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Abstract – Human and animal serological surveys suggest that West Nile virus (WNV) circulation is widely
distributed in Madagascar. However, there are no reported West Nile fever outbreaks or epizootics in the country
and only one fatal human case has been reported to date. Currently there is very limited information on the mainte-
nance and the transmission of WNV in Madagascar and particularly on the mosquito species involved in transmission
cycles. In 2014, we initiated a study to investigate mosquito species composition, relative abundance, and trophic
behavior in Mitsinjo District close to Lake Kinkony, a WNV endemic area in north-western Madagascar. We collected
a total of 2519 adult mosquitoes belonging to 21 different species. The most abundant species was Aedeomyia
(Aedeomyia) madagascarica Brunhes, Boussès & da Cunha Ramos, which made up 83% of all the mosquitoes
collected. Mosquito abundance was associated with proximity to the lake (Morafeno and Ankelimitondrotra).
Additionally, a correlation was observed between the lake-side biotope and the abundance of mosquito vectors in
Morafeno. WNV RNA was detected in one pool of Ae. madagascarica and one pool of Anopheles (Cellia) pauliani
Grjebine, suggesting that these two species may be involved in the maintenance and/or transmission of WNV in
Madagascar.
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Résumé – Dynamique des populations des espèces de moustiques dans une zone d’endémie du virus de la
fièvre du Nil Occidental à Madagascar. Des études sérologiques humaines et animales suggèrent que la
circulation du virus de la fièvre du Nil Occidental (VNO) est largement répandue à Madagascar. Toutefois, il
n’existe pas de foyers de VNO ni d’épizooties dans le pays et seul un cas humain mortel a été signalé à ce jour.
Actuellement, on dispose de très peu d’informations sur l’entretien et la transmission du VNO à Madagascar et en
particulier sur les espèces de moustiques impliquées dans les cycles de transmission. En 2014, nous avons
entrepris une étude pour étudier la composition des espèces de moustiques, l’abondance relative et le
comportement trophique dans le district de Mitsinjo près du lac Kinkony, une zone endémique du VNO dans le
nord-ouest de Madagascar. Nous avons recueilli un total de 2519 moustiques adultes appartenant à 21 espèces
différentes. L’espèce la plus abondante était Aedeomyia (Aedeomyia) madagascarica Brunhes, Boussès &
da Cunha Ramos, qui constituait 83 % de tous les moustiques collectés. L’abondance de moustiques était associée
à la proximité du lac (Morafeno et Ankelimitondrotra). De plus, une corrélation a été observée entre le biotope
bordure du lac et l’abondance de moustiques vecteurs à Morafeno. De l’ARN du VNO a été détecté dans un pool
d’Ae. madagascarica et un pool d’Anopheles (Cellia) pauliani Grjebine suggérant que ces deux espèces peuvent
être impliquées dans le maintien et/ou la transmission du VNO à Madagascar.
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1. Introduction

West Nile virus (WNV) (family Flaviviridae, genus
Flavivirus) was first isolated from a woman with febrile illness
in the West Nile district of Uganda in 1937 [54]. The virus is
transmitted to humans through the bite of a mosquito that has
previously acquired the virus by blood-feeding on infected
birds. The role of mosquito species in the WNV transmission
cycle was first demonstrated in the species Aedes albopictus
(Skuse) in 1943 [47]. The first isolations from human sera
occurred in Egypt and Israel in 1951 [20, 23]. Subsequent
events, including the emergence of WNV in North America
in 1999, its spread westward across the United States, and then
throughout the western hemisphere from South America to
Canada, as well as repeated outbreaks in Europe [11, 12],
suggest that WNV has the largest geographical distribution
among the arthropod-borne viruses [24].

In Africa, WNV is endemic and widely distributed [45].
In South Africa, the first evidence of WNV infection was
observed in 1958 [38]. Since this initial observation, large
human epidemics due to changes in environmental conditions
resulting in higher mosquito abundance [62] and high
seroprevalence of WNV infection [26] have occurred in South
Africa. WNV infections have also been detected in North
Africa (Egypt, Tunisia, Algeria, Morocco, Senegal) [4, 9, 49,
52] as well as in Central Africa (Central African Republic,
Kenya, Uganda, Nigeria) and Madagascar [4, 9, 14, 40, 52,
53]. Based on genetic differences, WNV strains have been
classified in eight lineages, with lineages 1 and 2 being
described as pathogenic. WNV Lineage 2 strains, which are
endemic in sub-Saharan Africa and Madagascar, were
previously considered to be of low pathogenicity [12, 30].

