35
25 13.52 31.21 17.69
30 13.52 27.03 13.50
35 13.52 25.12 11.60
40 13.52 22.04 8.52
45 13.52 19.83 6.31
50 13.52 21.13 7.60

3.2. Pulse-Echo Analysis

Pulse–echo measurement is a performance measurement method used to evaluate the performance
of transducers, components, or systems [48,49]. In this method, an ultrasonic wave is generated by
applying an electric signal to a transducer having a piezoelectric effect function. The electric signal from
the transducer is then detected based on the wave reflected from the quartz target. In this study, the
ultrasonic measurements were performed using a 20 MHz transducer, as shown in Figure 8. A single
element transducer provided by Olympus (Shinjuku-ku, Tokyo, Japan) was employed for pulse-echo
test. The distance between the transducer and target is 1.7 inch.
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Figure 8. Twenty megahertz ultrasound transducer.

Figure 9a,b shows the procedure used to obtain the pulse-echo signal using a transducer in a
water tank and enlarged pulse-echo spectrum in the oscilloscope. The quartz is the target object
in the water tank, which contains double distilled water. The ultrasonic signals were measured
via the transducer. A five-cycle sinusoidal waveform with a 20 MHz frequency and 3 VP-P input
voltage were generated using the function generator. The expanders were used to reduce the signal
ring-down [50]. The limiter removed the high voltage signal, thus, protecting the pre–amplifier
and oscilloscope [51]. The signal was amplified by the power amplifier and reflected by the quartz
through the transducer [52]. The reflected ultrasonic signal was amplified by the pre–amplifier and
then measured on the oscilloscope [53]. The echo signals and fast-Fourier transform (FFT) were
measured/recorded from the power amplifiers.
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Figure 9. (a) Pulse-echo signal measurement setup for a class–S power amplifier and (b) enlarged
pulse-echo spectrum in working status oscilloscope screen.

Figure 10 shows the pulse-echo signal measurements obtained using a transducer, which indicates
the performance of the ultrasonic power amplifier. A discharged signal that only passed through the
pre–amplifier was detected, which was followed by the echo signal reflected by the quartz through
the ultrasonic transducer. The quartz reflected 100% of the signal. In the field of ultrasonic, the echo
signals are processed to obtain the output images. Therefore, the distortions in the echo signal were
analyzed to obtain the total harmonic distortion (THD) since the signal distortions are related to image
resolutions [54,55]. The THD represents the distortion caused by the unwanted harmonic components
in the echo signal. The THD can be calculated using the following equation:

THD

√
Second.Harmonic2 + Third.Harmonic2

Fundamental
, (26)

THD (dB) = 20· log THD, (27)

THD (%) = 100·THD. (28)
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Figure 10. Pulse-echo experiment of a power amplifier.

Figure 11a shows the echo signal from a 20 MHz transducer. The measured echo signal was
112.0 mV for a 3 VP-P and 20 MHz input. Figure 11b represents the spectrum data from the oscilloscope
following application of the FFT. The measured fundamental signal, 2nd, and 3rd harmonic signals
were −41.48 dB at 20 MHz, −58.96 dB at 40 MHz, and −63.11 dB at 60 MHz, respectively. The measured
THD was −17.08 dB (13.99%). Figure 11c,d shows the output signal of the class-S power amplifier
and expander circuit and the limiter after the transducer. These distorted signals were caused by each
circuit element including the transducer device.
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In the communication systems, the class-S power amplifiers use modulated signals, which consist
of two adjacent frequency components. For the ultrasound instruments, each different frequency
signal, as opposed to the modulated signals, was used to check the bandwidths of the echo signals.
Therefore, the amplitude and bandwidth were verified in the wide frequency ranges covered by the
transducer using a class-S power amplifier.

Figure 12a shows the echo signal values corresponding to the different input frequencies
(17–23 MHz) of the class-S power amplifier with a 20 MHz transducer. At an input of 3 VP-P,
the recorded measurement data were 109.7 mV at 17 MHz, 112.0 mV at 20 MHz, and 109.5 mV
at 23 MHz. The measurement results showed that the class–S power amplifiers could withstand
wide bandwidths. Figure 12b shows the echo signal values corresponding to the different input
frequencies (17–23 MHz) of a commercial 400 MHz class–A power amplifier (75A400, Amplifier
Research, Souderton PA, USA). Measurements were performed under the same conditions as those
employed in Figure 12. The measured echo signals were 110.6 mV at 17 MHz, 111.5 mV at 20 MHz,
and 85.0 mV at 23 MHz. Differences in the amplitude and bandwidth can be observed when the
results, shown in Figure 12a,b, are compared. The class–S power amplifiers could cover the 17 to
23 MHz frequency range. However, a class–A power amplifier could not exhibit a uniform signal, even
though the class-A power amplifier had a flat gain in the wide frequency ranges. These measurement
data demonstrate that the class–S power amplifiers could cover a wide bandwidth of the ultrasonic
echo signal. As shown in Figure 12c,d, the measured THD value when using the class-S power
amplifiers (13.99%) is lower than that when using the class-A power amplifier (16.58%) at 20 MHz.
Therefore, these measurement data provides that the class-S power amplifier could offer lower echo
signal distortions. Figure 12e,f shows the pulse widths of the echo signals. The pulse width is related
to the axial resolution of the ultrasonic systems [56–58]. The pulse width of the echo signal when
using the class-S power amplifier (640 ns) is shorter than that when using the class-A power amplifier
(670 ns) at 20 MHz.
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4. Conclusions

Wideband class–S power amplifiers are designed to cover the wide frequency ranges of ultrasonic
devices. Various commercial amplifiers are available for ultrasonic applications. Therefore, we expect
that wide bandwidth class–S power amplifiers will be increasingly drawing attention in high-frequency
applications. In this study, a two-stage power amplifier was constructed to obtain a wide bandwidth
for an ultrasonic transducer, which covered a wide frequency range. To verify the bandwidth of the
developed class-S power amplifier, we measured the gain as a function of the operating frequency.
For a 13.5 dBm input at 20 MHz, the output power and power gain were 30.67 dBm and 18.35 dB,
respectively. The measured −3 dB and −6 dB bandwidths of the power amplifiers were at 82.89%
and 125.07%, respectively. Additionally, the echo signal bandwidths of the wide band class–S and
commercial class–A power amplifiers were compared using a 20 MHz transducer. The measured
output voltages were 109.7 mV at 17 MHz, 112 mV at 20 MHz, and 109.5 mV at 23 MHz for the
class–S power amplifier. When using the 20 MHz transducer, the class–S power amplifiers covered a
bandwidth of 17–23 MHz, which was not achievable with the commercial class–A power amplifiers.
Therefore, the designed class–S amplifier achieved a wider bandwidth when the echo signals were
measured using transducers.

In current ultrasound instruments, many ultrasonic devices still require wide frequency ranges to
obtain a high resolution. A wide bandwidth class–S power amplifier could be a potential candidate to
produce transducers operating at a wide frequency range. Thus, the designed class–S power amplifier
presented in this paper could potentially prove very helpful/useful for ultrasonic transducers, which
require constant amplitudes at wide frequency ranges.
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