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Abstract

Meta-analytic structural equation modeling (MASEM) refers to fitting struc-

tural equation models (SEMs) (such as path models or factor models) to meta-

analytic data. Currently, fitting MASEMs may be challenging for researchers

that are not accustomed to working with R software and packages. Therefore,

we developed webMASEM; a web application for MASEM. This app imple-

ments the one-stage MASEM approach, and allows users to apply MASEM in

a user-friendly way. The aim of this article is to provide a tutorial on one-stage

MASEM and a practical guide to webMASEM. We will pay specific attention

to how the data should be structured and prepared for webMASEM, because

mistakes in this step may lead to faulty results without receiving an error mes-

sage. The use of webMASEM is illustrated with an analysis of a meta-analytic

path model in which the path coefficients are moderated by a study-level vari-

able, a meta-analytic factor model in which the factor loadings are moderated

by a study-level variable, and a meta-analytic panel model in which the effects

are moderated by a study-level variable. All used datafiles and R scripts are

available online.
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Highlights

What is already known
• Meta-analytic structural equation modeling is a useful tool to fit structural

equation models (SEMs) to meta-analytic datasets
• Researchers may have hypothesis about how the SEM parameters may be a

function of study-level moderator variables
• One-stage MASEM is a relatively new method that allows for flexible mod-

erator analyses
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What is new
• We provide a didactic discussion of the features of one-stage MASEM, as

well as a user-friendly web application
• This article shows how the dataset should be prepared and structured for

webMASEM (and for analysis using the metaSEM package directly)
• All R scripts and datasets are available online

Potential impact for Research Synthesis Methods readers outside the
authors' field
• The tutorial and online application make applying MASEM easier for

researchers in all fields

1 | INTRODUCTION

Meta-analytic structural equation modeling (MASEM)
refers to fitting structural equation models (SEMs) to
meta-analytic data using correlation matrices. This article
serves as a primer on one-stage MASEM and as a tutorial
for the associated Shiny app “webMASEM,” which is
built on functions from the metaSEM package1 and the
semPlot package.2 The Shiny app is available through
https://sjak.shinyapps.io/webMASEM/. We focus on one-
stage MASEM, because this method is currently one of
the most flexible MASEM methods for moderation analy-
sis. Other proposed methods are, for example, the GLS-
method,3–5 two-stage SEM,6–8 Bayesian MASEM,9 and
univariate MASEM.10 For a detailed discussion of the
possibilities and differences between these MASEM
methods, see Jak and Cheung.11

Our goal is to provide enough information to concep-
tually understand what happens behind the scenes when
using webMASEM, while leaving the more technical
details to be read elsewhere.11 We will provide specific
guidance in how the dataset should be prepared before
the MASEM analysis because doing it incorrectly may
lead to faulty results without receiving an error message.
Moreover, we will provide detailed examples of the evalu-
ation of two path models and a factor model.

1.1 | What kind of research questions
can be answered with one-stage MASEM?

One-stage MASEM is an appropriate technique when one
wants to test a SEM, such as a path model, on the aver-
aged correlations between research variables across sev-
eral independent studies. Most studies applying MASEM
evaluate path models (e.g., van Dijk et al12) or factor ana-
lytic models (e.g., Agelink van Rentergem et al13), but full
SEMs that combine factor analysis and path analysis can
also be evaluated (e.g., Bresin14). Besides testing the

overall theoretical model, one can also evaluate whether
the SEM parameters (e.g., path coefficients) vary with
study-level moderators, such as study quality, the type of
sample investigated (e.g., patient or community sample), or
the country where the study was conducted. For example,
the factor loadings of the Hospital Anxiety and Depression
Questionnaire (HADS) may be higher for patient samples
than for community samples.15 Or in a path model, the
unique effect of behavioral intentions on behavior may be
stronger in adult samples than in adolescent samples.16

1.2 | What is one-stage MASEM?

One-stage MASEM is a random-effects technique, mean-
ing that it is assumed that each study has its own specific
population correlation matrix. The differences between
the population correlation matrices are modeled by esti-
mating a matrix with between-study variances and
covariances. These variances are estimated using a model
matrix that is often denoted “T2” (“Tau squared”). T2 is
commonly specified as diagonal, meaning that the covari-
ances are assumed zero. The SEM model of interest is
imposed on the average correlation matrix across studies.
One of the criticisms of the random effects model is that
the average correlation matrix may not be the real corre-
lation matrix in any of the studies.17 Whether it is infor-
mative to evaluate the average correlations across studies
depends on the type of samples and materials used in the
primary studies included in the meta-analysis. Therefore,
researchers planning on doing a MASEM analysis should
set the inclusion criteria such that the information
obtained by fitting a SEM on the average correlations
across studies will be meaningful, or such that the hetero-
geneity across studies can be investigated. Becker and
Aloe5 provide a discussion of the key points of the formu-
lation of research questions, the search process, and
inclusion criteria relevant for conducting a MASEM
analysis.
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With one-stage MASEM, study-level moderator vari-
ables can be used to explain study-level heterogeneity in
SEM parameters. The specific advantage of one-stage
MASEM over other MASEM methods is that the moder-
ating study-level variables can be dichotomous as well as
continuous variables. For two-stage SEM, one needs to
categorize continuous study-level moderators in order to
apply subgroup analysis.18 However, categorization of
variables leads to a loss of information and associated sta-
tistical power, as well as difficulty choosing an appropri-
ate cutting point. Categorization should therefore be
avoided whenever possible.19

1.3 | Data needed for one-stage MASEM

The minimum required data for MASEM are the bivari-
ate correlation coefficients between the variables of inter-
est, obtained from several independent samples, and the
sample sizes. For moderation analysis one also needs to
code the values on the study-level moderator variable for
each sample.

One often asked question is how many studies/sam-
ples are needed for MASEM. Since the minimum number
of studies needed depends on many factors (such as the
number of variables, type of the model, complexity of
the model, correctness of the model, size of the between-
study variances, and percentage of missing data), it is dif-
ficult to provide exact advice. The simulations based on
the analysis of a factor model using one-stage MASEM
have shown that analyzing 10 samples led to adequate
parameter estimates, but incorrect standard errors for a
two-factor model with five indicators.11 Analyzing
30 samples was enough to obtain adequate parameter
estimates and standard errors. The simulation study did
not contain conditions with number of samples between
10 and 30. Note that these results are based on a limited
simulation study, so they will not apply to all MASEM
models or all research settings. Future simulation studies
may be conducted to evaluate the minimum number of
studies needed for adequate performance of one-stage
MASEM with other types of models and in other
situations.