Mosquitoes of the genus Culex are the primary vectors of
WNV in Africa and Asia due to their vector competence and
host preferences. There is geographic variation within the
genus due to the presence of locally important Culex (Cx.)
species such as Cx. pipiens pipiens Linnaeus and
Cx. quinquefasciatus Say in Nigeria [44]; Cx. univittatus
Theobald in Kenya and South Africa; Cx. theileri Theobald
in South Africa; and Cx. neavei Theobald, Cx. quinquefascia-
tus groups, and Cx. poicilipes (Theobald) in Senegal [3, 14]. In
Asia, Cx. quinquefasciatus, Cx. tritaeniorhynchus Giles, and
Cx. vishnui Theobald predominate [25]. Moreover, WNV
vertical transmission has already been demonstrated in the field
for several species: Cx. univittatus, Cx. salinarius Coquillett,
Cx. tarsalis Coquillett, Cx. erythrothorax Dyar,
Cx. stigmatosoma Dyar, and Aedes triseriatus (Say) [13, 39,
41, 42, 61] and experimentally for several other species:
Ae. aegypti Linnaeus, Ae. albopictus, Cx. pipiens,
Cx. quinquefasciatus, Cx. tritaeniorhynchus, and Cx. modestus
Ficalbi [2, 3, 19, 34].

In Madagascar, virus isolation was first reported in 1978
from an endemic parrot species [10] and later from mosquitoes
and humans [16, 17]. Despite serological and virological data
demonstrating widespread circulation of WNV across the 18
districts of Madagascar that cover different bioclimatic zones
of the country [16, 33, 36, 37, 43], neither epidemics nor
epizootics of WNV have been reported to date. Only one lethal
case due to WNV infection has been reported in a traveler

returning from Madagascar in 2011 [31]. Among the 235
mosquito species described from the country [56], 29 species
are widely associated with WNV infection, and they belong
to five distinct genera: Aedeomyia (Ad.), Aedes, Anopheles
(An.), Culex, and Mansonia [55]. Of these 29 mosquito species
associated with WNV infection, 25 are not native to
Madagascar [55, 56]: 12 species of genus Culex, 6 of Aedes,
4 of Anopheles, 1 of Aedeomyia, 1 of Coquillettidia, 1 of
Lutzia, 2 of Mimomyia, and 1 of Mansonia. According to the
proposed system of mosquito vector categorization that
included natural infection, vector competence, and field
vector-host contact, 4 of these 29 mosquito species were
considered as major (Culex quinquefasciatus, Culex tritae-
niorhynchus, Culex univitattus, and Mansonia uniformis
(Theobald)), nine as candidate vectors (Aedeomyia madagas-
carica, Aedes albocephalus (Theobald), Aedes circumluteolus
(Theobald), Aedes aegypti, Aedes albopictus, Anopheles cous-
tani Laveran, Culex antennatus (Beker), Culex decens
Theobald, and Culex pipiens) and the remaining (16 species)
as potential vectors [55].

There have been few human and animal serological
surveys of circulation rates of WNV in Madagascar in recent
decades. In 1990, a first serological survey conducted in
12 regions of Madagascar reported a prevalence of 29.9%
for anti-WNV antibodies in a non-random sample of
5–20 year-old children or young adults [43]. A second survey
conducted in 1996 in children under 15 years of age in the
highlands, and a third in 1999 along the north-western coast
of Madagascar detected a 2.1% and 10.6% prevalence of
anti-WNV antibodies, respectively [33]. Finally, in
2012–2013, a serological analysis of chicken sentinels was
performed in areas close to lakes where domestic, wild, and
migratory birds co-exist with humans and potential mosquito
vectors were reported. This study revealed differences in the
prevalence of anti-WNV antibodies between the two studied
districts (Antsalova 29.4% and Mitsinjo 16.7%) [36].

These observations are consistent with several possible
hypotheses regarding the persistence of enzootic/endemic
WNV transmission in Madagascar. The first possibility is that
there is a constant potential for contact between WNV vectors
and humans due to the persistence of WNV in wild birds,
regardless of the urban/rural setting. A second could be that
there are alternating cycles in which urban and rural
populations of vectors experience peaks in infection intensity
separately, with each being the major contributor to WNV
transmission at different times.

