
molecules

Review

Rollover Cyclometalation as a Valuable Tool for Regioselective
C–H Bond Activation and Functionalization

Antonio Zucca * and Maria I. Pilo

����������
�������

Citation: Zucca, A.; Pilo, M.I.

Rollover Cyclometalation as a

Valuable Tool for Regioselective C–H

Bond Activation and

Functionalization. Molecules 2021, 26,

328. https://doi.org/10.3390/

molecules26020328

Academic Editor:

Patricia Garcia-Garcia

Received: 7 December 2020

Accepted: 4 January 2021

Published: 10 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy; mpilo@uniss.it
* Correspondence: zucca@uniss.it; Tel.: +39-079229493

Abstract: Rollover cyclometalation constitutes a particular case of cyclometallation reaction. This
reaction occurs when a chelated heterocyclic ligand loses its bidentate coordination mode and
undergoes an internal rotation, after which a remote C–H bond is regioselectively activated, affording
an uncommon cyclometalated complex, called “rollover cyclometalated complex”. The key of the
process is the internal rotation of the ligand, which occurs before the C–H bond activation and
releases from coordination a donor atom. The new “rollover” ligand has peculiar properties, being
a ligand with multiple personalities, no more a spectator in the reactivity of the complex. The
main reason of this peculiarity is the presence of an uncoordinated donor atom (the one initially
involved in the chelation), able to promote a series of reactions not available for classic cyclometalated
complexes. The rollover reaction is highly regioselective, because the activated C–H bond is usually
in a symmetric position with respect to the donor atom which detaches from the metal stating the
rollover process. Due to this novel behavior, a series of potential applications have appeared in the
literature, in fields such as catalysis, organic synthesis, and advanced materials.

Keywords: rollover cyclometalation; C–H bond activation; C–H bond functionalization

1. Introduction

Metal-mediated activation and functionalization of C–H bonds are fundamental topics
in organometallic chemistry. Several efforts have been done in the past decades to shed
light onto the mechanisms implied in the process. The intramolecular version of C–H
bond activation, i.e., cyclometalation [1], has been extensively studied in recent decades for
several reasons: the reaction is easier to study than the analogous inter-molecular counter-
part, but occurs with comparable mechanisms; the products of the reactions, the so-called
cyclometalated complexes, possess an additional stability due to chelated effect and have
shown an ample spectrum of potential applications in different fields, from homogeneous
catalysis to advanced materials and biomedicine. Worth of note, the cyclometalation
reaction is usually highly regioselective, as, for example, in the case of ortho-metalation.

In cyclometalation, the C–H bond activation is usually a heteroatom-assisted process,
involving classical donors such as N, O, P, S, even though also C-assisted cyclometalations
are known. The initial coordination of the donor atom holds the C–H bond close to
metal, facilitating its activation. As a consequence, the classical cyclometalation pathway
generally consists of two consecutive steps: (i) initial coordination of a donor atom and (ii)
subsequent intramolecular activation of a C–H bond to form a metallacycle [2]. Closely
related to cyclometalation is the directed ortho-metalation [3], where regioselective ortho
C–H bond activation is heteroatom-assisted; in this case, however, the metallacycle is not
preserved due to the nature of the heteroatom-metal bond.

The first cyclometalation reaction appeared in 1955, described as an “aluminum
organometallic inner complex” [4], but the term “cyclometalation” was coined only in 1973
by Trofimenko [5].

The properties of cyclometalated complexes may be tuned in a number of ways. In
these species, the correlation between ligands and complexes properties can be remarkably
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high, so that modification of the stereoelectronic parameters of the cyclometalated ligand
usually allows a refined tuning of the overall properties of the complex.

In addition to classical cyclometalated complexes, a series of variations on the basic
theme lead to several subclasses, such as that of the so-called “pincer” complexes [6], where
the metallacycle is comprised in a tridentate system (e.g., NˆCˆN or CˆNˆC). A less-common
special class of cyclometalated species, the so-called “rollover” complexes [7], has assumed
a particular interest in recent years, having peculiar properties that distinguish it from the
other cases.

Consequently, the reaction which leads to these compounds, i.e., rollover cyclometala-
tion, has attracted attention. In rollover metalation, a chelated ligand, usually a heteroaro-
matic bidentate donor such as 2,2′-bipyridine, may choose to coordinate in the classical
way, i.e., as a chelated ligand, or, after internal rotation and deprotonation, as an NˆC
anionic cyclometalated ligand. The key of the process is the internal rotation of the ligand,
which allows activation of a C–H bond initially distant from the metal.

Taking 2,2′-bipyridine as a model, roll-over cyclometalation follows a series of el-
ementary steps (Figure 1): First, the ligand will behave as a classical NˆN chelate (A),
then one of the nitrogen donors decoordinates (B), allowing rotation along the C–C bond
which connects the two heteroaromatic rings (C). The internal rotation allows activation of
the initially remote C(3)-H bond (D), to afford the final cyclometalated product (E). The
reaction is highly regioselective, because it allows activation of a C–H bond on the other
side with respect to the detached nitrogen, usually, as in this case, in a symmetric position.
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Figure 1. Rollover cyclometalation: fundamental steps.

It is important, for a “true” rollover cyclometalation, to start from a chelated complex
from which C–H bond activation occurs in a succeeding coordinatively unsaturated com-
plex. In their review of 201 [7], Butschke and Schwarz coined the term “pseudo-rollover”
cyclometalation, for those cases that proceed in a mechanistically different mode, for in-
stance, starting from a monodentate complex, without chelation; in this case, a simple
cyclometalation occurs, but the final complex may be also classified as a rollover species.
In other cases of pseudo-rollover cyclometalation, the ligand has been previously activated,
e.g., by lithiation or other methods.

Several studies have been made in order to elucidate the mechanism of the rollover
process. The final step, i.e., metal-mediated C–H activation, can follow different mecha-
nisms depending on the metal involved and the rollover ligand implied. This aspect will
be treated in Section 3.

Even though 2,2′-bipyridines have initially been the most studied ligands in this
field, the reaction is not restricted to these family of compounds and interests a vast series
of heteroaromatic compounds. As a general rule, every bidentate heterocyclic ligand
having a C–H bond in a symmetric position to one of the donor atoms, flexible enough to
allow internal rotation, can potentially give rollover cyclometalation. Ligands without this
symmetry are also able to follow a rollover pathway, provided the presence of an available
C–H bond “on the other side”.

In Figure 2, we report a selection of rollover complexes derived from 2,2′-bipyridines
(A), 2-(2-thienyl)pyridine (B), 2-(1-pyrazolyl)pyridine (C), 1-(2-thienyl)-1H-pyrazole (D),
pyrazolylmethanes (E), 2-phenyl-pyridine (F). The last example, G, derived from N-(2′-
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pyridyl)-7-azaindole, is a case of a rollover complex without the above-mentioned N/C–
H symmetry.
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Having defined reaction and ligands, some considerations follow, considering a
generic E, E chelating ligand (E = N, S, O, etc.):

• roll-over cyclometalation is favored by the presence of one weak M–E bond in the
starting chelated complex. The weakness may be related to steric or electronic factors:
as a consequence, the reaction will be favored by bulky substituents in adjacent
position to E, electron-withdrawing groups in the ring and ligands with strong trans-
influence coordinated in trans to E. Trans-influence and trans-effect may have dramatic
effect on the behavior of some ligands and in catalytic applications;

• formation of a strong M–C bond will thermodynamically favor the rollover process
toward classic chelation. For this reason, late and heavy transition metals such as
iridium and platinum are favored;

• a second peculiarity of rollover cyclometalation is found in the mechanism of the
cyclometalation reaction: in the step from chelate to monodentate coordination, one
vacant coordination site is formed. This free site for coordination lacks in the classical
cyclometalation reaction;

• the final rollover product has a free heteroatom (N in the majority of cases) able to
undergo successive reactions or interactions: coordination, protonation, hydrogen-
bond interactions, return to initial chelation, etc. Here lies the crucial difference
between rollover and classical cyclometalated complexes: three consequences of this
aspect are:

- the retro-rollover process, i.e., the reverse reaction of rollover cyclometalation (see
Section 4.1.5): In these steps, one hydrogen is lost and regained, with interesting
applications in catalytic hydrogen transfer reactions (see Section 6.2).

- The double rollover cyclometalation, which allows for the synthesis of planar,
highly delocalized bi- or polynuclear complexes (see Section 4.1.3).

- The protonation of the free donor usually allows the formation of uncommon
NHC (nitrogen heterocyclic carbenes), formally neutral ligands, which are isomers
of the neutral starting ligand. This option enters rollover complexes into the family
of “ligands with multiple personalities” [8] rather than being mere spectator
ligands (see Section 4.1.5).

• Finally, it should be noted that “rollover” ligands are deprotonated forms of the
starting neutral ligands, whose chelated complexes are usually stable and difficult
to activate. The strength of the M–E and M–C bonds, as well as mechanisms of C–H
bond activation vary from metal to metal, so that each metal will have a different story.
This accounts for the difficulties to find general rules for rollover cyclometalation.

For all these reasons, rollover cyclometalation constitute a potent instrument for the
regioselective C–H bond activation and functionalization of the C–H bond located in posi-
tions usually not available for metal-mediated C–H activation, as well as for the synthesis
of compounds with novel properties. This review will be focused on the application of
rollover metalation to regioselective C–H bond activation and functionalization processes.
Both stochiometric and catalytic activation/functionalization will be treated. However,
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in order to furnish a more ample vision of the reaction, we will also report examples of
reactivity and applications of rollover cyclometalated complexes.

2. History of Rollover Cyclometalation

To the best of our knowledge, the first rollover complex appeared in the literature
in 1975, only two years after Trofimenko’s recognition of the cyclometalation reaction:
Giordano and Rasmussen simply described the Pt(II) and Pd(II) rollover-cyclometalated
products of 2-(2′-thienyl)pyridine, 1 (Figure 3), as “Compounds Containing Metal-Carbon
Bonds” [9] without recognizing their novelty.
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Figure 3. The first rollover complexes.