The number of bivariate correlation coefficients that
can be coded from the sample may differ across studies.
In general, the number of unique correlations in a corre-
lation matrix of p variables equals p � (p�1)/2. Suppose
that the model of interest contains six variables, being
three predictor variables, two mediating variables, and
one outcome variable. The number of bivariate correla-
tions between the variables of interest then equals
(6 � 5)/2 = 15. In the ideal situation, a researcher would
code 15 bivariate correlation coefficients from each study

included in the synthesis. In reality, many studies in the
synthesis will include only part of the variables of inter-
est. For example, a specific study may only have included
one predictor, one mediator, and the outcome variable.
In this case, the study contributes three correlations
instead of 15. Another study may have only included the
two mediator variables, therefore contributing only one
correlation. Yet another study may have included all vari-
ables of interest except for one predictor, leading to
10 bivariate correlations to be reported.

Besides studies missing correlations on the variable
level, some studies may just not report all correlations
between the included variables, leading to missingness
on the correlation level. For example, a primary study
may report the correlations between predictor variables
and an outcome variable, but not between the predictor
variables itself. Both types of missingness, on the variable
level and on the correlation level, are technically not a
problem for a MASEM to be applied. However, if the mis-
singness is not missing at random (MAR), or missing
completely at random (MCAR), for example, because spe-
cifically the relatively low correlation coefficients are not
reported, then the results from the MASEM will be
biased.11,20 In fact, this is not different for MASEM than
for other meta-analytic techniques, where publication
bias is a serious concern. The solution for researchers so
far is therefore to include as many appropriate but
unpublished studies as possible in the MASEM analysis.
It is the hope that preregistration of studies will lead to
better meta-analytic results in the future.21

In order to fit a SEM model, one needs data on all
bivariate correlations between the variables in the SEM.
Quite often, some of the correlations are not of direct
interest to the researcher(s) doing the synthesis. For
example, researchers sometimes did not code the correla-
tions between predictor variables in a path model, to only
discover that those correlations were needed when trying
to run the MASEM analysis. Therefore, it is important to
have a clear understanding of the variables of interest
and the hypothetical model(s), and to code all correla-
tions between the variables of interest.

1.4 | Organization of the dataset

When coding the correlation coefficients, the most conve-
nient form is to have a coding spreadsheet with one row
for each independent sample and one column for each
pair of variables. This means that with p variables of
interest, one has to create p � (p�1)/2 columns to code
the bivariate correlations. Furthermore, one needs a col-
umn with sample sizes per study and possibly several
other columns with other study-level information.
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Missing values for correlation coefficients should be
coded NA (which means “not available” in R) when one
uses the metaSEM package directly for the analysis. If
one uses webMASEM, either a blank space or NA will be
recognized as a missing value.

For the bivariate correlations, it is important to pay
attention to the ordering of the columns, because they
have to be in a specific order for the analysis. That is, the
rows with the correlation coefficients in each study will
be transformed to a list of the study's correlation matri-
ces. One has to make sure that the correlation coefficients
are placed in the correct position in the matrices. The R
functions used by webMASEM fill the matrices column-
wise, which is known as column-major order.* This pro-
cess is illustrated in Figure 1, showing a hypothetical
model with four variables of interest. The researcher

decides to use the following order of the variables: X1,
X2, M, and Y. This means that a correlation matrix of
these four variables will look like the one in the center of
Figure 1. The six correlation coefficients in this matrix
are labeled column-wise, using c1 to c6. The dataset with
the correlation coefficients for each study in one row
should be in this exact order. The first correlation coeffi-
cient should be the correlation between X1 and X2 (c1),
the second correlation coefficient should be the correla-
tion between X1 and M (c2), the third should be the cor-
relation between X1 and Y (c3), the fourth should be the
correlation between X2 and M (c4) and so on. Users do
not need to provide the variances, which will always be
one since one-stage MASEM analyzes correlation matri-
ces. Although this procedure seems quite obvious, we
experience that researchers applying MASEM, quite often

FIGURE 1 An illustration of

how the order of varibles determines

the ordering of the columns in the

coding sheet
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place correlation coefficients in different positions of the
matrix than intended. The danger of making such a mis-
take is that it leads to completely incorrect results, possi-
bly without any error or warning.

1.5 | Specifying the SEM model in lavaan
syntax

The easiest way to specify the SEM is to use the syntax of
the R package lavaan.22 The lavaan syntax will then be
converted to the necessary matrices using a function in
the metaSEM package.1 The lavaan syntax is relatively
straightforward and is explained in a tutorial on lavaan's
website: http://lavaan.ugent.be/tutorial/syntax1.html. The
model is specified by referring to the variable names and
using different operators to define how the variables are
related. In Figure 1 for example, variables X1 and X2 are
hypothesized to affect Y only indirectly through M, rep-
resenting full mediation of the effects of X1 and X2. The
lavaan syntax for this model is:

M ~ X1 + X2 # M is regressed on X1 and X2

Y ~ M # Y is regressed on M

X1 ~~ X2 # X1 and X2 are correlated

X1 ~~ 1*X1 # Variance of X1 is fixed at 1

X2 ~~ 1*X2 # Variance of X2 is fixed at 1

M ~~ M # Residual variance of M

Y ~~ Y # Residual variance of Y

Here, the single ~ operator means “is regressed on.”
So, M is regressed on X1 and X2. This means that X1 and
X2 have a direct effect on M, or, the arrows go from X1
and X2 to M. One common mistake is to read the ~ as if
it means “has a direct effect on,” which leads to a path
model with direct effects that are exactly the other way
around than intended.

The ~~ operator represents covariance. A covariance
of a variable with itself is a variance. So, X1 ~~ X2 spec-
ifies that the two predictor variables are correlated, while
M ~ ~ M specifies the residual variance of M, as M is not
an independent variable. In one-stage MASEM, we are
analyzing correlation matrices instead of covariance
matrices. This has a consequence for the estimates of var-
iances in the model, because the model implied variance
for each variable is one by definition. The metaSEM
package has built-in functionality to take this issue into
account, but requires the variances of independent vari-
ables to be fixed at 1. In the example syntax, X1 ~~ 1*X1
fixes the variance of X1 at 1.

If the multiplication sign * is preceded by a number,
then the parameter is fixed at that number. If the * sign is
preceded by a character, then the parameter is still freely
estimated, but the parameter gets a label. For example,
M~b31*X1+b32*X2, would label the respective
regression coefficient “b31” and “b32.” Labeling parame-
ters can be convenient because the labels will also be
used in the output of the analysis. Also, labeling parame-
ters is necessary if one wants to test functions of parame-
ters, such as indirect effects. A third function of
parameter labels is that if you provide the same label to
two or more parameters, these parameters will be con-
strained to be equal.

Latent variables, also called common factors in SEM,
are specified in lavaan using the =~ operator. The
name of the common factor should be on the left side of
the operator, while the indicators of the factor should be
on the right side. For example, the example code below
provides the lavaan syntax for a two-factor model
where each factor has three indicators:

F1 =~ V1 + V2 + V3 # F1 is measured by V1, V2, and V3

F2 =~ V4 + V5 + V6 # F2 is measured by V4, V5, and V6

F1 ~~ F2  # F1 and F2 are correlated

The first two lines specify that the first factor is mea-
sured by the respective indicators. The last line specifies
that the common factors covary. The residual variances
of the indicators will be included in the model automati-
cally, even if one does not provide the parameters in the
syntax.