To gain a clearer understanding of the involvement of local
mosquito populations as putative competent vectors in WNV
transmission in Madagascar, a longitudinal entomological
survey was carried out around Lake Kinkony. The lake is the
second largest lake in Madagascar [28], supporting most of
the wetland bird species of western Madagascar [35] with a
strong vector density and a high WNV antibody prevalence
[5, 36]. Given these conditions, it is an ideal location to under-
stand the relationships between epizootic and putative sylvatic
cycles. This preliminary study aims to determine population
dynamics of mosquito species, along with their distribution,
abundance, and feeding behavior in the WNV endemic context
of Madagascar.
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2. Materials and methods

2.1. Study sites

In the western region of Madagascar, the district of
Mitsinjo was chosen based on three criteria: (i) detection of
a high WNV seroprevalence in domestic animals with WNV
detection in mosquitoes in 2012, (ii) presence of migratory
birds in the same area [36], and (iii) ecological features
(lake, village, and forest) compatible with WNV transmission
between domestic as well as wild wetland and forest birds.
Three localities were investigated: Morafeno, Ankelimitondro-
tra, and Analalava forming an East-West transect across
Lake Kinkony (Fig. 1). Morafeno, the most easterly village
(16�08074.600 S, 45�55017.500 E), is surrounded by the lake,
100 m from the lakeside with a landscape made of jujube,
tamarind dry forest, and food crops. Ankelimitondrotra
(16�08086.700 S, 45�52097.300 E) is located on a peninsula-like
projection into the lake. The village is located about
150–200 m from the lakeside with the landscape
predominately composed of jujube and tamarind dry forest
as well. A large area of swamp and marshland with aquatic
plants is observed between Morafeno and Ankelimitondrotra
as described by Andriamasimanana and Rabarimanana [1].
The village of Analalava, the most westerly village
(16�08035.700 S, 45�42002.500 E), is located 1 km from the
lakeside with a landscape consisting of jujube, mango,
tamarind forest, and savannah dominated by Satrana palm.
The average outside temperature is greater than 20 �C through
the year and can exceed 25 �C during the wet season
(September to May). The highest rainfall (200 mm–400 mm
a year) was observed between January and March, while the
lowest rainfall (<15 mm a year) is during the dry season
(May and October) [8].

Fishing is the main occupational activity in Morafeno and
Ankelimitondrotra; domestic animals (dogs) and livestock
(cattle, sheep, goats, pigs, and poultry) are present in all three
villages.

2.2. Longitudinal entomological survey

Mosquitoes were sampled every two months from February
to December 2014 using CDC-light traps (CDC miniature light
trap, BioQuip Products, Inc, Rancho Dominguez, USA) (12 in
total) for the determination of mosquito population dynamics
and poultry-baited BG sentinel traps (BGS traps) (BioQuip
Products, USA) (five to six in total) positioned from
6:00 pm to 5:00 am. A longitudinal serological survey of
chickens was performed concurrently. Both mosquito traps
were distributed in three distinct ecosystems: forest-village
transition zone, within village, and lakeside for one night of
capture in each village (four light traps and two BG sentinels
per ecosystem). The average distance between each ecosystem
is about 100 m, except for Analalava where the distance
between village and lakeside is 1 km. In August 2014,
BG sentinel traps were not used in the village of Analalava
due to security concerns.

Each mosquito specimen was morphologically identified
by microscopy in the field and in the laboratory on a chilled
table, after freezing in liquid nitrogen, based on morphological
keys: the unpublished Fontenille key and the Brunhes key [6].
After identification, insects were pooled (1–10 individuals) per
species, sex, and blood-feeding status of female (blood-
engorged or not engorged), per trap and per zone. They were
stored in liquid nitrogen in the field and stored at �80 �C in
the laboratory. The host origin of the blood meals of 33
engorged mosquitoes collected in CDC-light traps was

(A) (B)

Figure 1. (A) Overall WNV detection in Madagascar (seroprevalence and virus identification) [16, 36, this study]. (B) Location of the study
sites, part of the Mitsinjo district (February 2014 to December 2014).
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determined by the Beier method [4]. In all, seven vertebrate
hosts were tested (human, rat, cow, pig, sheep, chicken, and
dog) by a direct enzyme-linked immunosorbent assay
(ELISA).