Soon later, in 1977, Watts and coworkers reported the synthesis of an Ir(III) species,
initially described as an iridium(III) complex containing a monodentate 2,2′-bipyridine,
related to the well-known cationic complex [Ir(bpy)3]3+ (complex 2) [10]. Only after a long
and controversial debate, several years later, the nature of the complex was determined
by means of X-ray and NMR studies [11–15] as having two N, N chelated bipyridines and
one N, C cyclometalated bipy, the latter being a neutral ligand, due to protonation of the
uncoordinated nitrogen (Figure 4, complex 3).
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Figure 4. The first iridium rollover complex.

The term roll-over was coined by Skapski, Sutcliffe, and Young in 1985 [16], describing
the thermal rearrangement of (Ar)2(bpy)platinum(II) complexes: no mononuclear species
were isolated but the metalation was confirmed by the X-ray structure of a dinuclear
species. Interestingly, the reaction finally leads to the isolation of the largely delocalized
organometallic polymer [Pt(bipy-2H)]n, 4, having bridging double-rollover bipyridines
(Figure 5). Kinetic measurements showed that the rollover reaction is faster starting from
[Pt(bipy)(4-t-but-Ph)2] in comparison to [Pt(bipy)(4-CF3-Ph)2].

Since then, the term roll-over was not used until 1999, when Minghetti’s group
reported a series of Pt(II) and Pd(II) rollover complexes with substituted 2,2′-bipyridines
(see later) [17].
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From then, an increasingly number of papers have appeared in the literature, demon-
strating, inter-alia, by the publication of two reviews completely dedicated to the sub-
ject [7,18] with other reviews also dealing in part with the same theme [19]. Potential
applications in organic synthesis, homogeneous catalysis, biomedicine, and advanced
materials are revealing the hidden potentialities in this field.

3. Mechanism of Rollover Cyclometalation

The activation of C–H bonds in homogeneous systems has been a matter of study for
many years. From a mechanistic point of view, it is generally accepted that, in cyclometala-
tion reactions, C–H bond activation follows three major pathways: electrophilic activation
(or heterolytic cleavage), oxidative addition, and σ-bond metathesis [1,2,20].

The operating mechanism depends on several factors, such as the electronic nature
of the LnM fragment and the nature of the C–H bond, and in most cases, it is far from
being determined. The comprehension of the mechanism is complicated by the fact that
subtle structural modifications in the ligand or in the metal center may deeply influence
the reaction pathway.

C–H bond activation via electrophilic activation is common for electron-poor late
transition metals such as palladium(II), and, to some extent, also platinum(II). This pathway
is operative especially in the case of C(sp2)–H activations in aromatic rings. Mechanistic
studies on aromatic C–H bond activation revealed that electron-donating substituents
on the ring favors the metal-mediated activation, in analogy to electrophilic aromatic
substitutions in organic compounds.

In contrast, oxidative addition pathways require electron-rich low-valent metal centers
and is common for late transition metals, such as Ru, Os, Rh, Ir, Pt; also, it seems to be
preferred in C(alkyl)–H bond activations.

The σ-bond metathesis pathway has been considered a prevalent mechanism in the
case of electron-poor metal centers such as high-valent early transition metals. In the case
of late transition metals, such as Pt(II) and Pd(II), the metal supports the stabilization of the
σ complex and the process has been designated σ-CAM, σ-complex assisted metathesis.

It is worth to note that an oxidative addition pathway produces a hydride complex;
however, subsequent reductive eliminations of HX (X = coordinated anionic ligand) may
afford final cyclometalation products without the expected coordinated hydride, making it
difficult to distinguish it from the other two mechanisms.

A final, particular case regards trasmetalation reactions (in this case, transcyclometala-
tion) which do not involve a direct C–H bond activation but require a starting organometal-
lic compound for the exchange reaction M-C + M’-X→M-X + M’-C.

In rollover cyclometalation, some aspects of the process are different from classical
cyclometalation. Most the experimental and DFT studies on the operating mechanism
regarded platinum(II) bipyridine complexes. Changing metal and bidentate ligand may
obviously result in a different mechanism. Starting from the usual NˆN adduct, detachment
of the nitrogen and internal rotation are the crucial differences between classical and
rollover cyclometalation; in the latter, a coordination position is liberated by the nitrogen,
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differently from the classical case. These two steps allow interaction of the C(3)-H bond
with the metal center.

As for rollover cyclometalation, the operative mechanisms of the C–H bond activation
step are expected to be the same as in classical cyclometalation. All three mechanisms have
been postulated to be effective with different metals and ligands.

In the case of electron-rich Pt(II) complexes, such as [PtMe2(DMSO)2] or [PtMe2(SMe2)]2,
an oxidative addition pathway has been proposed by several authors. Schwarz and
coworkers conducted a mechanistic study, based on CID-MS (collision induced dissociation
mass spectrometry) and DFT calculations, on the gas-phase rollover transformation of
[M(bipy)X]+ to [M(bipy-H)]+ species (M = Ni, Pd, Pt; X = CH3, Cl), founding a clear
preference for the oxidative-addition/reductive-elimination pathway for Pt (Figure 6),
whereas in the case of Ni(II), an s-bond metathesis is preferred. For palladium, the preferred
mechanism depends on the nature of the anionic ligands X: s-bond metathesis is favored
for [Pd(bipy)Me]+, whereas oxidative addition/reductive elimination is slightly preferred
in the case of [Pd(bipy)(Cl)]+ [21].
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The studies in the solution essentially regarded [PtMe2(DMSO)2] and [PtPh2(DMSO)2]
derivatives. Young and coworkers, in their pivotal work in 1985 [16], found that electron
richer Pt(II) derivatives [PtAr2(DMSO)2] reacted faster than electron poorer analogues
(Ar = 4-tBu-C6H4; 4-CF3-C6H4).

Minghetti, Zucca, and co-workers working with 2,2′-bipyridine and several 5- and
6-substituted 2,2′-bipyridines found via NMR spectroscopy that the process follows a
consecutive reaction mechanism, which begins with initial NˆN chelation to produce
[Pt(NˆN)(CH3)2], followed by rapid methane liberation [17,22]. For the final steps, i.e., the
crucial C–H bond activation and successive elimination of methane, the proposed mecha-
nism involves, also in the solution, an oxidative-addition/reductive-elimination sequence
which eventually liberates methane. No sign of hydride intermediates was observed in the
solution in the case of platinum, however, Zuber and Pruchnik studied the behavior in the
solution of the [Rh(bipy)2Cl] complex reporting the NMR detection of rhodium-hydride in-
termediates in a reversible rollover/retro-rollover process (see Section 4.1.7). Analogously,
the reaction of a Rh(I) NHC complex, [Rh(NHC)(C2H4)(Cl]2 with 2,2′-biquinoline gave, at
room temperature, the rollover hydride [Rh(NHC)(Cl)(H)(NˆC)], where NˆC is a rollover
coordinated 2,2′-biquinoline [23].

The experimental data indicate that, in the case of the [Pt(NˆN)Me2] intermediate,
de-coordination of nitrogen is favored by the high trans-influence of the methyl ligand,
a bulky and/or electron attracting substituent in position 6 (which increases the steric
congestion in the square-planar and/or reduces the donor ability of the nitrogen). In
particular, the CF3 substituent favors the reaction also in 5-position, furnishing a clear
electronic effect on the outcome of the reaction.

Oxidative-addition mechanism was also proposed by Wang and coworkers in the rollover
activation of another “PtMe2” adduct [Pt(NˆN)Me2] (See Section 4.2.1, complex 76) [24]. The
authors assumed an oxidative-addition reductive-elimination pathway for the process,
based on the electron-richness of the Pt center in the three-coordinate intermediate and on
the formation of only one isomer as a result of the process. An oxidative-addition pathway
was also proposed for the Rh-catalyzed selective functionalization of 2-(2-thienyl)pyridine
(see Section 6.2.1) [25].
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At variance, Thiel and coworkers, in their review on the argument [18], proposed that
the final step of the roll-over cyclometalation of aromatic nitrogen donors is analogous to a
classical organic SEAr reaction, where the metal acts as the electrophile. Therefore, “the
more electron-rich the ring system is, the more reactive it should be.“ This is not in line
with the extreme rapidity of the reaction of 6-CF3-2,2′-bipyridine with [PtMe2(DMSO)2]
(and even 5-CF3-2,2′-bipyridine) but it should be suitable on the basis that different met-
als (and also different metal precursors of the same metal) may act following different
reaction mechanisms. In agreement with an electrophilic mechanism is the rollover cy-
clometalation of 2,2′:6′,2”-terpyridine promoted by Pt(II), where a two-fold C–H bond
activation occurs on the central pyridine ring. After the first cyclometalation, the cen-
tral pyridine (with a higher electron density due to metalation) is activated towards a
second metalation, which occurs faster than the first one [26]. Accordingly, reaction of
[Ir(Cp*)Cl2]2 with 2-(2-dimethylaminopyrimidin-4-yl)pyridine gave the rollover cationic
complex [Ir(Cp*)NˆC)Cl]+, a behavior in agreement with an electrophilic aromatic substitu-
tion [27].

On the other hand, a σ-bond metathesis pathway is suggested by a DFT analysis of
the room-temperature rollover cyclometalation of palladium(II) complexes with phosphine
pyrazole pincer ligands PˆCˆN (PCN = 1-[3-[(di-tert-butylphosphino) methyl]phenyl]-1H-
pyrazole) and = 1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole, see
Section 4.2.1) [28]. DFT data revealed low energy barriers for C–H activation through a
σ-bond metathesis reaction, in line with the experimental outcomes.

Finally, quite recently, a C–H bond rollover activation which precedes nitrogen coordi-
nation was proposed for the reactions of 2,2′-bipyridines with a hexahydride bipyridine
osmium complex (see Section 4.1.7, Osmium). The C–H bond activation step consists in
a hydride-mediated heterolytic cleavage of the C–H bond, promoted by the electrophilic
Os(IV) complex formed by H2 reductive elimination. C–H bond selectivity is the conse-
quence of nitrogen trapping of the intermediate formed by C–H activation. Comparable
considerations are likely true for the corresponding reaction of a pentahydride iridium
complex [29].

