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PERSPECTIVES

For the mammalian brain to process and decipher the rich 
panoply of sounds that abound in the world, nature has 
evolved an elegant collection of neural circuits dedicated 
to this task. Indeed, the complexity, variety and number of 
neural pathways devoted to computing auditory informa-
tion is unique among sensory modalities (Kaas, 2008). After 
the initial sensorineural encoding of sound at the level of the 
cochlea, auditory information is processed in several lower 
brainstem centers and eventually converges in the midbrain, 
at the level of the inferior colliculus (Wenstrup, 2005). Sub-
sequently, auditory information is transferred through the 
thalamus, the medial geniculate body, and then the audi-
tory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; 
Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011; 
Imaizumi and Lee, 2013; Lee and Imaizumi, 2013). From 
here, the common view holds that auditory information is 
processed through a series of corticocortical connections, 
from which stimulus features such as sound location and 
identity are extracted (Felleman and Van Essen, 1991; Ro-
manski et al., 1999; Carrasco and Lomber, 2009; Hackett, 
2011). In this manner, perceptual features of such sound at-
tributes are computationally decoded across multiple audi-
tory cortical areas (Callan et al., 2006; Tsytsarev et al., 2009; 
Callan et al., 2012).

Throughout the entirety of the auditory pathway, excitato-
ry glutamatergic projections primarily link neural stations 
with one another. In addition, inhibitory projections, pri-
marily local glycinergic and GABAergic neurons, act to shape 
and refine these afferent signals (Winer et al., 1996; Caspary 
et al., 2008). Although glutamatergic pathways on the whole 
have been regarded as primarily information-bearing routes, 
our recent studies suggest an alternative perspective; spe-
cifically, that some glutamatergic pathways in the central 
auditory system instead modulate the information received 
through the information-bearing glutamatergic pathways 
(Lee and Sherman, 2008, 2009, 2010a, b, 2011). Further-
more, these distinctions among glutamatergic pathways 
are not limited to the auditory system and are also found 
in the visual and somatosensory pathways (Reichova and 
Sherman, 2004; Tanaka and Miyashita, 2009; Lo et al., 2013). 

A constellation of morphological and physiological 
synaptic properties classifies the auditory glutamatergic 
pathways into two main types. The first type of glutamater-
gic projection exhibits thick axons that terminate in large 
synaptic terminals, ending on dendritic locations proximal 
to the neuronal cell body (Bartlett et al., 2000; Huang and 
Winer, 2000; Llano and Sherman, 2008). Furthermore, these 
projections elicit postsynaptic responses consistent with a 
role as information-bearing pathways, i.e., large excitatory 
postsynaptic potentials that depress in response to repetitive 
stimulation and also lack a metabotropic glutamate receptor 
component (Bartlett and Smith, 2002; Rose and Metherate, 

2005; Lee and Sherman, 2008, 2010a). In contrast, a second 
type of glutamatergic pathway has diametrically opposite 
characteristics. Morphologically, these pathways exhibit thin 
axons that terminate in small terminals and synapse distally 
on postsynaptic dendrites (Ojima, 1994; Prieto and Winer, 
1999; Huang and Winer, 2000; Smith et al., 2007; Llano and 
Sherman, 2008). Physiologically, these pathways also differ, 
eliciting small excitatory postsynaptic potentials that facili-
tate in response to repetitive stimulation and that also acti-
vate postsynaptic metabotropic glutamate receptors (Bartlett 
and Smith, 2002; Lee and Sherman, 2008, 2009, 2010a).

These characteristics apply broadly to glutamatergic path-
ways in the central auditory system, serving to distinguish 
pathways that are putatively information-bearing (the first 
type described above) from those that are modulatory (the 
second type described above) in nature (Figure 1). For 
example, at the tectothalamic synapse, these criteria iden-
tify two distinct types of pathways originating from the 
inferior colliculus (Bartlett and Smith, 1999; Bartlett et al., 
2000; Bartlett and Smith, 2002; Smith et al., 2007; Lee and 
Sherman, 2010a). The putative information-bearing route 
originates from the central nucleus of the inferior colliculus 
(ICc) and terminates in the ventral division of the medial 
geniculate body (MGBv) (red pathways in Figure 1). In 
contrast, the surrounding nuclei, e.g., dorsal cortex (ICd) 
and lateral nucleus (ICl), send putative modulatory gluta-
matergic projections to the non-lemniscal nuclei of the me-
dial geniculate body (MGBd and MGBm) (green pathways 
in Figure 1). Thus, we have suggested that these properties 
classify the lemniscal pathway from the ICc to the MGBv 
as the principal route for conveying information from the 
inferior colliculus to the medial geniculate body, rather than 
multiple parallel ascending pathways (Lee and Sherman, 
2010a, 2011). Instead, in this framework, we suggest that the 
tectothalamic projections originating from the ICl and ICd 
to the MGBd and MGBm, respectively, serve a modulatory 
role, rather than a primarily information-bearing role (Bart-
lett and Smith, 2002; Hu, 2003; Smith et al., 2007; Lee and 
Sherman, 2010a). 