2.3. Screening mosquitoes for West Nile virus

The abdomens of 1825 unfed monospecific female
mosquitoes were dissected, pooled, and ground up in 350 lL
of Minimal Essential (MEM) cell culture medium (Gibco Life
Technologies, USA) containing a mixture of 1000 U/mL
penicillin, 1 mg/mL streptomycin, and 25 lg/mL amphotericin
B (Sigma, USA) with two 3-mm diameter stainless steel beads
(Loudet, France) for 30 s using the TissueLyser system
(Qiagen, USA). Total RNA was extracted using the
NucleoSpin RNA Virus kit (Macherey-Nagel, Germany).
For WNV RNA detection, a capsid-based Taqman
probe real-time PCR system able to detect WNV lineages
1 and 2 was used with AgPath-IDTM One-Step RT-PCR
Reagents (Ambion, Life Technologies, USA) [32] on a 7500
Real-time PCR system (Applied Biosystems, USA). A lineage
2 positive control was kindly provided by Dr S. Lecollinet
(ANSES, France) and included in each of the tests for plate
validation.

2.4. Statistical analysis

Data analyses were performed in R version 2.10.1
(R Foundation for Statistical Computing (http://www.
r-project.org), and p � 0.05 denoted statistical significance.
The mosquito community structure at the different study sites
and transects was analyzed using the following approaches:
diversity using a Shannon equitability index (H0), and similar-
ity of mosquito fauna using the Jaccard Index of similarity (J),
based on the presence/absence of data only. We used the
number of mosquito adults caught as the numeric surrogate
for analyzing the effect of the types of trap, months, localities,
and biotopes with a multi-way ANOVA (analysis of vari-
ance).We used Tukey’s honest significant difference (HSD) to
determine which pairs of means were significantly different.

3. Results

3.1. Mosquito abundance, species diversity, and
trophic preferences

A total of 2519 specimens belonging to 21 mosquito
species and 6 genera were identified (Tables 1 and 2). At each
study site, no significant difference in terms of proportion of

Table 1. Abundance of the 21 mosquito species collected at the adult stage between February 2014 and August 2014 in each village.

Analalava Ankelimitondrotra Morafeno

BG LT Pools
positive

BG LT Pools
positive

BG LT Pools
positive

Aedeomyia furfurea (Enderlein) 1 0 0/1 1 11 0/8 0 7 0/5
Aedeomyia madagascarica Brunhes, Boussès & da Cunha Ramos* 0 17 0/4 31 595 0/57 252 1159 1/108
Aedeomyia sp. 0 0 0 0 10 0/1 0 0 0
Aedes albodorsalis Fontenille and Brunhes* 1 0 0/1 0 0 0 0 0 0
Aedes argenteopunctatus (Theobald) 0 0 0 0 1 0/1 0 0 0
Aedes sp. 5 1 0/3 1 0 0/1 0 0 0
Anopheles coustani Laveran* 0 5 0/4 1 10 0/5 0 11 0/5
Anopheles funestus Giles* 0 0 0 0 2 0/2 1 5 0/3
Anopheles gambiae Giles* 2 26 0/7 2 2 0/4 2 13 0/11
Anopheles maculipalpis Giles 0 6 0/4 0 0 0 0 1 0/1
Anopheles mascarensis de Meillon 5 5 0/3 0 0 0 0 0 0
Anopheles pauliani Grjebine* 15 1 0/2 1 1 0/2 2 37 1/13
Anopheles pharoensis Theobald* 0 7 0/1 0 26 0/4 3 30 0/7
Anopheles squamosus/cydippis* 4 12 0/5 0 4 0/1 4 12 3
Anopheles rufipes (Gough) 0 2 0/2 0 0 0 0 0 0
Anopheles sp. 0 0 0 1 1 0/1 0 2 1
Culex antennatus (Becker)* 0 15 0/4 0 4 0/3 0 10 2
Culex bitaeniorhyncus Giles* 0 1 0/1 0 4 0/1 0 1 1
Culex decens Theobald 2 13 0/5 0 0 0 0 1 1
Culex poicilipes (Theobald)l 2 0 0/1 1 4 0/4 0 14 1
Culex tritaeniorhyncus Giles* 3 2 0/3 0 3 0/1 0 11 5
Culex univittatus Theobald* 3 3 0/3 1 0 0/1 0 3 3
Culex sp. 1 0 0/1 1 0 0/1 1 3 2
Mansonia uniformis (Theobald)* 14 12 0/7 2 12 0/6 7 5 5
Uranotaenia sp. 0 3 0/2 0 0 0 0 0 0
Total 58 131 0/64 43 690 0/104 272 1325 2/177