4. C–H Bond Activation Through Rollover Cyclometalation

During the last years, several metals showed the ability to promote rollover cyclomet-
alation with an ample series of substrates. A variety of rollover cyclometalated complexes
have been synthesized and studied. In this chapter, we will examine stoichiometric cy-
clometalation reactions, dividing the discussion according to typologies of ligands and
metal involved.

4.1. Bipyridine Complexes

In 2020, 2,2′-bipyridine (bpy) celebrated 132 years from its discovery, which occurred
in 1888. Bipyridine is undoubtedly one of most important ligands in coordination chemistry,
so that some years ago, a review recognized it as “the most widely used ligand” [30]. It is
well-known that the common coordinative behavior of 2,2′-bipyirine is as a chelated NˆN
ligand, even though monodentate and bridging complexation is recognized, although rare.

For these reasons, the new examples of metalating behavior aroused interest, and
researchers struggled to find methods to induce this ligand to leave the comfortable NˆN
behavior for the “new way”. Although several ligands can behave in a rollover mode, as
seen before, 2,2′-bipyridine remains the prototypical and most important ligand in this field.
It is also worth to note that an NˆC-rollover coordinated bipyridine is not precisely (not only,
at least) a bipyridine coordinated in a new way, but is a formally anionic C(3)-deprotonated
2,2′-bipyridyl.

4.1.1. Platinum and Palladium Complexes

After Young’s pivotal paper, the term “rollover”, along with the concept itself of
“rollover cyclometalation” was not recognized for several years, until in 1999 Minghetti’s
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group in Sassari re-submitted the term, reporting the rollover cyclometalation of 6-substituted-
2,2′-bipyridines (6-R-2,2′-bipyiridines, R = isopropyl, neopentyl, and tert-butyl) by means
of Pt(II) and Pd(II) precursors [17].

The paper reported the first case of bipyridine rollover cyclometalation promoted by
palladium: starting from Pd(II) acetate, a well-known cyclometalating precursor, mono and
dinuclear complexes were isolated and characterized (5 and 6, R = isopropyl and neopentyl,
Figure 7). The substituent in position 6 resulted in being crucial for the reaction, likely for
steric reasons. In the same paper, following Young’s discovery, trans-[PtClMe(SMe2)2] was
reacted with 6-tert-butyl-2,2′-bipyridine affording the rollover complex 7. In addition, in
this case, under the reaction conditions studied, the bulky alkyl substituent in position 6
resulted in being crucial for the outcome of the reaction.
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It is worth to note that under different reaction conditions, e.g., from [MCl4]2− precur-
sors in water/HCl (M = Pd, Pt), the reaction proceeded in a different way, activating a C–H
bond in the substituent to give the corresponding [M(NˆNˆC)Cl] tridentate complexes 8
and 9 (M = Pd, Pt) [31–35]. The topic of C–H regioselectivity in substituted bipyridines and
related ligands is complex, being the reaction outcome driven by several factors, and will
be treated later.

After a series of studies dedicated to related polycyclic bipyridine systems, such as
2,2′:6′,2”-terpyridine and 6,6′-Ph2-bipyridine (see later), the investigation was extended to
a series of 6-substitued bipyridines (bpyR, Figure 8) [22] and compared to unsubstituted
2,2′-bipyridine [36], evincing the role of the substituent in the reaction.
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In the Sassari Laboratory of Organometallic Chemistry, the study involved the reaction
a series of Pt(II) precursors such as [PtMe2(DMSO)2], [PtPh2(DMSO)2], [PtMeCl(DMSO)2],
[PtCl2(DMSO)2] with several substituted bipyridines. The most electron-rich complex, i.e.,
[PtMe2(DMSO)2], showed to be the best Pt(II) precursor for the synthesis of bipyridine
rollover complexes 10 (Figure 9). A clear steric influence of the substituent was evidenced
by the fast reaction of [PtMe2(DMSO)2] with 6-tert-butyl-2,2,′-bipyridine, with C(3)–H
bond rollover activation even at room temperature. In comparison, 2,2′-bipyridines with
less steric-demanding substituents such as Me or neo-pentyl, needed higher temperatures
(acetone, 40–60 ◦C). In the absence of a substituent, i.e., with 2,2′-bipyridine, the activation
occurs only under hasher conditions, such as refluxing toluene [36]. A kinetic study showed
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that the rollover process entails a consecutive reaction through the detectable intermediate
Pt(bpyR)Me2.
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Figure 9. Rollover cyclometalation of 6-substituted 2,2′-bipyridines with [PtMe2(DMSO)2]. Adapted
with permission from Organometallics 2003, 22, 23, 4770–4777. Copyright (2003) American Chemi-
cal Society.

According to the Pt/bipy molar ratio, the reaction afforded the mononuclear com-
pound (1:1 Pt:bipy molar ratio) or the dinuclear “double rollover” complex (2:1 Pt:bipy
molar ratio) by means of double C(3)-H and C(3′)-H bond activation. In the dinuclear
complex, a twofold deprotonated 2,2′-bipyridine acts as a planar, formally dianionic,
delocalized ligand, connecting two metal centers (see Section 4.1.4).

The succeeding studies were extended to two ligands with 6-membered fused rings:
the chiral pinene-derived ligand (5S,7S)-5,7-methane-6,6-dimethyl-2-(pyridin-2-yl)-5,6,7,8-
tetrahydroquinoline and the delocalized 2-(2′-pyridyl)quinoline. Both the ligands react
with [PtR2(DMSO)2] (R = Me, Ph) in the same way as 6-substituted 2,2′-bipyridines: 2-
(2′-pyridyl)quinoline gave the mononuclear rollover complex 11 [37], whereas the chiral
pinene-derived ligand (5S,7S)-5,7-methane-6,6-dimethyl-2-(pyridin-2-yl)-5,6,7,8-tetrahy-
droquinoline showed to be able to give both mono- and dinuclear rollover complexes 12
and 13 [38] (Figure 10).
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Figure 10. Pt(II) complexes 11–13.

In order to shed light into the delicate balance between steric and electronic effects,
Zucca and coworkers investigated the influence of substituents CH3, CF3, CH2CH3, and
OCH3, [39–41], two couples of substituents having similar steric hindrance (CH3 and CF3;
CH2CH3 and OCH3), but different electronic effects. For the first couple, the location of
CH3 and CF3 in position 6 or 5 allows to separate, in part, electronic and steric influences
(Figure 11).
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plane of the substituted bipyridine in the intermediate N^N adducts. Unsubstituted 2,2’-
bipyridine occupies 8.8° more than the theoretical 90° of a square planar coordination, 

Figure 11. 6- and 5-substituted 2,2′-bipyridines with CH3 and CF3 groups.

The ligands were compared to unsubstituted 2,2′-bipyridine in the reaction with the
electron-rich precursor [Pt(Me)2(DMSO)2]. When the substituent was located in position 6,
regiospecific activation of the substituted ring occurred affording complexes 14 (R = CH3,
CF3), and no sign of activation on the unsubstituted ring was observed. The electron
withdrawing CF3 substituent in 6-CF3-2,2′-bipyiridine induced a noteworthy acceleration
of the rollover reaction, likely due to a sum of electronic and steric factors.

At variance, with 5-CF3-2,2′-bipyiridine, the reaction outcome was independent from
the steric factor related to the substituent and was not regiospecific. Two isomers were
obtained due to activation of both the pyridine rings (15 and 16), however, with the electron-
withdrawing CF3 group, a preference for C(3)-H activation in the substituted ring was
observed (compound 15), with a 5:1 molar ratio (Figure 12) both in refluxing acetone and
toluene. Operating with 5-CH3-2,2′-bipyiridine, a 1:1 molar ratio between the isomers
was observed.
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Figure 12. Influence of substituents in position 5 and 6 in 2,2′-bipyridines. Adapted with permission from Organometallics
2015, 34, 5, 817–828. Copyright (2015) American Chemical Society.

These data indicate that an electron-poor pyridine ring is more reactive in the rollover
process; together with Skapski, Sutcliffe, and Young’s observation that electron-rich Pt(II)
precursors [Pt(Ar)2(DMSO)2] accelerate the rollover reaction [16], an electrophilic activa-
tion pathway should be ruled out for these reactions. Under these conditions, the CH3
substituent showed to have no electronic influence on the outcome of the reaction.

The authors also investigated the influence of electronic factors by analyzing proton
affinity data of substituted pyridines, and introduced the angle ζ in [Pt(N,N)Me2] adducts
(Figure 13) in order to have quantitative measurement of the steric requirement on the
plane of the substituted bipyridine in the intermediate NˆN adducts. Unsubstituted 2,2′-
bipyridine occupies 8.8◦ more than the theoretical 90◦ of a square planar coordination,
having a z angle of 98.8◦, a methyl in 6-Me-2,2′-bipyridine increases the value to 125.1◦,
whereas 6-CF3-2,2′-bipyridine has a value of 137.6◦.
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Figure 13. ζ angle for Pt(6-R-bipy)Me2 complexes.

On the whole, taking account of the irreversible nature of the reaction (due to methane
release), it can be deduced that a substituent in position 6, due to destabilization of the
adduct, accelerates the rollover reaction, yielding regioselective C(3)–H bond activation. A
CF3 substituent in position 6 favors the reaction for three reasons: the sterically destabiliza-
tion of the NˆN adduct, the electronically destabilization of the adduct (the nitrogen close
to the substituent is a very poor donor), the activation of the electron poor C(3)–H bond.

The comparison of 6-methoxy-2,2′-bipyridine with 6-ethyl-2,2′-bipyridine evidenced
the non-trivial influence of the methoxy substituent, having opposite inductive and me-
someric effects, both on Pt(II)-mediated rollover activation and on the properties of result-
ing rollover complexes [37,38].