Latent variables always need to be provided a scale by
fixing one of the related parameters to a certain value.
Common methods are fixing one factor loading per factor
to one, or fixing the factor variance to one. In the
metaSEM package, common factors will automatically be
scaled by fixing the (possibly residual) factor variance to
one, so there is no need to fix one of the factor loadings
to one. In fact, the factor variance cannot be freed in
metaSEM, so even when one would add F1 ~ ~ F1 in the
syntax, the parameter will be fixed in the analysis.

One can write comments in the lavaan syntax using
the hashtag symbol (#). Any text that comes after the
hashtag will be ignored when evaluating the syntax.
Using comments in the syntax generally improves the
readability of the code.

1.6 | How is the model fit to the data?

In this section, we will briefly outline the more technical
details of one-stage MASEM. In standard (not meta-
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analytic) SEM, the variances and covariances between
the observed variables in a single dataset are modeled to
be a function of SEM parameters. In one-stage MASEM,
the average population correlations across studies are
modeled to be a function of SEM parameters. The aver-
age correlations are based on a random-effects multivari-
ate meta-analysis on correlation coefficients.8 So,
conceptually, one-stage MASEM is an amalgamation of
random-effects multivariate meta-analysis of correlation
coefficients and SEM.

In its simplest form, the random-effects multivariate
meta-analytic model decomposes the vector rk of correla-
tion coefficients for a study k in three parts:

rk ¼ ρRþukþ εk, ð1Þ

where ρR indicates the vector of means of the population
correlation coefficients over all studies, uk is a vector of
deviations of study k's population correlation coefficients
from ρR, and εk is a vector with the sampling deviations
of study k. The covariances of uk denote the between-
studies covariance matrix, called T2 (“Tau squared”). The
covariances of εk represents the within-studies covariance
matrix for study k, often denoted Vk, which is first esti-
mated for each study, and then treated as known in the
final analysis.23 The SEM, for example a factor model, is
nested under the model in Equation (1) and is obtained
by restricting ρR:

ρR ¼ vechs ΛΦΛTþΘ
� �

, ð2Þ

where Λ is a matrix with factor loadings, Φ is a matrix
with factor variances and covariances, and Θ is a matrix
with residual variances and covariances. The vechs()
operator vectorizes the unique elements of its argument's
lower-triangle elements in column-major order. That
means although the model expression Λ Φ ΛT + Θ leads
to a model implied correlation matrix with number of
rows equal to the number of observed variables in the
model, applying the vechs() operator results in a vector
with the same dimension as ρR.

1.6.1 | Heterogeneity in one-stage MASEM

It is important to notice that one-stage MASEM does not
lead to an estimate of the between-studies variances of
the SEM parameters itself. Instead, one-stage MASEM
provides an estimate of the heterogeneity of the correla-
tion coefficients. These correlation coefficients are an
often complex function of the SEM model parameters.
This is easier to grasp by looking at an example. We use

the path model on four variables depicted at the top part
of Figure 1. This path model contains regression coeffi-
cients (indicated by β's) and a correlation between X1
and X2 (indicated by ψ21). These parameters together
form a model-implied correlation matrix between the
four variables. The four by four model-implied correla-
tion matrix for this example is provided in Table 1. Since
we analyze correlation matrices, the diagonal elements of
this matrix are always one and do not vary across studies.
The off-diagonal elements represent the model-implied
correlation coefficients. For example, the correlation
between X1 and Y implied by this path model equals
β31β43 + β32β43ψ21.

In one-stage MASEM, the between-studies covariance
matrix, denoted T2, represents the between-studies
covariances of these model-implied correlation coeffi-
cients. In this example, there are six model-implied corre-
lation coefficients, so T2 will be a matrix with six rows
and six columns. The diagonal elements of T2 contain
between-studies variances and the off-diagonal elements
represent between-studies covariances. In practice, it is
often challenging to estimate the covariances in T2,
because the number of elements is usually very large,
possibly larger than the number of studies in the meta-
analysis. For example, in our example there will be 15
off-diagonal elements in T2, but in models with five vari-
ables there will already be 45 between-studies covari-
ances. Therefore, the T2 is usually restricted to be
diagonal, so that between-studies variances of the corre-
lation coefficients are estimated, but the between-studies
covariances are fixed at zero.5 A diagonal T2 implies that
the correlation coefficients are assumed to be indepen-
dent at the population level, that is, the true effect sizes
are independent.8 The sampling covariance between cor-
relation coefficients from the same study is still taken
into account by the within-studies covariance matrices.

1.6.2 | Explaining heterogeneity with
moderators

The model can be extended by including study-level vari-
ables as predictors of the SEM parameters. For example,

TABLE 1 Model-implied correlation matrix of the path model

in Figure 1

X1 X2 M Y

X1 1

X2 ψ21 1

M β31 + β32 ψ21 β31 ψ21 + β32 1

Y β31 β43 + β32 β43 ψ21 β31 β43 ψ21 + β32 β43 β43 1
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the direct effect of M on Y in Figure 1 could be modeled
as a function of a study-level moderator variable Z. The
parameter β43 then gets a subscript k to indicate that it
varies as a function of the study-level moderator variable
Z: β43k = β43_0 + β43_1 � Zk. In this equation, β43_0 repre-
sents the intercept, interpreted as the expected β43 value
for studies that score zero on the moderator variable. The
parameter β43_1 represents how β43 is expected to change
when the moderator variable increases by one unit. The
parameters that will be estimated in one-stage MASEM
are β43_0 and β43_1.

With one-stage MASEM, it cannot be evaluated how
much of the variance in the SEM parameter itself is
explained by a moderator variable. Instead, the moderat-
ing effect on the SEM parameter may explain part of the
variance in the model-implied correlations. As shown in
Table 1, in our example path model, the parameter β43 is
part of the equations of the model-implied correlation
between variables X1 and Y, but also between variables
X2 and Y and between variables M and Y. Therefore, the
moderation effect on this parameter may explain some of
the between-studies variance in all three correlation coef-
ficients. In principle, it can be quantified what proportion
of the variance in each correlation coefficients is
explained by the moderator variable (see Jak and
Cheung11). However, given the complicated relationship
between the SEM parameters and the model implied cor-
relations, it is not clear how such proportions should be
interpreted substantively.

Treating the SEM parameters as fixed, by not estimat-
ing their variances directly, is consistent with models in
the standard SEM framework (e.g., Bauer24). An alterna-
tive approach is to treat the SEM parameters as random
and estimate the model using a Bayesian method.9

Future studies may explore the advantages and disadvan-
tages in addressing heterogeneity in MASEM with differ-
ent methods.