BG: Biogent sentinel. LT: light trap.
* Mosquito species collected in November 2012 in the same area [5].
Bold: mosquito species found naturally infected with WNV in Madagascar [16, 36].
l Mosquito species found naturally infected with WNV in Africa [59].
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mosquitoes was observed between CDC-light traps and
chicken-baited BG sentinel traps (Table 3; df = 1, F = 0.037,
p > 0.8). When data from the three villages collected during
six separate field samplings in a one-year period were
combined, the species accumulation curve tended toward a
plateau (Fig. 4). Two species of the genus Aedeomyia made
up 82.33% of the adult catches. Ten and seven species of
Anopheles and Culex genera accounted for 10.32% and
4.00% of the collection, respectively. The remaining, low-
frequency, mosquito species captured (2.54%) consisted of
species from the genera Aedes, Mansonia, and Uranotaenia.
Greater species richness was found in Analalava (H0 = 2.94),
followed by Morafeno (H0 = 2.77) and Ankelimitondrotra
(H0 = 2.70). Similarity in species diversity was much higher
(J = 0.82) between Morafeno and Ankelimitondrotra than
between Morafeno and Analalava (J = 0.75), or between
Ankelimitondrotra and Analalava (J = 0.61).

Mosquito abundance, driven mainly by the highly abundant
species Ad. madagascarica, seemed to be associated with
villages that are close to the lake (i.e. Morafeno and
Ankelimitondrotra (Table 3; df = 2, F = 4.448, p < 0.01), with
higher mosquito density observed in Morafeno (Tukey HSD
tests: p < 0.001).

Correlation between lakeside biotope and the abundance of
mosquito vectors was observed in Morafeno (Table 3; df = 17,
F = 17.89, p < 0.001). Post hoc tests showed that this
difference is only driven by the differences of Anopheles den-
sity between forest and lake (Tukey HSD tests: p < 0.001) and
between forest and village (Tukey HSD tests: p < 0.001).
No difference in mosquito density was observed for each of
the mosquito species between lake and village in Morafeno
(Tukey HSD tests: p > 0.05). No significant relationship
between biotopes/ecotypes and mosquito abundance was
observed in Ankelimitondrotra (Table 3; df = 18, F = 0.848,
p > 0.64) and Analalava (Table 3; df = 15, F = 0.00, p = 1).
We noted that in Ankelimitondrotra, the forest and lakeside
ecosystems are located in close proximity, as the village is
surrounded by the lake, while for Analalava, the lakeside bio-
tope is located farther (approximately 1000 m) from the village
and forest.

The highest and lowest abundance of caught adult
mosquitoes was observed, respectively, in the village of
Morafeno and the village of Analalava; with a high number
of Ad. madagascarica obtained in Morafeno and
Ankelimitondrotra (Table 3; df = 20, F = 2.61, p < 0.001).
This species made up 81.54% (2054/2519) of the overall

Table 2. Abundance of the 21 mosquito species collected at the adult stage in the three biotopes (villages/forest/lakeside) for each village.

Species Analalava Ankelimitondrotra Morafeno

Forest Lakeside Village Forest Lakeside Village Forest Lakeside Village

Aedeomyia furfurea 0 1 0 4 6 2 6 1 0
Aedeomyia madagascarica* 2 6 9 246 209 171 326 582 503
Aedeomyia sp. 0 0 0 0 0 10 0 0 0
Aedes albodorsalis* 0 1 0 0 0 0 0 0 0
Aedes argenteopunctatus 0 0 0 0 0 1 0 0 0
Aedes sp. 1 0 5 0 1 0 0 0 0
Anopheles coustani* 1 0 4 1 1 9 1 6 4
Anopheles funestus* 0 0 0 1 1 0 0 2 4
Anopheles gambiae* 1 1 26 1 3 0 3 4 8
Anopheles maculipalpis 1 0 5 0 0 0 0 1 0
Anopheles mascarensis 1 0 9 0 0 0 0 0 0
Anopheles pauliani* 0 0 16 2 0 0 10 12 17
Anopheles pharoensis* 0 0 7 19 2 5 4 11 18
Anopheles rufipes 0 0 2 0 0 0 0 0 0
Anopheles squamosus/cydippis* 4 0 12 0 1 3 0 12 4
Anopheles sp. 0 0 0 0 1 1 0 1 1
Culex antennatus* 7 1 7 1 2 1 0 6 4
Culex bitaeniorhyncus* 0 1 0 2 0 2 0 1 0
Culex decens 2 2 11 0 0 0 0 0 1
Culex poicilipesl 0 2 0 1 3 1 0 9 5
Culex tritaeniorhyncus* 0 0 5 3 0 0 0 3 8
Culex univittatus* 2 0 4 0 0 1 0 0 3
Culex sp. 1 0 0 1 0 0 1 3 0
Mansonia uniformis* 2 6 18 5 6 3 0 8 4
Uranotaenia sp. 0 1 2 0 0 0 0 0 0
Total 25 22 142 287 236 210 351 662 584