In all the cases studied with bipyridine derivatives, it was found that the most ac-
tive Pt(II) precursor is the electron-rich [PtMe2(DMSO)2] complex. The analogue phenyl
derivative [PtPh2(DMSO)2] showed to be slightly less active. In contrast, the electron-
poor [PtCl2(DMSO)2] does not activate the C(3)–H bond with the only exception of the
di-substituted 6,6′-(OMe)2-2,2′-bipyridine. In this case, reaction with [PtCl2(DMSO)2] af-
forded the rollover complex 17 [42], whereas under the same conditions, the electron-poor
[PtCl2(DMSO)2] did not activate the C(3)–H bond of the mono-substituted 6-OMe-2,2′-
bipyridine affording the adduct [PtCl2(bpy6OMe)], 18. Under harsher conditions, activation
of a C–H bond in the substituent gives the classical tridentate cyclometalated complex 19
(Figure 14) [40].
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Figure 14. Pt(II) complexes with 6-OMe- and 6,6′-(OMe)2-2,2′-bipyridine.

The influence of steric factors in rollover metalation was also observed in the reaction
of 6-NH2-2,2′-bipyridine and 6-NMe2-2,2′-bipyridine with [PtMe2(SMe2)]2 at room tem-
perature. The steric difference due to the methyl groups in the dimethylamino substituent
drives the reaction towards the rollover cyclometalated complex 20 instead of the classical
NˆN bidentate coordination 21 (Figure 15) [43].
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[PtMe2(SMe2)]2 complexes showed to be the best starting material. The C–H bond activa-
tion step may follow different reaction paths (see Chapter 3) and in the case of methyl-
platinum(II) complexes, it is expected to proceed through an oxidative addition/reductive 
elimination sequence [22]. In the solution, the reductive elimination step involves elimi-
nation of methane, making the process irreversible. When electron poor starting Pt(II) 
complex are used, such as [PtCl4]2−, classical cyclometalation occurs, likely following a dif-
ferent mechanism, and tridentate N^N^C complexes are formed [35]. 

In the case of palladium, the situation is less clear: starting from Pd acetate, the roll-
over reaction is not regiospecific and the N^C rollover is usually formed in competition 
with classic N^N^C cyclometalated complexes (Figure 17) [33]. It should be noted that, in 
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Regioselectivity

Regioselectivity in metal-mediated C–H bond activation is not a trivial topic; with
regard to cyclometalation reactions, competition between different coordination modes
(e.g., five- vs. six-membered rings, bidentate vs. tridentate coordination, M-C(sp2) vs.
M-C(sp3), etc.) may occur.

The driving force of the cyclometalation reaction is often not fully understood, and
subtle differences in the structure of the ligand or in reaction conditions may frequently
drive the reaction towards unexpected results. As an example, Pd(II) and Pt(II) com-
plexes are able to activate several C–H bonds in substituted 2,2′-bipyridines. In the case
of 6-dimethylbenzyl-2,2′-bipyridine (Figure 16), three different positions can be activated,
affording an NˆNˆC(sp2) tridentate complex with [5,6] fused rings by C(sp2)–H bond acti-
vation, an NˆNˆC(sp3) tridentate complex with [5] fused rings by C(sp3)–H bond activation,
and, thirdly, an NˆC cyclometalated rollover complex by C(sp2)–H bond activation on the
pyridine C(3) atom (Figure 16 species A, B, and C, respectively) [31,33,44]. Other 6-Alkyl-
and 6-benzyl- 2,2′-bipyridines show a similar behavior [33,45].
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In the case of platinum(II), an important point, apart from the bulkiness of the
substituent, is the electron density on the metal: electron-rich [PtMe2(DMSO)2] and
[PtMe2(SMe2)]2 complexes showed to be the best starting material. The C–H bond acti-
vation step may follow different reaction paths (see Section 3) and in the case of methyl-
platinum(II) complexes, it is expected to proceed through an oxidative addition/reductive
elimination sequence [22]. In the solution, the reductive elimination step involves elim-
ination of methane, making the process irreversible. When electron poor starting Pt(II)
complex are used, such as [PtCl4]2−, classical cyclometalation occurs, likely following a
different mechanism, and tridentate NˆNˆC complexes are formed [35].

In the case of palladium, the situation is less clear: starting from Pd acetate, the rollover
reaction is not regiospecific and the NˆC rollover is usually formed in competition with
classic NˆNˆC cyclometalated complexes (Figure 17) [33]. It should be noted that, in this
case, acetic acid is formed as a byproduct and the reaction is expected to be reversible, as in
the case of [MCl4]2− derivative (M = Pd, Pt; HCl as byproduct).
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Figure 17. Cyclopalladation reactions with 6-substituted 2,2′-bipyridines. Adapted with permission
from Organometallics 2000, 19, 21, 4295–4304. Copyright (2000) American Chemical Society.

All the platinum-mediated cases reported so far regarded rollover reactions pro-
moted by Pt(II) derivatives. A rare Pt(IV) rollover cyclometalation was reported by
Safari and coworkers with 6,6′-dimethyl-2,2′-bipyridine. The metalation occurs under
mild conditions (60 ◦C) starting from the electron poor Pt(IV) complex H2PtCl6, with
the salt [(bipyH)2][PtCl6] as intermediate, to finally give complex [Pt(NˆC)Cl3(DMF)]
22 (NˆC = rollover- cyclometalated 6,6′-dimethyl-2,2′-bipyridine, DMF = dimethylfor-
mamide) [46]. Worthy to note, complex 22 displayed in vitro cytotoxicity, showing a higher
activity than cisplatin against the colon cancer cell line, with less toxicity on normal cells.

4.1.2. N-Functionalized Bipyridines

N-functionalized 2,2′- bipyridines form a special case of bipyridine derivatives, being
unable to form the NˆN chelated complex which lies at the origin of the rollover pathway.

Three cases are of interest: 2,2′-bipyridine N-oxide, 23, and the N-methyl-2,2′-bipyri-
dylium and N-protonated 2,2′-bipyridylium cations 24 and 25 (Figure 18).
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Figure 18. N-functionalized 2,2′-bipyridines.

Reaction of [PdCl4]2− and [PtCl4]2− with the N-methyl-2,2′-bipyridylium ion 24
initially gave the monodentate complexes 26 which were converted into the corresponding
rollover complexes 27 by heating (Figure 19) [47]. Whereas the final species can be described
as rollover complexes, the reaction is actually a simple metalation, analogous to those
displayed by ligands such as 2-phenylpyridine, because it starts forming the monodentate
adducts 26, and represents a case of “pseudo-rollover” cyclometalation. An important
difference towards 2-phenylpyridine is the positive charge of the ligand, which becomes
neutral after cyclometalation.
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Figure 19. Pseudo rollover cyclometalation of the N-methyl-2,2′-bipyridylium cation. Reprinted
(redrawn) by permission from Springer Nature, Transition Met. Chem. 1985, 240, 238–240. Substitution
of [M(bpyMe)C13] and [M(bpyMe-H)C12] (M = Pd or Pt; bpyMe = N-methyl-2,2′-bipyridylium ion)
with N-heterocycles. Wimmer, F.L.; Wimmer, S.; Delhi, N.; Facility, S.I.; Griffith, P.; Ten, R.W.M.;
Langhout, J.P.; Gowda, N.M.N.; Gowda, M.N.; Naikar, S.B. COPYRIGHT 1985.

At the time, the authors were not able to definitely characterize the cyclometalated
complexes 27 as monomeric species excluding dimeric/oligomeric structures; however,
in a subsequent paper, the monomeric nature of the complex was defined and a series of
derivatives were obtained by means of substitution reactions [48].

The nature of the mesoionic k2-N,C- neutral ligand in 27 is interesting and worth to
be commented. This ligand belongs to the class of abnormal-remote pyridylene ligand, a
well-documented class of N-heterocyclic carbenes (NHC) [49–51].

In contrast to the N-methyl-2,2′-bipyridylium ion, 2,2′-bipyridine N-oxide, 23, is a
neutral ligand with a potential NˆO chelating behavior. The Shahsavari group has devoted
great attention to the Pt(II) chemistry of this ligand. Cyclometalated rollover complexes of
the type [PtMe(k2N,C-bipyO-H)(L)], 28, (bipyO-H=cyclometalated 2,2′-bipyridine N-oxide)
were originally obtained by Puddehphatt and coworkers in 2014 [52]. The rollover reaction,
in this case, starting from the electron-rich complex [PtMe2(µ-SMe2)]2 is fast even at room
temperature, showing that the N-bonded oxygen, at least in the case of Pt(II), strongly
favors rollover metalation (Figure 20). As usual, from the starting complex, a family of
complexes with different electronic and steric properties were obtained by substitution
of the original neutral ligand (SMe2). In contrast, the rigid ligand 1,10-phenanthroline
N-oxide gave the N-O chelated complex.
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Organometallics 2014, 33, 19, 5402−5413. Copyright (2014) American Chemical Society.

A few years later, complex 28 was resumed and allowed to obtain a series of complexes
of general formula [Pt(NˆC)Me(L)], (L = PCy3, PPh2py, P(OPh)3, Ph2PCH2PPh2). The
biological activities of these complexes were evaluated against a panel of standard cancer
cell lines, and two of them showed a potent cytotoxic activity [53].

In the course of their investigations, Shahsavari and coworkers also studied the
oxidative addition reaction of MeI to rollover the Pt(II) N–O bipyridine derived rollover
complexes, comparing the rollover complexes with other classical cyclometalated ligands.
These results will be reported in Section 4.1.6.

4.1.3. Double Rollover Activation and Dinuclear Complexes (Delocalized Planar Systems)

One peculiarity of rollover cyclometalation derives from the uncoordinated donor
atom, which usually is a nitrogen. This nitrogen can coordinate to a second metal center and
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promote a second rollover metalation, bridging two metals through a highly delocalized,
planar connection.