All model parameters can be estimated with the
osmasem() function in metaSEM,1 which implements
full-information maximum likelihood estimation using
the software OpenMx.25 Readers who want to read more
on the details of the method can do so in Jak and
Cheung.11

2 | THE SHINY APP: webMASEM

The application webMASEM is created using the package
Shiny (Version 1.4.0.2)26 which facilitates the creation of
web applications that interact with R (Version 4.0.1).27

For the analysis, webMASEM uses specific functions
from the metaSEM package (Version 1.2.5).1 The plots of
the models are created with semPlot (Version 1.1.2).2 The

symbolic model implied covariance matrix is created with
the symSEM package (Version 0.1).28 Users do not need
to install R or any of these packages on their devices, as
they can open webMASEM by clicking the link https://
sjak.shinyapps.io/webMASEM/. Alternatively, users can
run webMASEM locally in their R session by running the
full syntax provided on the Open Science Framework
(OSF) for this article: https://osf.io/wh6d3/.

The application consists of four main tabs and a
“Home” tab. The first tab provides an overview of some
important concepts related to one-stage MASEM that
should be understood before using the app, as well as ref-
erences to this tutorial and the article about one-stage
MASEM.11 The second tab lets users upload the dataset.
The datafile should be a .txt, .dat, or .csv file with one
row of information per study. The values should be sepa-
rated by commas, tabs, or semicolons. If users just want
to try webMASEM without supplying their own data,
they can check the box that says “Choose dataset from
metaSEM” and then select a dataset that is included in
the metaSEM package. For ease of use, all fields that
need user input have pre-filled values that match analysis
of the dataset named “Roorda11.”29

The output section contains a tab “User dataset”
showing the dataset as it was read in, a tab “Summary,”
showing a summary of the data (total number of studies,
number of studies and total sample size per correlation
coefficient) as well as the first six correlation matrices.
The third output tab called “Average correlation matrix,”
can be used to estimate an average correlation matrix
without fitting the SEM model. This average correlation
matrix is estimated using a random-effects multivariate
meta-analysis of the correlation matrix, as implemented
with the tssem1()-function of the metaSEM package.

The third main tab “Overall analysis” facilitates
fitting the SEM to the correlation matrices using one-
stage MASEM. The left panel of this tab allows the user
to enter the lavaan syntax for the SEM. The page also
contains a button that users can click to view the model-
implied correlation matrix based on the entered lavaan
syntax.

If a user wants to evaluate an indirect effect, this is pos-
sible by ticking the checkbox that says “Test indirect effect”
while naming the two direct effects that make up the indi-
rect effect “beta1” and “beta2” in the lavaan syntax. The
resulting indirect effect will equal beta1*beta2. Testing indi-
rect effects will be illustrated in Example 1. The left panel
also shows a “Rerun” button, which one can hit when the
initial model estimation did not converge.

Below this, users can change the default settings of
the functions from the metaSEM package that lie behind
the Shiny app. Specifically, one can select the following
options:
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1. The between-studies covariance matrix can be diago-
nal (the default), symmetrical, or zero. Selecting
“zero” will result in fitting a common-effect (also
called fixed-effects) model, which is hardly ever a real-
istic model. Selecting “symmetrical” means that all
between-studies covariances will be estimated, which
usually leads to estimation problems because there
are too many parameters. Therefore, the default set-
ting is recommended.

2. The confidence intervals shown in the summary can
be likelihood-based confidence intervals30 or based on
the standard errors (the default). Likelihood-based
confidence intervals are recommended for the evalua-
tion of indirect effects.31 The downside of likelihood-
based confidence intervals is that model estimation
may take a long time.

3. The between-studies variances are transformed during
estimation because very small or negative between-
studies variances often cause computational problems.
The default transformation (expLog) method is a log
and exponential transformation. If one chooses
“sqSD,” the variances are estimated by squaring the
standard deviations.

4. The starting values are the values for the between-stud-
ies variances from which the model estimation will
start. The default is 0.05, but one may select smaller or
larger values. Choosing other starting values should
not affect the final estimates, but adjusting starting
values may improve convergence and save time.

The output panel will show a spinning bar while the
estimation procedure is running (this may take several
minutes for relatively large models). When the results are
obtained, the user will see information about conver-
gence, model fit, the summary as provided by the
metaSEM package, as well as the back-transformed
between-studies variances. The summary will show a col-
umn with the names of the parameters, three columns
with information about the position of the parameter in
the respective model matrix, followed by columns with
the parameter estimates, associated standard errors, z
values, and p values.† The reported fit statistics are based
on a χ2 value obtained by executing a likelihood ratio test
between the hypothesized model for the correlation
matrix and a saturated (unrestricted) model for the corre-
lation matrix. Therefore, the fit indices refer to the fixed
effects in the model, similar to the fit statistics obtained
by analyzing the data with Two-Stage SEM.6

The fourth tab “Moderator analysis” facilitates testing
moderating effects on one or more of the direct effects of
the SEM by a study-level variable. The implementation
in webMASEM is restricted to the evaluation of one mod-
erator at a time (i.e., only one column of the dataset can

be selected as the moderator variable). In the left panel of
this tab, the user can select the moderator variable and
the parameters that are to be tested for moderation. The
advice is to limit the number of parameters selected to be
moderated to the ones for which moderating effects are
expected and enough studies contributed to the estima-
tion of the parameter.11 One-stage MASEM will not be
able to handle missing values on the moderator variable.
Therefore, users will have to delete studies with missing
values on the moderator from the dataset. The panel con-
tains a checkbox to select whether the moderator should
be centered and standardized before running the moder-
ated one-stage MASEM. Centering and standardization
of the moderator implies subtraction of the mean and
division by the standard deviation for each value. Such a
transformation generally improves the estimation of the
model parameters and may facilitate the interpretation of
the results for continuous moderator variables. For
dummy variables (with only 0 and 1 values), centering
and standardization will not be appropriate, nor needed.

The output for the moderation analysis will contain
information about convergence, summary statistics of the
moderator, an omnibus test for moderation (which is a
multivariate test), the tests of the individual parameters
(which are univariate tests), and the parameter estimates
with associated statistics. For the moderation analysis,
there will be no fit indices reported. The reason is that a
saturated model does not exist for the model with moder-
ating effects. Therefore we cannot evaluate the fit of the
model with the moderator.‡

The last tab “Report” contains two buttons to gener-
ate MS Word files of the analyses that can be saved on
the user's computer. The report will contain all informa-
tion that is needed to reproduce the analyses, such as the
values of the function arguments, as well as all the output
that was created by webMASEM. We recommend users
to make the datafile and this report available with publi-
cation of their study, so that the results are reproducible
for readers.

In the next sections we present three example analyses
using webMASEM, for which screenshots of the different
pages of webMASEM are available as Data S1 for this
manuscript. All datafiles for the illustration are available
through the OSF page of this article (https://osf.io/wh6d3/),
so readers can reproduce the results from this tutorial.