* Mosquito species collected in November 2012 in the same area [5].
Bold: mosquito species found naturally infected with WNV in Madagascar [16, 36].
l Mosquito species found naturally infected with WNV in Africa [59].
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adult catches with light traps, being rare during the rainy
season (November to March) and very abundant during the
dry season (Fig. 2). The total amount of mosquitoes and
Ad. madagascarica captured gave the same pattern of monthly
variation when data from the three villages were combined
(Fig. 3) (Table 3; df = 45, F = 1.51, p < 0.01). Whereas the
peak of abundance of mosquitoes in Ankelimitondrotra was
observed in April, the peak in Morafeno occurred in August
with a sharp decline afterwards (Fig. 2).

Of the 33 blood meals analyzed from engorged mosqui-
toes, 15 (45%) of the total amount could not be identified
due to the limits of the technique used. As shown in Table 4,
most of the identifiable blood meals (11/18) were taken from
domestic ruminants (cattle or sheep), six mixed blood meals
were from cattle/sheep and one mixed blood meal from
chicken/dog.

Figure 2. Mosquito species cumulative number for the 21 species
caught around Lake Kinkony from February 2014 to
December 2014. Standard errors bars indicate the standard
deviations.

Table 3. Analysis of variance to examine the effect of trap types (B), months (C), localities (D), and biotope nature (E) on the heterogeneity
of mosquito species (A) in Lake Kinkony.

df Sum Sq Mean Sq F value Pr (>F)

a-Combined localities
A 20 0.0342 0.001709 2.612 0.00012***
B 1 0.0000 0.000024 0.037 0.84746
C 5 0.0014 0.000277 0.423 0.83288
D 2 0.0058 0.002910 4.448 0.01180*
E 2 0.0019 0.000948 1.449 0.23495
A · B 13 0.0011 0.000088 0.135 0.99989
A · C 45 0.0445 0.000988 1.510 0.01622*
A · D 29 0.0514 0.001772 2.709 2.50e�06***
A · E 29 0.1670 0.005759 8.804 <2.00e�16***
R 2293 1.5000 0.000654

b-Morafeno
A 16 0.0894 0.005588 5.607 7.09e�12***
C 5 0.0025 0.000490 0.492 0.78262
E 2 0.0033 0.001672 1.677 0.18723
A · C 22 0.0430 0.001956 1.962 0.00493**
A · E 17 0.3031 0.017832 17.892 <2e�16***
R 1505 1.5000 0.000997

c-Ankelimitondrotra
A 15 2.000e�29 1.600e�30 0.012 1.00000
C 4 4.920e�27 1.230e�27 8.796 6.34e�07***
E 2 3.000e�28 1.515e�28 1.084 0.33893
A · C 10 3.350e�27 3.349e�28 2.395 0.00852**
A · E 18 2.130e�27 1.185e�28 0.848 0.64330
R 670 9.367e�26 1.398e�28

d-Analalava
A 18 8.530e�30 4.739e�31 0.402 0.985
C 5 0.000e+00 1.000e�34 0.000 1.000
E 2 0.000e+00 0.000e+00 0.000 1.000
A · C 18 0.000e+00 0.000e+00 0.000 1.000
A · E 15 1.000e�32 6.000e�34 0.000 1.000
R 118 1.392e�28 1.179e�30

· shows the effect of interaction between cited factors.
* p = 0.05; ** p = 0.01;*** p = 0.001.
df = Degrees of freedom; Sum Sq = sum of squares; Mean Sq = mean of squares; F value = value of the F test; Pr (>F) = probability of the
F test.
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3.2. Screening mosquitoes for West Nile virus

Eight mosquito species that have previously been found
infected with WNV in Madagascar were collected during our
study. Two of these species (An. maculipalpis and Cx. decens)
were not collected in one of the localities (Ankelimitondrotra).
When WNV genome detection was performed for a total of
346 abdomen pools representing 1825 mosquitoes (177 pools
from Morafeno, 104 pools from Ankelimitondrotra, and
65 pools from Analalava), positive detection was observed in
two of the tested pools: one pool of Ad. madagascarica
(collected in April 2014) and one pool of An. pauliani
(collected in August 2014). Both positive pools came from
light traps placed near the lakeside in Morafeno.