In addition to 2,2′-bipyridine, other related ligands, such as 6-Ph-2,2′-bipyridine,
6,6′-Ph2-bipyridine, and 2,2′:6′,2”-terpyridine (Figure 21) are able to give double rollover
metalation, producing planar and highly delocalized complexes. The behavior of these
ligands may be complex, due to the presence of several metalation sites.
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Complex 31 is the only reaction product observed both with a Pt/terpy 1:1 and 2:1 
molar ratio; when a Pt/terpy 1:1 molar ratio is employed, a mixture of 31 and starting 
[PtMe2(DMSO)2] is recovered from the reaction mixture. This means that the second roll-
over metalation in this case is faster than the first one and, consequently, that the central 
pyridyl ring after cyclometalation is activated towards rollover metalation, likely due to 
the higher electron density of the formally anionic pyridyl ligand. In this case, terpyridine, 

Figure 21. Ligands involved in double rollover cyclometalation.

Reaction of 2,2′-bipyiridine with “PtMe2” electron-rich precursors, such as [PtMe2(DMSO)2],
affords the mononuclear complex 29 when the reaction is carried out with 1:1 metal/ligand
molar ratio, and dinuclear complex 30 with a 2:1 metal/ligand molar ratio [36]. The mononu-
clear complex 29 can also be isolated, and then further reacted with [PtMe2(DMSO)2] (Figure
22). The fact that the reaction can be stopped after the first cyclometalation shows that the
second activation step is slower that the first one.
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Figure 22. Synthesis of mono- and dinuclear Pt(II) rollover bipyridine complexes.

In contrast, the same reaction with 2,2′:6′,2”-terpyridine (terpy) showed a double C–H
rollover activation affording only the binuclear species [(DMSO)MePt(µ-NˆC-CˆN-terpy-
2H)PtMe(DMSO)], 31 (Figure 23).
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Figure 23. Rollover behavior of 2,2′:6′,2”-terpyridine. In red, activated C–H positions; in blue, not activated C–H positions.
Adapted with permission from Organometallics 2001, 20, 6, 1148–1152. Copyright (2001) American Chemical Society.

Complex 31 is the only reaction product observed both with a Pt/terpy 1:1 and 2:1
molar ratio; when a Pt/terpy 1:1 molar ratio is employed, a mixture of 31 and starting
[PtMe2(DMSO)2] is recovered from the reaction mixture. This means that the second
rollover metalation in this case is faster than the first one and, consequently, that the central
pyridyl ring after cyclometalation is activated towards rollover metalation, likely due to
the higher electron density of the formally anionic pyridyl ligand. In this case, terpyridine,
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a well-known tridentate ligand, acts as a 2-fold-deprotonated, formally dianionic, highly
delocalized planar bridging ligand.

Starting from 31, substitution of DMSO with neutral ligands afforded a series of
derivatives, one of which, [(CO)MePt(µ-NˆC-CˆN-terpy-2H)PtMe(CO)] was demonstrated
to be an organoplatinum polymer with Pt—Pt interactions, by means of single crystal X-ray
structure determination [26,54].

At variance, 6-Ph-2,2′-bipyridine showed a similar but more complex behavior [55].
This ligand is well-known for its tendency to give NˆNˆC classic terdentate Pt(II) cyclomet-
alated complexes by reaction with electron-poor Pt(II) precursors, such as K2PtCl4. In
contrast, by reaction with [PtR2(DMSO)2] (R = Ph, Me), 6-Ph-2,2′-bipyridine is able to give
mono- (32) and dinuclear (33) complexes (Figure 24). In the latter case, the ligand shows an
unprecedented behavior, acting as a threefold-deprotonated ligand. All three Pt–C bonds
originate from activation of C(sp2)–H bonds.
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The dinuclear complex 33 is a unique complexes because (i) the two platinum centers
are connected through a ten-electron bridging donor, (ii) three five-membered cyclomet-
alated rings are assembled in the same complex and in same ligand; (iii) the tridentate,
formally dianionic, system has a rare C, N, C sequence. From the starting complexes 32 and
33, a series of novel derivatives were obtained by reaction with neutral ligands or HCl [56].

For comparison, it is worth noting that reaction of 6-phenyl-2,2′-bipyridine with less
electron-rich Pt(II) precursors, such as [PtCl4]2−or trans-[PtCl(Me)(SMe)2] affords only
the adduct [PtCl(Me)(NˆN)] or the well-known NˆNˆC tridentate cyclometalated complex
[Pt(NˆNˆC)Cl].

Extension of the study to 6,6′-Ph2-bipyridine gave mono- and dinuclear complexes
according to the Pt/ligand molar ratio. With one equivalent of the Pt precursor, the [Pt(L-
2H)(DMSO)] complex, 34, is obtained; in this case, the twofold deprotonated ligadopts
a CˆNˆC coordination. The reaction with two equivalents of Pt(II) produces the dinu-
clear complexes [Pt2(L-4H)(DMSO)2], 35. In addition, this complex appears unique under
several points of view. Its synthesis involves activation of four C–H bonds, with four
cyclometalation reactions. In the complex, a fourfold deprotonated 6,6′-Ph2-bipyridine (for-
mally tetra anionic) bridges two Pt-DMSO fragments acting as a planar, highly delocalized
CˆNˆC-CˆNˆC 12-electron donor [57].

A fifth analogous ligand, 6,6′ ′ ′-Dimethyl-2,2′:6′,2”:6”,2′ ′ ′-quaterpyridine, was not
studied with “PtR2” precursors, but only with PtCl2 affording the rollover tridentate
complex 36 (Figure 25) [58].
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Figure 27. Di- and tetranuclear luminescent rollover complexes 38 and 39. Reprinted (redrawn) from 
J. Organomet. Chem., 2016, 819, 216–227. Aghakhanpour, R.B.; Nabavizadeh, S.M.; Rashidi, M. 
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Figure 25. Pt(II) quaterpyridine rollover complex 36. Reprinted (redrawn) from Polyhedron 2014,
81, 188–195. Adamski, A.; Wałȩsa-Chorab, M.; Kubicki, M.; Hnatejko, Z.; Patroniak, V. Absorption
spectra, luminescence properties, and electrochemical behavior of Mn(II), Fe(III), and Pt(II) complexes
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The double rollover cyclometalation also allowed the build-up of heterobimetallic
complexes by means of a two-step reaction sequence e.g., 37, (Figure 26) [59].
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Figure 26. Rollover Pt-Pd heterobimetallic complexes with 2,2′-bipyridine. Adapted with permission
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In 2016, Aghakhanpour, Nabavizadeh, and Rashidi, following their studies on the
chemistry of rollover complexes, synthesized and characterized a series of platinum(II) com-
plexes based on the same “double rollover cycloplatinated core” (Pt(µ-bpy-2H)Pt). The au-
thors firstly found that whereas the mononuclear rollover complex [Pt(bpy-H)Me(DMSO)],
29, is completely non emissive in solution and in the solid state, its dinuclear twofold-
rollover analogue [Pt2(bpy-2H)Me2(DMSO)2] 30 exhibits efficient green emission under
the same conditions. The other two complexes, a dinuclear (38) and a tetranuclear (39) one
(Figure 27), also exhibited brightly luminescence in solution and solid state. Complex 30
exhibits a structured emission band, in agreement with the emissive state located in the
cyclometalated ligand. Complexes 38 and 39, however, show unstructured emission bands,
indicating a large amount of MLCT in their emissive states [60].
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Later, the series of dinuclear complexes was extended, with the synthesis of a series
of complexes with the same Pt(µ-bpy-2H)Pt core, namely [(L)(L’)Pt(µ-bpy-2H)Pt(L)(L)],
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40 (L = CF3COO, Cl, Br, I; L’ = PR3), which showed that the double rollover cycloplatinated
core is “a highly versatile and tunable platform for the construction of emissive materi-
als” [61]. The emission behavior of these rollover species was found to be different from
that of their correspondent classic cyclometalated complexes, with a high dependence of
the emission color on the nature of the ancillary ligands.

4.1.4. Gas Phase Studies

Investigations in the gas phase on rollover reactions, by means of MS spectrometry
and DFT computational methods, went ahead in parallel with investigations in solution. It
is interesting to observe that the two fields developed almost independently for years. The
first studies involving a rollover cyclometalation in the gas-phase were presented by Bursey
and coworkers in 1983, which, investigating osmium and ruthenium bipyridine complexes
by means of FAB and FD mass spectrometry, reported the formation of [Os(bipy)(bipy-H)]+

and [Ru(bipy)(bipy-H)]+ rollover complexes [62,63].
After several years, during which other papers reported results not clearly connected

to rollover behaviors, this chemistry was resumed in the period from 2008 to 2012 by H.
Schwarz and coworkers, in particular B. Butschke, at the TU Berlin laboratory. Schwarz,
Butschke, and coworkers gave a fundamental contribution to the understanding of the
rollover reaction, beyond the gas-phase behavior. The Schwarz group extensively studied
the rollover chemistry in the gas phase by means of mass spectrometric techniques in
conjunction with DFT calculations. Their study also permitted a detailed analysis of the
fundamental factors governing the rollover reaction and are well summarized in their 2012
review on the subject [7]. This review provides a quite complete overview of the gas-phase
studies, so we will shortly discuss this topic, sending back to this review for an in-depth
examination.

Firstly, Schwarz and coworkers investigated the gas-phase behavior of the cationic
species [Pt(bipy)((CH3)2S)]+, which loses CH4 and (CH3)2S to give the cyclometalated
rollover species [Pt(bipy-H)]+ [64].

Labeling experiments, supplemented by DFT computations, shed light into the
rollover reaction path in the gas phase: In the course of the reaction, a hydrogen atom from
the bipyridine C(3)-position is combined with the coordinated methyl group to form CH4.
In addition, the thermal reactions of the rollover cation [Pt(bipy-H)]+ with (CH3)2S result
in an unusual dehydrogenative C-C coupling of the two methyl groups to form C2H4. The
experiments also gave evidence for the reversibility of the rollover process. The conversion
of (CH3)2S to C2H4 is of interest because it may serve as a model for mechanistic insight in
the dehydrosulfurization of sulfur-containing hydrocarbons.