2.1 | Example analysis 1

We illustrate fitting a path model with the one-stage
MASEM approach with webMASEM using a dataset from
Roorda et al.33 This dataset was used to investigate whether
(1) students' engagement acts as a mediator in the
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association between affective teacher-student relationships
and students' achievement and (2) whether the direct effects
in the path model differed for primary and secondary
school samples. The theoretical model of interest is shown
in Figure 2.

Roorda et al33 gathered correlation coefficients between
the four research variables, referred to as “pos” for positive
teacher-student relationships, “neg” for negative teacher-stu-
dent relationships, “enga” for engagament, and “achiev” for
achievement, from 189 independent samples. Similar to the
original data analysis, we exclude 10 of these samples
because they contained students from both primary and sec-
ondary school or were not clear about whether their students
were from primary schools or middle/junior high schools.
Throughout all example analyses, we will use an unadjusted
significance level of α = 0.05 for significance tests on SEM
parameters and for the evaluation of moderating effects.

2.1.1 | Example 1 - Data input

The data were stored in a tab-delimited file, named
“Data_Roorda.dat,” which was selected after clicking the
“Browse” button in the left panel (see screenshot 1.1 in
Data S1). We selected that the file contains column
names by ticking the box “Header” and selected “Tab” as
the separator sign. Next, we need to enter the number of
variables in the model (four in this example) and enter
the variable names in the order that corresponds to the
ordering of the correlation coefficients in the datafile as
explained before. The variable names should be separated
with commas.

The application will read in the columns from the
selected datafile and repeat the column names under

“Select columns with the correlations.” If the datafile
does not include column names (so “Header” should be
unchecked) the columns will be named v1, v2, v3, etc. In
this example we select the six columns that contain the
correlations between the four variables. Below this part
(not shown in the print screen) we should also select the
column with the sample sizes and the column with the
(optional) moderating variable, in this example
“primary_vs_secondary.” If one then clicks the button
“Update view user dataset” at the bottom of the left
panel, the dataset as it was read in will appear in the
right panel. Users can use this view to verify that the data
were read in correctly, that is, that the correct columns
were selected.

The output panel contains a subtab called “Summary.”
Selecting this tab will show some summary information
from the uploaded dataset (see screenshot 1.2 in Data S1).
First, it shows the variable names as entered at the left side
and the variables in the dataset that will be used for one-
stage MASEM. The dataset for one-stage MASEM will
always include a list with the correlation matrices, called
“data,” and a vector with sample sizes, called “n.” If one
also selects a moderator variable, that variable is also
added to the dataset. In our output, we see that the dataset
includes a list of 179 correlation matrices, a vector of
179 sample sizes, and a vector of 179 values on the vari-
able “primary_versus_secondary.”

Next, the summary shows the number of studies that
included each variable on the diagonal and the number
of studies that included each correlation coefficient off-diago-
nal. For example, 171 studies included the variable “pos”
and 57 studies included the variable “neg.” The correlation
between “pos” and “neg” was reported in 43 studies and the
correlation between “pos” and “achiev” was reported in 113

FIGURE 2 The research model

from Roorda et al.29 [Colour figure

can be viewed at

wileyonlinelibrary.com]
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studies. Below this table, the total sample size per variable
and correlation are displayed in the same format. For exam-
ple, the sum of the sample sizes of each study that included
the correlation between “pos” and “neg” is 30,824. Below
this, the first six correlation matrices are printed to give the
user a sense of what the list of correlation matrices looks like.
As a preliminary analysis, one could optionally estimate the
average correlation matrix using a multivariate meta-analysis
of the correlation matrices in the third tab of the output.
When one pushes the button “Estimate average correla-
tions,” webMASEM will fit Stage 1 of the Two Stage SEM,
using a diagonal between-studies variance matrix. This may
take several minutes for larger correlation matrices. After
verifying that the data were read in correctly, one can go to
the next tab to fit the SEM to the data.

2.1.2 | Example 1 - Overall analysis

The lavaan syntax for the hypothesized path model is
provided below. In the “Overall analysis” tab, we enter
this lavaan syntax and then hit the button “Run Analy-
sis” (see screenshot 1.3 in Data S1).

# Regression coefficients

enga ~ b31*pos + b32*neg

achiev ~ b41*pos + b42*neg + b43*enga

# Correlation

pos ~~ p21*neg

# Variances

pos ~~ 1*pos      # Variance of pos fixed at 1

neg ~~ 1*neg      # Variance of neg fixed at 1

enga ~~ p33*enga # Residual variance of enga

achiev ~~ p44*achiev # Residual variance of achiev

When the model estimation is done (this may take
several minutes for larger models), we see a plot of the
model with parameter estimates in the output panel.
Below that, we see the model fit statistics for over-
identified models (with degrees of freedom >0). Since
this model has zero degrees of freedom, the fit statistics
are not informative, but the parameter estimates, which
are provided below this, are. Because the input for one-
stage MASEM are correlation matrices, which implies
standardized observed variables, all SEM parameters
obtained from the overall analysis are in standardized
metric. If the user provides labels to the parameters in
the lavaan model, then these labels will be used in the
output. If the user does not provide parameter labels,

the names of the parameters are constructed by con-
necting the variable names with “ON” for regression
coefficients and “WITH” for (co)variances. For example,
the direct effect of “enga” on “achiev” is called
“achievONenga,” because “achiev” is regressed ON
“enga.” In order to see how the SEM parameters together
form the model-implied correlation matrix one could
click the “View model implied matrix” button. Since the
correlations can be a very complicated and long function
of SEM parameters, this matrix is most readable if the
parameter labels are short.

In the output, we see a positive direct effect of “pos”
on “enga” (β̂31 = 0.275, p<0.001), a negative effect of
“neg” on “enga” (β̂32 = �0.193, p<0.001), and a positive
effect of “enga” on “achiev” (β̂43= 0.233, p<0.001). The
direct effects in meta-analytic path models can be inter-
preted as standardized regression coefficients. The indi-
rect effects of “pos” and “neg” on “achiev” equal the
product of the two direct effects that make up the indirect
effects. One can obtain a 95% likelihood-based confidence
interval for an indirect effect by checking the box in the
left panel below the lavaan input named “Test indirect
effect” and naming the two direct effects that make up
the indirect effect “beta1” and “beta2” (see screenshot 1.4
in Data S1). In order to test the indirect effect of “pos” on
“achiev” in this example, the part of the lavaan syntax
that specifies the direct effects becomes as follows.

enga ~ beta1*pos + b32*neg

achiev ~ beta2*enga + b41*pos + b42*neg

By checking the “Test indirect effect” box, one will
request likelihood-based confidence intervals for all (con-
strained and free) parameters and the indirect effect. The
indirect effect will be the last one in the long list provided
in the output. In this example, the indirect effect of “pos”
on “achiev” is 0.064, with 95% likelihood-based confidence
interval running from 0.047 to 0.082. In order to evaluate
the indirect effect of “neg” on “achiev,” we need to switch
the “beta1” label to the direct effect of “neg” on “enga,” so
that the lavaan code specifying the regression coeffi-
cients will be as follows and run the model again.

enga ~ b31*pos + beta1*neg

achiev ~ beta2*enga + b41*pos + b42*neg

The output will then show that the indirect effect of
“neg” on “achiev” equals �0.045, with 95% likelihood-
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based CI [�0.061; �0.031]. Both indirect effects are statis-
tically significant and of medium size§ relative to effect
sizes typically found in psychological research.34 The
direct effects of “pos” and “neg” on “achiev” are also sta-
tistically significant (β̂41 = 0.074, p <0.001 and β̂42 =

�0.063, p <0.001). Therefore, this model represents par-
tial mediation of the effects of teacher-student relations
on achievement by engagement. Note that although the
need to run the model separately for each indirect effect
may seem cumbersome, we chose this restriction because
it simplifies the input for testing indirect effects, making
webMASEM more user-friendly.