4. Discussion

The species accumulation curve tending toward a plateau
suggests that the number of species caught was approaching
the total number of mosquito species in the area. Twenty-one
mosquito species were collected in our study, a much
larger number than the 14 species described in 2012 in the
same area [5]. However, we did not collect seven mosquito
species belonging to the Aedes, Anopheles, and the Culex
genera that were collected near the site Morafeno in November
2012 [5]. This observation might be explained by the
limitations of our sampling methods using only CDC-light
traps and chicken-baited BG sentinel traps, in contrast to Boyer
et al. (2014) in which other types of traps such as cattle-baited
nets and backpack aspirators were used [5].

Of the eight mosquito species caught in our study area that
were previously known to be infected by WNV in Madagascar
[16, 36, 55], four were recently found WNV-positive in villages
near lake areas: Ad. madagascarica and An. coustani near
Lake Kinkony and An. pauliani and Ma. uniformis near Lake
Soamalipo [36]. In our study, Ad. madagascarica and
An. pauliani were the two species found to be positive for
WNV. Unfed mosquito abdomens rather than whole specimens
were screened for WNV infection. Detecting WNV in the

abdomens of unfed mosquitoes suggests the potential for these
two species to be involved in the maintenance and/or
transmission of WNV in Madagascar. However, to incriminate
these species as vectors of WNV transmission, vector compe-
tence studies should be undertaken to show infectious virus in
the saliva [18, 48].

CDC-light traps are suitable for studying mosquito
seasonal dynamics as evidenced by data obtained in Morocco
[15], in sub-Saharan Africa [40], and in Madagascar [57, 58].
Interestingly, vector populations were abundant during the dry
season with a great abundance of Ad. madagascarica (Fig. 3),
contrasting with the findings in the central highlands of
Madagascar, where WNV mosquito vectors and other
arthropod-borne diseases are abundant at the beginning of
and during the wet season [16, 57, 58]. Our results would
suggest that the abundance of the potential vector
Ad. madagascarica is influenced by temperature rather than
by rainfall [51]. In Europe, abundance of WNV mosquito
vectors was reported to be driven mostly by artificial flooding
for human activities (cultivation, hunting, and fishing) rather
than rainfall [2, 21].

This is the first time that Ad. madagascarica has been
trapped in such large numbers in Madagascar, emphasizing
its potential role in the WNV endemic cycle around the
wetlands of Lake Kinkony. Indeed, species belonging to the
genus Aedeomyia were rarely captured with other types of
mosquito traps (light or baited traps) in Madagascar [5, 16,
46, 58]. Despite the lack of information on its larval stage
biology, the abundance of this species at our study sites,
mainly in Morafeno and Ankelimitondrotra, might be
explained by the presence of the large swamp and marshland
(with aquatic plants) that are favorable larval sites of the genus
Aedeomyia [6].

Worldwide, there are seven species in the genus Aedeomyia
[6, 22] with Ad. africana (absent from Madagascar) reported to
be involved in the transmission of WNV in Africa [59].
In Madagascar, three species of the genus Aedeomyia
have been collected (Ad. madagascarica, Ad. pauliani,
and Ad. furfurea) [56] and previous detection of WNV

Figure 3. Distribution of all mosquitoes across the villages in the Lake Kinkony area (average number/CDC-light trap), standard error bars
indicate standard deviations.

L.M. Tantely et al.: Parasite 2017, 24, 3 7



in Ad. madagascarica on the island [36] has been confirmed
by this study. This endemic species was recently described at
adult stages that are morphologically close to those of
Ad. africana [6].

Our results also raise questions as to how An. pauliani
intervenes in WNV circulation around Lake Kinkony given
its low relative abundance. Indeed, only a small number of this
species were previously reported in the western wetlands (Lake
Kinkony and Lake Soamalipo) of Madagascar [5]. However,
this species might be an important WNV vector in a different
biotope such as the village of Mampikony (district of
Mampikony, 200 km east of lake Kinkony) where this species
was found to be abundant [46]. An. pauliani is a general feeder
[56], but is already considered as a potential vector of WNV
due its rarity and to the lack of information on its vector
competence [55].