In order to obtain deeper insight into the gas phase behavior, the IMR (ion/molecule
reaction) of [Pt(bipy−H)]+ with a series of thioethers and thiols was investigated, finding
that the rollover-coordinated bipyridine has an active role in hydrogen transfer from the
thioether ligand in the course of dehydrosulfurization reaction [65]. The authors conclude
that the bipyridine ligand plays an active role, acting as an acceptor in the initial hydrogen
transfer from the thioether ligand to the (NˆC)Pt+ core, a peculiar behavior of rollover
cyclometalated complex, not showed by classical analogues.

The study was extended to collision-induced fragmentation in the gas-phase of the
cationic complexes [Pt(CH3)(L)]+ and[Pt(CD3)(L)]+ (with L = nitrogen-bidentate ligands
including 2,2′-bipyridine) and their thermal reactions with a series of deuterium-labeled
benzenes. At variance with phenanthroline and bipyrimidine complexes, whose dissocia-
tions gave the preferential formation of neutral PtCH2 and protonated heterocyclic ligands,
the bipyridine complex favors loss of methane through a rollover cyclometalation process
([Pt(bipy)CH3]+ →[Pt(bipy-H)]+ + CH4) [66].

The gas-phase studies continued with the investigation on the ion–molecule reactions
of rollover-cyclometalated [Pt(bipy-H)]+ with alkyl ethers in the gas-phase, in compar-
ison with corresponding reactions with sulfur analogues [67,68]. Furthermore, the gas-
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phase ion/molecule reactions of the cationic cyclometalated species [Pt(bipy–H)]+ with
chloromethanes CH4-nCln (n = 1–4), lead to a platinum-mediated C–C bond formation [69].

Investigations on thermal ion/molecule reactions of a series of cyclometalated Pt(II)
complexes [Pt(L–H)]+ (L = 2,2′-bipyridine, 2-phenylpyridine (phpy), 7,8-benzoquinoline
(bq)) with branched and linear alkanes showed that only the rollover complex undergo
hydrogen-atom transfer from the alkane to the coordinated carbon of the cyclometalated
pyridine, followed by ring rotation. DFT calculations were used to elucidate reaction
pathways and effects of different ligands on the course of the reactions [70]. The main
processes correspond to elimination of H2 and alkenes. For all three cyclometalated com-
plexes, loss of C2H4 from C2H6 dominates over H2 elimination; however, the mechanisms
of the rollover complex significantly differ for the reactions of classical cyclometalated
complexes. In the case of the rollover complex, a double hydrogen atom transfer from C2H6
to the cationic [Pt(bipy-H)]+ is followed by internal ring rotation in a retro-rollover process,
affording [Pt(H)(bipy)]+, for the phpy and bq complexes, the cyclometalated pattern is
preserved to give [Pt(H2)(L–H) species. This observation indicates that different reaction
mechanisms are operating in the dehydrogenation of C2H6: only the (bipy-H) rollover
ligand can return to a bidentate N, N′-coordination mode after the hydrogen transfer,
following a retro-rollover pathway.

In a systematic investigation, a comparison of the gas-phase fragmentation of nickel,
palladium, and platinum [M(bipy)X]+ cationic complexes (X = CH3, F, Cl, Br, I, OAc) showed
that upon collision-induced dissociation (CID), only the platinum species [Pt(bipy)CH3]+

and [Pt(bipy)Cl]+ gave rollover cyclometalation, whereas [Pd(bipy)CH3]+ and [Ni(bipy)CH3]+

gave homolytic cleavage of metal-CH3 bond. On the whole, the observations suggest
that platinum is superior to palladium and nickel for rollover metalation. Mechanistic
considerations, based on experimental and DFT data, were reported in Section 3 [21].

Gas-phase studies were also performed with the intention to shed light into the
rollover catalytic activity of an (h6-arene)RuCl(NˆN) complex (NˆN = 2-(pyrimidin-4-
yl)pyridine-type ligands) [71,72]. The investigation combined gas phase, solution, and
in-silico studies will be thoroughly discussed in Section 5 (see Section 5.1).

A further example of rollover behavior in the gas-phase involved the fragmentation of
the dinuclear gold m-oxo complex 41, which liberates H2O by means of a twofold rollover
cyclometalation affording the cationic complex 42. (Figure 28) [73].
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4.1.5. Protonation and Retro-Rollover

As commented before, the presence of an uncoordinated nitrogen atom in 2,2′-
bipyridine rollover complexes deeply influences the reactivity of these complexes. In
particular, the nitrogen atom can be protonated affording new cationic complexes where
the mesoionic neutral ligand bipy* (Figures 29 and 30) is an isomer of 2,2′-bipyridine and
can also be described as abnormal-remote pyridylene [49–51].
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Protonation of [Pt(bipy-H)Me(L)] complexes (L = DMSO, PPh3, PCy3, etc.) with [18-
crown-6-H3O][BF4] produced a series of stable pyridylenes [Pt(bipy*)(Me)(L)]+. These
cationic species in solution follow a retro-rollover reaction, affording the corresponding
NˆN chelated complexes [Pt(bipy)(Me)(L)]+ (30). The retro-rollover process corresponds
to an isomerization process; the reaction proceeds at different rates depending on the
nature of the phosphane ligand, with the most basic PCy3 providing the fastest reaction.
The mesoionic species [Pt(bipy*)(Me)(L)]+ contain two Pt−C bonds: the balance between
the Pt−C(sp2) and Pt−C(sp3) bond rupture is subtle, and competition is observed in the
presence of strong external donors [74].

Ligands with Multiple Personalities

Protonation and retro-rollover processes of Pt(II) rollover complexes were also achieved
with other related ligands, such as 2-(2′-pyridyl)quinoline, 6-methoxy)-2,2′-bipyridine,
and the helicene-2,2′-bipyridine proligand 3-(2-pyridyl)-4-aza[6]helicene (Figure 31). The
rollover complex 43, obtained by reaction with [PtMe2(DMSO)2], reacts with HBF4 afford-
ing the corresponding protonated species 44 [75]. The protonation reaction is reversible
due to acid/base switching and both the complexes, described as organometallic helicenes,
that act as “multifunctional switchable systems” due to the reversible tuning of optical
and chiroptical properties: optical rotation, electronic circular dichroism, nonpolarized
luminescence, and circularly polarized luminescence.
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4.1.6. Reactivity of Rollover Complexes

Although beyond the scope of this Review, we will briefly comment some aspects
of the reactivity of bipyridine Pt(II) rollover complexes. One important aspect of the
reactivity of [Pt(bipy-H)Me(L)] rollover species (L = neutral ligand) is their manifold
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reactivity with electrophiles, due to the presence of several nucleophilic centers or bonds:
the uncoordinated nitrogen, the electron-rich platinum center, and the two Pt-C bonds. The
reactivity with acids has been described in Section 4.1.5, being connected with the retro-
rollover process. The reaction with alkyl halides usually leads to oxidative additions to
afford Pt(IV) complexes. This reactivity is also related to functionalization of the bipyridine
ligands and will be treated in Section 5.2.

Starting from the parent complex [Pt(bipy-H)Me(DMSO)], a series of rollover com-
plexes with different electronic and steric properties have been obtained by substitution
of the neutral and anionic ancillary ligands. The structural modifications allow the ob-
tainment of species with an ample variety of properties and potential applications, from
emissive materials to antitumor drugs.

Some mono- and dinuclear complexes with diphosphines have been reported earlier
in this review. Other series of mono, and dinuclear complexes with diphosphines, 45–48
(see Figure 32), have been reported by us [76] and other researchers [77,78], comprising the
bipyridine N-Oxide complex [Pt(NˆC)(dppm)(p-tolyl)], 49, analogous to 48, with p-tolyl in
place on methyl.
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Several of these complexes may be obtained from the parent rollover compounds
[Pt(bipy-H)Me(DMSO)] and [Pt2(µ-bipy-2H)Me(DMSO)] by substitution reaction of the
neutral ligand or by reactivity of the coordinated methyl (e.g., by reaction with HCl).
Among the ample family of the described complexes, some have interesting properties, such
as the dinuclear double-rollover complexes 40, [Pt2(µ-bpy-2H)(X)2(PPh3)2], whose emission
properties dependson the nature of the anionic ligand X (e.g., halide or trifluoroacetate) [79].
The authors proved that the halide ligands tune the brightness of these compounds as
“organic light emitting diodes (OLEDs) emitters”.

Finally, we may also mention auto-assembly of an unusual polynuclear rollover
hydride [Pt(NˆC)(µ-H)]4, obtained by reaction of [Pt(bipy-H)Me(DMSO)] with NaBH4 [80].

4.1.7. Other Metals

The iridium rollover chemistry is rather rich; as previously shown, this metal has been
one of the first to display rollover metalation, and the first one with 2,2′-bipyridine. After
the final characterization of [Ir(bipy)2(bipy*)]3+, it took five years until a second iridium
rollover complex, [Ir(bipy)(bipy-H)Cl]2

2+, was obtained by reaction of Ir(IV) and Ir(III)
chlorides with 2,2′-bipyridine under controlled conditions [81].

An interesting case of Ir(III) rollover complex, whose reactivity have implications in
organic synthesis and catalysis, was reported by Periana and coworkers in 2007. Reac-
tion of 6-phenyl-2,2′-bipyridine with IrCl3 and, subsequently, with 4,4′-di-tert-butyl-2,2′-
bipyridine, afforded the rollover complex 50, from which successive reactions with ZnMe2
and AgOTf allowed isolation of the rollover complex 51 (Figure 33) [82].
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In order to get mechanistic insights, the reaction of Co, Rh, and Ir precursors [(η5-
Cp*)MCl(µ-Cl)]2, with five different 2-heteroarylpyridines was studied in the gas-phase. 
As reported in Section 6, the “RhCp*” complex has been widely used as catalysts for nu-
merous rollover C–H bond functionalization of aromatic and heteroaromatic compounds. 

Figure 33. Synthesis of complex 51. Adapted with permission from Organometallics 2007, 26, 9,
2137–2140. Copyright (2007) American Chemical Society.