2.1.3 | Example 1 - Moderator analysis

In the “Moderator analysis” tab, we can select the moder-
ator variable from the dataset and select the model
parameters to be tested for moderation (see screenshot
1.5 in Data S1). In our example, the moderator variable is
a dummy variable for which samples from primary
schools are coded 0 and samples from secondary schools
are coded 1. As indicated in webMASEM, dummy vari-
ables should not be standardized in the analysis, so we
unchecked this checkbox.

The list of model parameters contains direct effects
(or factor loadings) only, so in this example there will be
five direct effects that can be selected. The names in the
list of the parameters equal the names in the output from
the previous tab. We selected all five direct effects to be
moderated by school type.

The output first shows the mean, standard deviation,
median, minimum and maximum values of the moderator
variable. In this case it shows that 41% of the studies evalu-
ated a secondary school sample. Below, we see that the
omnibus test of the five moderating effects is significant at
α =0.05, with χ2(5) = 13.548, p = 0.019, indicating that at
least one of the direct effects is moderated by school type.
The test on the individual parameters are shown below the
omnibus test. It shows that only the effect of “pos” on
“enga” is significantly moderated by school type. The
regression coefficient of the moderator on the parameter
equals 0.093, meaning that on average the direct effect of
“pos” on “enga” in secondary school samples is 0.093 larger
than that in primary school samples. The summary from
metaSEM shows all estimates from the moderation model.
The parameter labeled “b31” represents the direct effect in
primary school samples (for which the value on the moder-
ator was 0) and the parameter labeled “b31_1” represents
the effect of the moderator on “b31.” Similarly, the parame-
ter labeled “b43” represents the average effect for studies
with value 0 on the moderator variable (primary schools
here), while the parameter labeled “b43_1” represents how

much “b43” is expected to change when the moderator vari-
able changes by one unit (representing secondary schools
here). When the moderating variable would have been a
standardized continuous variable, a value of 0 on the mod-
erator corresponds to the mean of the moderator, and one
unit change in the moderator corresponds to one standard
deviation change in the moderator.

The last part of the output shows the residual
between-studies variances of the six correlation coeffi-
cients from the model with the moderator. In order to
obtain the standard deviations, which are in the same
metric as the correlation coefficients, one should take the
square root of these variances. As explained before, these
parameter estimates quantify the heterogeneity of the
correlation coefficients, and not of the SEM parameters
directly.

2.2 | Example analysis 2

We illustrate fitting a factor model using webMASEM for
one-stage MASEM on the dataset from Li et al.35 This
dataset contains 26 correlation matrices of the Classroom
Assessment Scoring System (CLASS), which is a mea-
surement instrument consisting of 10 items about
teacher-student interactions and classroom quality.
Higher scores on the indicators represent more of the
common factor that it measures, except for the item
“NC” which is reverse coded. The hypothesized factor
structure on the 10 items is shown in Figure 3.

2.2.1 | Example 2 - Data input

The datafile “Data_Li.dat” contains the correlation coeffi-
cients between the 10 variables, the sample sizes, and the
variable “grade” that is scored 0 for studies that focused
on pre-Kindergarten, Kindergarten, or preschool only
and 1 for studies that (also) focused on elementary grade
levels or beyond (see screenshot 2.1 in Data S1). More
specific information about the studies can be found in
table 3 of Li et al.35 The order of the studies in the datafile
matches the ordering in Table 3.

The variable names to be used in the analysis are
entered, separated by commas: “PC,NC,TS,RSP,BM,
PD,ILF,CD,QF,LM.” Next, we selected the columns
from the datafile containing the correlation coefficients.
Since the model has 10 variables, the number of correla-
tion coefficients equals (10 � 9)/2 = 45, so we need to
select 45 columns. Note that the ordering of the columns
in the datafile is organized as explained earlier. Next, we
select the column with the sample sizes “n” and the col-
umn with the moderator “grade.”

600 JAK ET AL.



The output tab called “User dataset” shows how the
dataset is read in. The “Summary” shows that all studies
included the variables “PC,” “NC,” and “TS,” while all
other variables were missing in at least one study. In this
dataset, all missing values are at the variable level. The
total sample size for each correlation coefficient varies
from 3203 for correlations involving “LM” to 5723 for
correlations between the variables without missing data.
As a preliminary analysis, we also estimated the average
correlation matrix (see screenshot 2.2 in Data S1).

2.2.2 | Example 2 - Overall analysis

The three-factor model from Figure 3 was specified using
the lavaan syntax provided below (see screenshot 2.3 in
Data S1). Note that only the factor loadings and the factor
correlations are explicitly specified. The residual vari-
ances of the indicators will be part of the MASEM and
will be shown in the plot and the output. The factor vari-
ances are always fixed to one in the metaSEM package,
so we do not need to fix them in the syntax.

# Factor loadings for Emo, Class, and Instr factors

Emo =~ PC + NC + TS + RSP 

Class =~ BM + PD + ILF

Instr =~ CD + QF + LM

# Correlations between three factors

Emo ~~ Class

Emo ~~ Instr

Class ~~ Instr

When we hit the button “Run analysis” the MASEM
will be fit to the correlation matrices. Note that this is a
relatively large model (i.e., there will be 45 between-

studies variances estimated, on top of the 10 factor load-
ings and three factor covariances), therefore it takes sev-
eral minutes to obtain a solution.

The output shows that there were no convergence
problems and provides a plot of the model with parameter
estimates. In larger models like this, the estimated factor
loadings are not always readable in the plot, but we can
see their values in the summary output below the model
fit. The fit of the three-factor model can be read in the
summary and is repeated in text as well. The chi-squared
statistic is statistically significant, χ2(32) = 222.777,
p < 0.001, indicating that the model does not fit the data
exactly. Generally, we do not expect models to fit the data
exactly. The Root Mean Squared Error or Approximation
(RMSEA) is a measure of approximate fit, based on the
idea that models should fit the data approximately. Values
below 0.05 (or 0.06) are suggested to represent close
approximate fit.36 The three-factor model has an RMSEA-
value of 0.032, with 95% confidence interval running from
0.028 to 0.037, so the confidence interval falls in the area
of close approximate fit. The Standardized Root Mean
Squared Residual (SRMR) represents the average correla-
tion residual, where correlation residuals are the differ-
ence between the observed correlation matrix and the
model implied correlation matrix. In one-stage MASEM
the model-implied correlation matrix obtained by fitting a
saturated model is used in place of the “observed” matrix.
For the SRMR, values under 0.08 are taken to indicate sat-
isfactory model fit.37 The SRMR for the three-factor model
equals 0.075. Based on these fit indices we consider the
model fit adequate.