At the auditory thalamocortical synapse, we posit that these 
criteria promote an even more intriguing theory. That is, we 
have found that the projections from higher-order thalamic 
nuclei, e.g. the dorsal division of the medial geniculate body 
(MGBd), are similar functionally to the projections from the 
first-order thalamic nucleus, i.e. the ventral division of the me-
dial geniculate body (MGBv) (Lee and Sherman, 2008). Thus, 
both of these pathways from the thalamus exhibit morpholog-
ical and physiological properties consistent with roles as in-
formation-bearing conduits to auditory cortical areas, i.e., the 
first type of glutamatergic pathway described above (Figure 
1) (Huang and Winer, 2000; Rose and Metherate, 2005; Lee 
and Sherman, 2008; Smith et al., 2012), in contrast with the 
prevailing notion that the higher-order thalamocortical pro-
jections serve only a modulatory role (Olshausen et al., 1993). 

The notion that the higher-order thalamocortical pro-
jections are similar functionally to the first-order thalam-
ocortical projection raises an obvious question: what is the 
source of information being transferred from the higher-
order auditory thalamus to the higher auditory cortical areas? 
As noted above, the inputs from the inferior colliculus to the 
higher-order thalamus (MGBd and MGBm) appear modula-
tory in nature (Bartlett et al., 2000; Bartlett and Smith, 2002; 

Two types of auditory glutamatergic 
synapses and their implications for 
repairing damaged central auditory 
pathways



1001

NEURAL REGENERATION RESEARCH 
May 2014,Volume 9,Issue 10 www.nrronline.org

Lee and Sherman, 2010a). But, rather than promulgating 
information from the midbrain, the higher-order thalamic 
nuclei instead receive information from layer 5 of a lower 
cortical area, e.g., the layer 5 projection from the primary 
auditory cortex (AI) to MGBd (Figure 1: red pathway from 
layer 5) (Ojima, 1994; Winer et al., 1999; Llano and Sherman, 
2008). These feedforward corticothalamic projections from 
cortical layer 5 are distinct from the feedback corticothalamic 
projections from cortical layer 6, which exhibit properties as-
sociated with modulatory glutamatergic projections (Figure 
1: green pathways). This arrangement establishes an alternate 
route for communication between cortical areas via a corti-
co-thalamo-cortical route.  In comparison to the direct corti-
cocortical connections, e.g., the primary auditory cortex (AI) 
to the secondary auditory cortex (AII), the indirect route, AI 
to MGBd to AII, may utilize the unique functional properties 
of thalamic neurons, such as the tonic and burst firing modes 
(Sherman, 2001; Sherman and Guillery, 2011). 

Although this classification of glutamatergic pathways 
yields new insights into the putative routes of information 
flow in the central auditory system, open questions remain. 
For instance, it remains to be determined how these synaptic 
properties apply to other glutamatergic synapses in the au-
ditory system, such as the descending corticocollicular path-
ways (Feliciano and Potashner, 1995; Bajo and Moore, 2005; 
Bajo et al., 2010), which likely modulate ascending auditory 
information (Clarkson et al., 2012). Perhaps more intrigu-
ing is the issue of whether these two types of glutamatergic 
pathways exhibit different capacities for long-term plasticity. 
Indeed, the presumption a priori is that the putative infor-
mation-bearing pathways should exhibit a greater resiliency 
to long-term plastic changes, such that their roles as high-fi-
delity conduits for auditory information are maintained (Lee 
and Sherman, 2011). Furthermore, the putative modulato-
ry glutamatergic pathways, with their distal dendritic syn-
aptic locations and activation of metabotropic glutamate 
receptors might be more ideally constructed to support sus-
tained and longer-term alterations to synaptic strength and 
efficacy (Froemke et al., 2010; Sherman, 2014). Thus, the 
relative plasticity of these two types of glutamatergic path-
ways may inherently limit the regenerative capacity of various 
components in the auditory processing stream (Ruben, 1996). 
Consequently, regenerating or repairing damage to the central 
auditory pathways may benefit from targeting selected gluta-
matergic synaptic types (Lee et al., 2012, 2013).

Overall, the parcellation of glutamatergic pathways in the 
central auditory system is ongoing. The aforementioned 
characterization based on morphological properties and 
physiological responses establishes a few important metrics 
for comparison, which is admittedly incomplete and could be 
expanded to include a range of other synaptic components, 
such as the varied neurotransmitter transporter systems 
(Hackett et al., 2011; Storace et al., 2012). In this respect, the 
differential expression of vesicular glutamate transporter 
subtypes may further subdivide the classes of glutamatergic 
synapses describe here, as suggested by their expression in 
distinct glutamatergic pathways in the brainstem (Zhou et 
al., 2007), midbrain (Altschuler et al., 2008; Ito and Oliver, 
2010), and forebrain (Hackett et al., 2011; Storace et al., 
2012). Thus, the exploration and delineation of glutamater-
gic pathways in the central auditory system will continue to 
evolve and their subtle functional roles eventually revealed.
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Figure 1 Schematic diagram of glutamatergic pathways from the inferior 
colliculus, medial geniculate body and auditory cortex.
Pathways are classified on the basis of morphological and physiological cri-
teria, which identify putative information-bearing (red) versus modulatory 
(green) pathways. These pathways are found bilaterally but are depicted in 
separate hemispheres for clarity. Portions of the figure adapted from (Pax-
inos and Franklin, 2001). 
Abbreviations: AI, primary auditory cortex; AII, secondary auditory cortex; 
D, dorsal division of the medial geniculate body (MGB); ICc, central nu-
cleus of the inferior colliculus (IC); ICd, dorsal cortex of the IC; ICl, lateral 
nucleus of the IC; M, medial division of the MGB; V, ventral division of the 
MGB; 1–6, cortical layers 1–6.