Complex 51 showed interesting reactivity which comprehends both stoichiometric
and catalytic processes. As for stochiometric reactivity, the Ir(III) complex promotes
C–H bond activation in benzene, generating the corresponding Ir-phenyl complex. In
addition, reaction with oxidants such as bis(trifluoroacetate)iodobenzene resulted in oxy
functionalization of the coordinated alkyl group at room temperature. According to the
authors, this was the first example of “relatively efficient Ir(III)-alkyl functionalization
to generate oxy functionalized products”. Furthermore, this rollover Ir(III) complex also
showed to be active in a catalytic process promoting C–H activation in benzene in the
presence of acids.

Two years later, the study was extended to three related tridentate ligands 6-(4-R-
phenyl)-2,2′-bipyridine, where (R = H, CMe3, OH). The ligands gave easily rollover cy-
clometalation by reaction with IrCl3, affording the dinuclear complexes [Ir(NˆC)Cl2(C5H5N)]2
or, with a different metal to ligand molar ratio, the bis-cyclometalated complexes 52,
[Ir(NˆNˆC)(NˆC)Cl] where the 6-Ph-bipyridine ligands act both as classical tridentate and
rollover bidentate cyclometalating ligand (Figure 34). From the dinuclear complex with
6-Ph-bipyridine the corresponding mononuclear complex Ir(NˆC)(NˆN)Cl2 was obtained
by reaction 4,4′-di-tert-butylbipyridine [83].
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Figure 34. Ir(III) rollover complex 51. Adapted with permission from Organometallics 2009, 28, 12,
3395–3406. Copyright (2009) American Chemical Society.

Years later, Niedner-Schatteburg, Thiel, and coworkers reported the rollover be-
havior of the iridium(III) dimer [(η5-Cp*)IrCl(µ-Cl)]2 with 2-(2-dialkylaminopyrimidin-4-
yl)pyridine whose rollover cyclometallation proceeds even at room temperature affording
complex 53 (Figure 35).
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ver cyclometallation proceeds easier from cobalt to rhodium to iridium: the trend follows 
the stabilities of the metal–carbon bonds formed [27]. 
The Ir(III) rollover complex 53 has, as usual, an ortho nitrogen available for coordination. 
This presence gave the idea to extend the study to the analogous pyrimidine ligand, 2-(2-
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tridentate complexes, [Ir(N^N^N)(N^N^C)]2+ and [Ir(N^N^C)2]+. Inter alia, the new com-
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[Ir(N^N^N)Cl3], (N^N^N = terpyridine) with three potentially terdentate N^N^C ligands 
with the 6’-phenyl-2,2’-bipyridine scaffold. Under the reaction conditions used, none of 
the three ligands showed tendency to act in the classic cyclometalated N^N^C mode (Fig-
ure 37). Likely due to the steric hindrance of the terpyridine ligand, 6’-phenyl-2,2’-bipyr-
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the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry), 54 and
55 (both reproduced (redrawn) from Ref. [84] with permission from The Royal Society of Chemistry).

In order to get mechanistic insights, the reaction of Co, Rh, and Ir precursors [(η5-
Cp*)MCl(µ-Cl)]2, with five different 2-heteroarylpyridines was studied in the gas-phase. As
reported in Section 6, the “RhCp*” complex has been widely used as catalysts for numerous
rollover C–H bond functionalization of aromatic and heteroaromatic compounds.

In the course of the study, cationic adducts [(h5-Cp*)M(Cl)(N,N′)]+ with 2-(2-dialkyl-
aminopyrimidin-4-yl)pyrimidine (M = Co, Rh, Ir) were examined in the gas phase by DFT
calculations and CID ESI-MS spectrometry, displaying a rollover cyclometallation at one of
the aromatic rings to give complexes analogous to 53. As for the metal influence, rollover
cyclometallation proceeds easier from cobalt to rhodium to iridium: the trend follows the
stabilities of the metal–carbon bonds formed [27].

The Ir(III) rollover complex 53 has, as usual, an ortho nitrogen available for coordina-
tion. This presence gave the idea to extend the study to the analogous pyrimidine ligand,
2-(2-dialkylaminopyrimidin-4-yl)pyrimidine. The resulting rollover complex 54 was used
to obtain the heterobimetallic Ir-Pt and Ir-Pd complexes 55 by reaction with [(PhCN)2MCl2]
or K[Pt(C2H4)Cl3] [84].

Ir(III) derivatives where also used to obtain other bipyridine- or terpyridine-based
rollover complexes. The potentially NˆNˆN terdentate ligand 2,6-bis(7′-methyl-4′-phenyl-2′-
quinolyl)pyridine reacts with IrCl3 in glycerol at reflux, coordinating either in the classical
NˆNˆN mode or as an NˆNˆC ligand (Figure 36) as a consequence of a rollover cyclomet-
allation of one lateral pyridine ring. In particular, the author obtained the bis-tridentate
complexes, [Ir(NˆNˆN)(NˆNˆC)]2+ and [Ir(NˆNˆC)2]+. Inter alia, the new complexes showed
to be the first luminescent and redox-active Ir(III)-cyclometalated bis-tridentate com-
plexes [85].
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Figure 36. NˆNˆN and NˆNˆC coordination modes of 2,6-bis(7′-methyl-4′-phenyl-2′-
quinolyl)pyridine with Ir(III).

Years later, Bexon and Williams studied the reaction of iridium terpyridyl trichloride,
[Ir(NˆNˆN)Cl3], (NˆNˆN = terpyridine) with three potentially terdentate NˆNˆC ligands
with the 6′-phenyl-2,2′-bipyridine scaffold. Under the reaction conditions used, none of the
three ligands showed tendency to act in the classic cyclometalated NˆNˆC mode (Figure 37).
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Likely due to the steric hindrance of the terpyridine ligand, 6′-phenyl-2,2′-bipyridine binds
to the metal in a simple NˆN coordination mode (complex 56), whereas the 4′-tolyl groups
in the other two ligands promotes a rollover C–H bond activation, affording complexes
57 and 58 (Figure 37) [86]. Interestingly, the two new rollover complexes exhibit intense
luminescence in the solution at room temperature.
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Figure 38. Synthesis of rollover complexes 61 and 62. Adapted with permission from Organometal-
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In contrast, when the internal pyridine ring is protected, as in 3,5-dimethyl-6-phenyl-
2,2’-bipyridine, the reaction resulted in rotation of the external pyridine ring, with a two-
fold metalation, affording the C, N, C- rollover-pincer complex 62 (Figure 38). 

Osmium 

Figure 37. Ir(III) complexes with 6′-aryl-2,2′-bipyridines.

Rollover cyclometalation of 4,4′-Me2-2,2′-bipyridine has been reported by means of a
one-pot reaction with IrCl3 and a bis-trifluoromethyl-phenylpyridine (2-(3,5-bis(trifluoro-
methyl)phenyl)-4-methylpyridine), followed by treatment with lithium 2,4-pentanedionate.
The reaction afforded three products, separated by column chromatography. The rollover
complex [Ir(NˆC)(Nˆ′C′)(acac)], 59, (NˆC = cyclometalated 2-(3,5-bis(trifluoromethyl)phenyl)-
4-methylpyridine, N′ˆC′ = rollover cyclometalated 4,4′-Me2-2,2′-bipyridine) was isolated
albeit with a low yield, and characterized by means of X-ray crystallography [87].

Iridium and osmium polyhydrides were also found to be able to promote rollover C–H
bond activation in 2,2′-bipyridines and related heterocycles [28]. Reaction of the iridium(V)
hydrido complex 60 with 2,2′-bipyridine or 6-Ph-2,2′bipyridine in refluxing toluene leads
to rollover C–H bond activation, allowing isolation of complexes 61 (Figure 38).
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Figure 38. Synthesis of rollover complexes 61 and 62. Adapted with permission from Organometallics
2020, 39, 11, 2102–2115. Copyright (2020) American Chemical Society.

Reaction of 6-phenyl-2,2′-bipyridine with the pentadeuteride complex [IrD5(PR3)2]
reveals that the generation of the rollover complex can be rationalized as a pyridyl-assisted
process, as the corresponding osmium complexes that will be described in Section 4.1.7.

In contrast, when the internal pyridine ring is protected, as in 3,5-dimethyl-6-phenyl-
2,2′-bipyridine, the reaction resulted in rotation of the external pyridine ring, with a
two-fold metalation, affording the C, N, C- rollover-pincer complex 62 (Figure 38).
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Osmium

In the same paper, reaction of the hexahydride osmium complex 63 with 2,2′-bipyridine
or 6-substituted 2,2′-bipyridines (Ph and Me substituents) under reflux results, as the analo-
gous Ir(V) complexes, in rollover C(3)–H bond activation and formation with high yields of
complexes 64 (Figure 39). Mechanistic studies, carried out with the corresponding polydeu-
teride Os(VI) complex, indicates that the C–H bond activation is not a N-directed process
and precedes nitrogen coordination. The coordinatively saturated complex 63 needs to
release a hydrogen molecule, through a reductive elimination process, before reacting with
the C–H bond. The resulting electrophilic Os(IV) center promote the hydride-mediated
heterolytic cleavage of the C–H bond. The C–H bond selectivity is considered the result of
nitrogen trapping of the intermediate formed by C–H activation on the other ring [29].
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Other related heterocycles were investigated with interesting results. Reaction with
3-methyl-1-(6-phenylpyridin-2-yl)-1H-benzimidazolium tetrafluoroborate proceeded in a
similar way affording complex 65. In contrast, modification in the ligands scaffolds gives
rise to a drastic change in the behavior. When the benzimidazolium group is replaced by
imidazolium, the absence of protection in the five-membered ring allows its metalation in
an abnormal position, producing the CˆNˆC complex 66. Analogously, protection of the
position 3 of 6-phenyl-2,2′-bipyridine with a methyl group drives rollover C–H activation
to the external pyridine ring producing the two-fold deprotonated CˆNˆC complex 67.