The absolute values of the factor loadings range from
0.509 to 0.886 and all factor loadings are statistically sig-
nificant. The correlation between the factors “Emo” and
“Class” is highest with r = 0.844, followed by the correla-
tion between “Class” and “Instr” with r = 0.697, and a
correlation of r = 0.593 between “Emo” and “Instr.” The
output further contains the estimates of the 45 between-
studies variances of the model-implied correlations on a

FIGURE 3 Hypothesized factor

structure on 10 CLASS items.30

Abbreviations: BM, Behavior

management; CD, concept

development; ILF, instructional

learning formats; LM, language

modeling; NC, negative climate; PC,

positive climate; PD, productivity;

QF, quality of feedback; RSP, regard

for student perspective; TS, teacher

sensitivity
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log-scale. The back-transformed variance values are
shown below the summary.

The residual variances of the indicators are not a real
parameter in the model. Therefore they are not part of the
output in the summary of metaSEM. The residual variances
are calculated by subtracting the “common variance” from
the total indicator's variance, which is 1 by the definition of
a correlation matrix. The common variance for each indica-
tor in factor models without cross loadings equals the factor
loading squared times the factor variance (which is 1 in
MASEM). This means that.8562 � 100 = 73.3% of the vari-
ance in the indicator “PC” is explained by the common fac-
tor “Emo.” The residual variance of the indicator “PC”
equals 0.1–.8562 = 0.267 (rounded to two decimals in the
plot). The residual variances (which equal the total vari-
ances for exogenous variables) are also displayed in the
output.

2.2.3 | Example 2 - Moderator analysis

We selected the dummy variable “grade” as the modera-
tor variable and unchecked the tickbox for standardiza-
tion of the moderator (see screenshot 2.4 in Data S1). We
selected all factor loadings to be moderated by “grade.”
This analysis again took several minutes to run. The
results show a significant overall effect of the moderator
(χ2(10) = 46.002, p < 0.001). When we look at the moder-
ation effects on the individual parameters, it shows that
this overall significant effect is mainly driven by the effect
on the factor loading for “RSP” on “Emo.” Compared to
the factor loading in samples that focused on pre-Kinder-
garten, Kindergarten, or preschool only, this factor load-
ing for “RSP” on “Emo” is estimated to be 0.327 higher in
samples that involved elementary grades or beyond,
meaning that RSP is more indicative (a stronger measure)
of “Emo” in samples involving higher grade levels. In
addition, smaller statistically significant moderating
effects are found for the factor loadings of the indicators
“BM” (β̂ = �0.111), “PD” (β̂ = �0.076), and “ILF” (β̂
= 0.083). The last part of the output shows the residual
between-studies variances of the 45 correlation coeffi-
cients from the model with the moderator.

2.3 | Example analysis 3

In the last example, we analyze the data of Nohe et al38 in
webMASEM. In contrast to the previous two examples,
this example involves a continuous moderator variable.
Figure 4 displays the model that was hypothesized by
Nohe et al.38 The authors used MASEM to evaluate the
direction and strength of the relation between work–

family conflict and strain using measurement at two time
points. The primary studies differed in the time lags
between the measurement waves. Nohe et al were inter-
ested in whether time lag moderated the regression coeffi-
cients, expecting that the longer the period between the
measurements, the weaker the effects over time.

2.3.1 | Example 3 - Data input

The data of the study of Nohe et al38 is already provided
in webMASEM. We selected this dataset by first checking
the box “Choose dataset from metaSEM” and second
selecting “Nohe15A1” (see screenshot 3.1 in Data S1).
This dataset consists of 32 correlation matrices with the
six bivariate correlation coefficients between the strain
variables at both timepoints (indicated with “S1” and
“S2”) and work–family conflict at both timepoints (indi-
cated with “W1” and “W2”). The first tab of the output
will remain empty in this case, because we did not read
in any external datafile. By clicking the tab “Summary”
one can see the order of the variables and the given
names (i.e., W1, S1, W2, and S2). The summary also
shows that there are no missing correlations, since the
number of studies for all bivariate correlations is 32.
The total sample size for all bivariate correlation coeffi-
cients is 12,906 (see screenshot 3.2 in Data S1).

2.3.2 | Example 3 - Overall analysis

After clicking the tab “Overall analysis” we entered the
following lavaan syntax of the hypothesized overall
model (without the moderator):
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After entering the lavaan syntax, we hit the button
“Run analysis” (see screenshot 3.3 in Data S1). In the out-
put tab, we see a plot of the hypothesized model with the
parameter estimates and the statement that the estimation
process has converged. Since this model is saturated
(i.e., the model has zero degrees of freedom), the fit statistics
are not informative, but the parameter estimates, which are
provided below this, are. In the summary provided by
metaSEM, we see, for example, statistically significant posi-
tive direct effects of the same variable over time (β̂w2w1
= 0.572, p <0.001 and β̂s2s1 = 0.589, p <0.001). The two
cross-lagged effects are both positive, statistically signifi-
cant, and of similar size (β̂s2w1 = 0.080, p = 0.001 and
β̂w2s1 = 0.086, p <0.001).

The output further shows that the residual variance in
W2 equals 0.628, meaning that the proportion of explained
variance equals 0.1–0.628 = 0.372. Similarly, the propor-
tion of explained variance in S2 equals 0.1–0.614 = 0.386.

The last part of the output shows the between-studies
variances of the six model implied correlation coeffi-
cients. Note that these between-studies variances do not
quantify the heterogeneity of the direct effects in the path
model, but the heterogeneity of a function of the SEM
parameters. One can see how the SEM parameters
together form the model implied correlation coefficients
by clicking the button under the lavaan syntax that says
“View model implied matrix.”