Our results also support ornithophilic blood-feeding behav-
ior, mainly for Ad. madagascarica in this study, in that
chicken-baited BG sentinel traps proved to be very attractive
for mosquitoes, thus confirming the use of poultry as an
alternative to BG-Lure [5]. Indeed, BG sentinel traps were
designed to collect anthropophilic mosquitoes by using
artificial substances (BG-Lure) which are also present on
human skin [29]. This attraction of Ad. madagascarica to
poultry is in accordance with blood meal analysis, showing
chickens as the blood meal source for this species (Table 4).
The use of ELISA for blood meal analysis carries a risk of
cross-reactivity but more notably fails to identify many
potential hosts, including wild birds, as evidenced by the
inability to identify more than 40% of blood meals from
engorged mosquitoes. Further analysis using PCR-based
methods targeting cytochrome B or cytochrome 1 genes [27]

Figure 4. Average number of mosquitoes per light-trap in the Lake Kinkony area, data from the three villages being combined; standard
error bars indicate standard deviations, d = dry season, w = wet season.

Table 4. Number of mosquitoes captured by poultry-baited BG sentinel traps and results from the blood meal analysis of engorged
mosquitoes captured in light traps, including vertebrate host identification.

Genus Capture with BG nb. species tested nb. pos/nb. tested Antibody tested

nb. species nb. adult Sheep Cattle Cattle/Sheepb Poultry/Dogb

Aedeomyia* 2 281 1* 1/1 0 0 0 1
Aedes 2 10 – 0/3 – – – –
Anopheles 7 36 5l 10/20 4 2 4 0
Culex 4 19 3� 7/7 1 4 2 0
Mansonia 1 24 – 0/1 – – – –
Uranotaenia 1 1 – 0/1 – – – –
Total 17 361 9 5 6 6 1

* Aedeomyia madagascarica.
l An. pauliani: three blood meals from sheep and six mixed blood meals from cattle/sheep.
� Cx. antennatus: two blood meals from sheep and cattle.
b Mixed blood meal.
nb: stands for number.
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would provide confirmation of host blood meal sources.
Unfortunately, at the time of the study, the technique was not
routinely used in the laboratory. Our findings highlight the
ornithophilic behavior already described for the genus
Aedeomyia [6], and uphold the hypothesis of the involvement
of ornithophilic mosquito species in the WNV epidemiological
cycle [2, 7] and WNV circulation in bird populations in
Madagascar [16, 17, 36]. The ornithophilic feeding preferences
of Ad. madagascarica suggest this species might be involved
in the maintenance of WNV in the mosquito/bird enzootic
cycle, while other mosquito species considered as generalist
feeders (Table 4) might serve as bridge vectors between birds
and dead-end hosts (mammals) due to the low numbers of
bird-to-bird feedings [60].

Finally, our results suggest that the abundance of
mosquitoes around households, mainly Ad. madagascarica,
depends on the distance between villages and lakes, suggesting
mosquito heterogeneity in accordance with WNV incidence
between villages around Lake Kinkony [36]. Although
currently not documented in this study, more intense WNV
transmission in villages near lakes would be expected, as
highlighted by WNV detection in mosquitoes in Morafeno,
given the correlation between lakeside ecotype and the
abundance of Ad. madagascarica in this village. However,
exposure of this species to a viremic host could not be
excluded, given that WNV circulation was recently reported
in this area [36]. For this reason, Ad. madagascarica is consid-
ered as a candidate vector of WNV due to the lack of informa-
tion on its vector competence [55]. Vector competence studies
need to be undertaken to conclude that this species may act as
a bridge vector from wild to domestic birds, or vice versa,
given that chickens, ducks, and geese are often left wandering
during the night, facilitating bird-vector contact at our study
sites. To demonstrate the vector competence of this species,
the transmission of the virus during the feeding process is
required with the determination of the dissemination rate
throughout the mosquito body (legs, salivary glands) suggest-
ing virus dissemination and transmission, which are known
to depend on temperatures and viral loads [18, 48, 50].
An association with the presence of Ad. madagascarica in
areas subject to WNV epizootics and/or epidemics could
provide further evidence of its role in transmission.

In conclusion, our findings suggest that Aedeomyia
madagascarica and Anopheles pauliani are potential vectors
involved in the maintenance and/or transmission of WNV in
Madagascar. Further work will provide greater knowledge of
the host blood meals of these mosquitoes and better
characterize the dynamics of WNV in this region, along with
determining the WNV vector competence of these two species.
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