2.3.3 | Example 3 - Moderator analysis

Since we are interested in evaluating whether there is a
moderator effect of time lag on the regression coefficients
between all variables, we select “lag” in the field “Select
the moderator” and select all four regression coefficients

to be moderated (i.e., bw2w1, bs2w1, bw2s1, and bs2s1).
We check the box “Standardize the moderator” because
time lag is a continuous variable, and the variable needed
to be rescaled in order to obtain a converged solution (see
screenshot 3.4 in Data S1). After clicking the button “Run
analysis,” we get the output for the moderation analysis.
At the top of the output, we see that there are no conver-
gence problems. Underneath, we see the summary statis-
tics of the moderator. The mean time lag between the
measurement waves is 14.12 months, the median value is
12 months, the standard deviation is 16.36 months, and
time lag ranges from 0.30 months to 72 months. The
omnibus test of the four moderating effects indicates that
at least one of the direct effects is moderated by time lag
(χ2(4) = 23.522, p < 0.001) :

The output provided under “Individual moderating
effects” indicates which of the effect(s) is/are significantly
moderated by time lag. We can see that time lag only sig-
nificantly moderates the effect of W1 on W2. The “Sum-
mary of Moderation by Lag” provides all estimates from
the moderation model. The parameter with the name
“bw2w1” here represents the intercept of the direct effect
of W1 on W2 (i.e., β̂w2w1 = �0.573, p<0.001). In other
words, “bw2w1” here represents the estimated direct
effect of W1 on W2 in studies for which the moderator
was 0. As the moderator was standardized, this pertains
to studies with a time lag of 14.12months (the mean time
lag). The parameter with the name “bw2w1_1” repre-
sents how much the effect W1 on W2 is expected to
change when the moderator variable increases by one
standard deviation. The corresponding regression coeffi-
cient is estimated as β̂w2w1_1 = �0.062, p<0.001, which
means that for every standard deviation (i.e.,
16.36months) increase in time lag it is expected that the
effect of W1 on W2 decreases by 0.062 points. At the

FIGURE 4 Hypothesized path

model by Nohe et al.38 [Colour
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bottom of the output of the tab “Moderator analysis,” you
can find the residual between-studies variances of all cor-
relation coefficients of the model with the moderator.

3 | DISCUSSION

In this article, we presented a tutorial and an online appli-
cation to facilitate one-stage MASEM. When designing
webMASEM we aimed at finding a good balance between
providing enough functionality, while keeping the applica-
tion user friendly and intuitive in use. There are situations
in which webMASEM is not the appropriate software.
Some of these situations are discussed below.

3.1 | Features that are not implemented
in webMASEM

As illustrated in the examples, the moderation of regres-
sion coefficients (direct effects in a path model or factor
loadings in a factor model) is implemented in web-
MASEM. One-stage MASEM also allows the moderation
of covariance parameters, such as the covariance between
two outcome variables in a path model or the correlation
between two common factors in a factor model. In our
experience, researchers' hypotheses almost always con-
cern moderation effects on regression coefficients, and
not on covariances. However, researchers who are inter-
ested in evaluating moderating effects on covariance
parameters can do so using the osmasem() functions
from the metaSEM package directly.

webMASEM also does not allow for the evaluation of
multiple moderator variables at the same time. That means
that researchers cannot estimate the effect of one modera-
tor, controlled for the effect of another moderator. The
osmasem() functions from the metaSEM package do allow
such an analysis. It is, however, recommended to keep the
analyses as simple as possible, by limiting the number of
moderators as well as the number of parameters to be mod-
erated.11 Another reason that researchers will probably
evaluate moderators one at a time, is that studies with miss-
ing values on one or both of the moderators should be
deleted from the dataset before conducting the moderation
analysis. With two moderator variables with potential miss-
ing values, one will also have to delete studies that have a
missing value on only one of the moderator variables.

webMASEM returns an error if users attempt to ana-
lyze a moderator variable with missing values. This means
that users will have to delete the studies with missing
values on the moderating variable from the dataset, before
conducting the overall and moderator analyses (again).
We considered automatic deletion of studies with missing

values on the moderator, but chose not to implement this,
so that users are aware which studies are deleted.

As explained in the introduction, one-stage MASEM,
and consequently webMASEM, does not quantify the het-
erogeneity of the SEM parameters. Instead, one obtains esti-
mates of the between-studies variances of the correlation
coefficients. There exist other approaches to obtain hetero-
geneity estimates of SEM parameters itself. These methods
are Bayesian MASEM,9 Full Information MASEM,39–41 or
the direct synthesis of regression slopes.42

Any program with a graphical user interface will be
kind of a black box. Users may be able to use webMASEM
without knowing what is exactly happening behind the
scenes. The downloadable reports that are available are
meant to provide the user a savable overview of the results,
but also to remedy this problem. The reports contain all
necessary information to replicate the analysis using
metaSEM directly if needed. We provide the syntax for the
analysis of the three examples using metaSEM directly at
the OSF page related to this article: https://osf.io/wh6d3/.

3.2 | Errors and warnings from
webMASEM

With this tutorial paper, we hope that we provided users
with the necessary information to apply one-stage
MASEM to their data. In practice, we expect that users
may still encounter some warnings or error messages
when using webMASEM, simply because there are many
ways in which setting up the analysis can go wrong. We
are not able to foresee all problems, but in our experience,
many issues can be solved by a careful evaluation of each
step taken in the analysis. When encountering an error,
the first two things to check would be the organization of
the dataset and whether the dataset was read in correctly.
After verifying that the data were read in correctly, one
could try estimating the unrestricted average correlation
matrix. If this works properly, but fitting the SEM model
leads to an error, there may be problems with the lavaan
syntax used to formulate the SEM model. Common mis-
takes are forgetting to specify parameters, forgetting to fix
the variances of exogenous variables to one, making typos
in the variables' names, or just specifying the model incor-
rectly. If the data were read in correctly and the lavaan

syntax was correct, one may still encounter convergence
errors. Convergence errors will be clearly shown in the
output by webMASEM by the message “No convergence...,
maybe rerunning the model helps”. In such a case, users
are advised to click the rerun button to increase the num-
ber of attempts of fitting the model. Rerunning the analy-
sis this way will also possibly fix between-studies variances
that hindered model convergence to zero.
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If these options do not solve the problem, our advice
is to run the analysis in R, using the metaSEM package
directly. This will provide more insight in the possible
causes of the problems and will provide the user with
more flexibility in running the analysis, since all function
of the metaSEM-package can be used. We provide the
scripts to run the example analyses in this manuscript at
the associated OSF page.

3.3 | Conclusion

We presented a tutorial and Shiny app for one-stage
MASEM. It is our hope that the current manuscript will
be useful for researchers who need to apply one-stage
MASEM.
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ENDNOTES
* Column-major order is the default way to fill matrices in R.
† It is common practice in SEM to use a significance level of
α = 0.05 to evaluate the statistical significance of individual
parameters. However, Cribbie32 explains how Type 1 error control
may be applied in SEM.

‡ In practice, for dichotomous moderators, one could fit the model
to the two subgroups of studies to evaluate the fit in the two
groups separately using the metaSEM package directly, provided
that the number of studies per subgroup is still sufficient to fit the
MASEM.18

§ Funder and Ozer34 identified univariate regression coefficients of
respectively 0.10, 0.20 and 0.30 as representing small, moderate,
and large effects. Indirect effects are the product of two regression
coefficients. We evaluated the size of indirect effects considering
indirect effects consisting of two small, two moderate, or two large
effects. This procedure leads to values of 0.102 = 0.01 (small),
0.202 = 0.04 (moderate), and 0.302 = 0.09 (large).
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