A few other cases have been reported for rhodium, ruthenium, copper, gold, and
rhenium. In 2006, Zuber and Pruchnik showed that also rhodium might be involved in a
rollover C–H activation process, finding that a solution of RhI(bipy) complexes showed
H/D exchange at the C(3) and C(3′) positions. The observation of hydride signals in the
1H-NMR spectrum strongly suggests oxidative addition of bipyridine C(3)-H to rhodium
through a rollover pathway, to form the RhIII hydrido complex [Rh(NˆN)(NˆC)(H)(CD3O)],
68, having one chelated NˆN and one rollover NˆC bipyridine ligand [88].

Rh(III) is also able to promote double rollover activation on both the pyridine
rings of 2,2′-bipyridine, as shown by heating the dicationic rhodium(III) complex
[Rh(bipy)(CH3)(H2O)3][BF4]2 to give the solvato species [Rh(CˆC)(CD3)(H2O)3], with a
double-rollover C(3)ˆC(3′) twofold deprotonated bipyridine, 69 [89]. The same complex, at
room temperature, promoted incorporation of deuterium in the coordinated methyl group.

An interesting case appeared in 2013, when Niedner-Schatteburg, Thiel, and coworkers
reported the synthesis of the air stable Ru(II) complex 70, which, in the course of catalytic
transfer hydrogenation of ketones showed to be able to switch the bidentate ligand from
NˆN (neutral) to rollover NˆC (anionic, deprotonated) coordination mode, activating a C–H
bond in the pyrimidine ring (Figure 40). The self-rollover activation of complex 70 to give
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71 placed the basis for a hydrogen transfer process, which was investigated by the authors
and will be discussed in Section 5 [90].
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Figure 40. Switch from NˆN to NˆC coordination mode promoted by a Ru(II) complex. Adapted
from Eur. J. Inorg. Chem. 2013, 4305–4317.

Copper entered in the rollover-family in 2008 when Yang and coworkers reported the
double rollover metalation of 2,2′-bipyridine in a dodeca-copper cluster. In the cluster, the
bipy-2H group acts as a twofold-deprotonated anionic NˆC-CˆN ligand, bonding two CuII

atoms [91].
Although several bipyridine ligands were tested with gold(III) derivatives, only 6,6′-

dimethoxy-2,2′-bipyridine was activated by means of a rollover pathway, affording, by
reaction with gold(III) acetate, the rollover complex 72 by direct C–H bond activation in
acetic acid (Figure 41) [92].
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Figure 41. The first (and only) gold rollover complex. Adapted with permission from Organometallics
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The last example in this series of complexes regards rhenium and is a case of “pseudo”
rollover pathways, not including C–H bond activation. Deprotonation of the rhenium com-
plex [ReCl(NˆN)(CO)3] (NˆN = 3,3′-dihydroxo-2,2′-bipyridine), followed by exposure to
light, affords the anionic complex [Re(NˆO)(CO)3Cl] 73 (NˆO = deprotonated 3-hydroxo,3′-
oxo-2,2′-bipyridine, see Figure 42) [93]. The system was recently used in the catalytic
reduction of carbon dioxide [94].
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4.2. Ligands Other than Bipyridine

2,2′-bipyidines can be considered as the prototypical rollover ligands; however, a
series of other ligands, mostly hererocyclic bidentate donors, have been reported as well.



Molecules 2021, 26, 328 27 of 58

4.2.1. Platinum and Palladium Complexes

As described in Section 2, the first rollover complexes regarded a non-bipyridine
ligand, involving 2-(2′-thienyl)pyridine Pt(II) and Pd(II) complexes [9]. Years later, in
1987, Chassot and von Zelewsky reported the synthesis of a series of homoleptic Pt(II)
cyclometalated complexes with aromatic ligands, one of which, 74, derived from 1-(2-
thienyl)pyrazole (Figure 43). The reaction is actually a pseudo-rollover process, since it
does not involve a C–H bond activation, but requires reaction of trans-PtCl2(SEt2)2 with
the organolithium derivative 5-(1-2-thienyl)pyrazolyl))lithium [95].
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An interesting rollover cyclometalation involving pyrazole rings was reported a
few years later. A series of dimethyl platinum(II) complexes [PtMe2(NˆN)] with several
polydentate nitrogen ligands containing pyrazoles underwent rollover cyclometalation
when dissolved in pyridine at room temperature (R = H, Ph, pyrazole, or N-methylimidazol-
2-yl, Figure 44). The resulting complexes 75 (L = py, PPh3, CO, etc.) represent rare
cases of six-membered cyclometalated rollover rings. From the starting Pt(II) derivatives,
oxidative addition reactions with organohalides afforded the corresponding Pt(IV) rollover
complexes [96].
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Non-bipyridine rollover complexes are rare. It took almost twenty years until a
new Pt(II) case was reported in the literature. In an elegant work, Wang and coworkers
described an example of room temperature rollover C–H bond activation promoted by
Pt(II) (Figure 45). The adduct 76 is stable in the solid state at ambient temperature, but only
under 5 ◦C in solution. For this reason, from the six-membered NˆN chelated complex, a
five-membered rollover cyclometalated NˆC complex was easily formed. Likely due to the
not exceptional stability of 76, the Pt–N bond rupture is fast and reversible. In the presence
of a good coordinating solvent such as CH3CN, the mononuclear rollover complex 77
(S = CH3CN) was isolated and characterized by X-ray diffraction.

The authors proposed an oxidative-addition reductive-elimination pathway for the
process, based on the electron-richness of the Pt center in the three-coordinate intermediate.
In THF, CH2Cl2, or benzene solution, a “roll-over cyclometalation driven self-assembly pro-
cess at ambient temperature” afforded the tetramer complex 76 (Figure 45). The tetramer
assembly was promoted by coordination of the free nitrogen atom in the rollover mononu-
clear complex, a typical feature of rollover complexes, which easily leads to dinuclear
species. The rollover complex 78 was fully characterized by means of NMR, elemental
analysis, and X-ray diffraction [24].
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An uncommon case of rollover cyclometalation, resulting in a C^C metallacycle, was 
reported by Rourke and coworkers. Starting from the 14-electron tricoordinated Pt(II) 
complex 81, stabilized by an agostic Pt---3HC interaction, the unusual isomeric rollover 
complexes 82 and 82’ were slowly formed at ambient temperature in DMSO. Starting from 
82 and 82’, a switchable reaction, driven by the solvent, was observed: in CHCl3, the roll-
over complex was transformed into the classical cyclometalated complex 83, whereas in 
the more polar solvent DMSO, the reverse reaction occurs regenerating the rollover com-
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Figure 45. Self-assembly room-temperature formation of tetramer complex 78. Adapted with permission from J. Am. Chem.
Soc. 2007, 129, 11, 3092–3093. Copyright (2007) American Chemical Society.

On the basis of common mechanisms of cyclometalation reactions, the authors pro-
posed an initial Pt–N bond breaking step which generates a three-coordinate rollover
complex. The electron-rich Pt(II) center promotes the oxidative addition of the ortho-C–H
bond on the azaindole to give a rollover Pt(IV) hydride intermediate, from which reductive
elimination of methane gave the solvato species 75 that spontaneously self-assembles to
the cyclic Pt4 compound 78.

Kinetic NMR analyses established a first-order decay of the adduct [Pt(NˆN)Me2] with
time in good agreement with an intramolecular cyclometalation process; the C–H rollover
cleavage was found to be the rate determining step of the overall process.

Successively, the same group reported the rollover metalation of related triarylboron
ligands. Additionally, in this case, rollover cyclometalation occurs very easily by reaction
with Pt(II) electron rich precursors, affording the corresponding cyclometalated complex
79 and 80 (Figure 46). The complexes exhibit interesting phosphorescent properties, with
unusually long phosphorescent decay time. Addition of fluoride was found to result in a
large enhancement of the phosphorescent emission intensity of the complexes. However,
complex 80 is not dual emissive as 79 and shows only metal-to-ligand change-transfer-
based phosphorescence [97].
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An uncommon case of rollover cyclometalation, resulting in a CˆC metallacycle, was
reported by Rourke and coworkers. Starting from the 14-electron tricoordinated Pt(II)
complex 81, stabilized by an agostic Pt—3HC interaction, the unusual isomeric rollover
complexes 82 and 82′ were slowly formed at ambient temperature in DMSO. Starting from
82 and 82′, a switchable reaction, driven by the solvent, was observed: in CHCl3, the
rollover complex was transformed into the classical cyclometalated complex 83, whereas
in the more polar solvent DMSO, the reverse reaction occurs regenerating the rollover
complex (Figure 47). These data have been explained in terms of a delicate balance (induced
by the bulkiness of the tert-butyl group), controlled by solvent polarity [98].
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Figure 48. NHC-rollover palladium complexes. Adapted from Chem. Eur. J. 2017, 23, 14563–14575.

Depending on the reaction conditions, both CˆN and CˆC complexes were obtained
(complexes 85 and 87). Two routes were used for the two classes of complexes: trans-
metalation with the corresponding Ag-NHC complexes 84 gave the CˆN cyclopalladated
complexes 85, whereas reaction of PdCl2 with the imidazolium salts produced the CˆC
rollover complexes 87 [99].

The rollover cyclometalation reaction is partially reversible. Treatment of the NˆC
complex 88 with potassium carbonate in deuterated pyridine at 80 ◦C gave complex 89
with a 95% conversion (NMR criterion), whereas treatment of 89 with HCl gave evidence
of the presence of complex 88 (along with an intermediate specie), eventually resulting in
decomposition (Figure 49).
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The new rollover compounds showed high catalytic activities in Suzuki–Miyaura
cross-coupling reactions. Catalytic processes involving rollover complexes will be treated
in Sections 5 and 6.

As we are seeing, rollover cyclometalated complexes may appear in different sub-
classes. In addition to bidentate NˆC and CˆC derivatives, another interesting subclass is
that of pincer-rollover complexes. This behavior originates from the fact that some poly-
dentate ligands are able to switch between multiple coordination modes. A first example
of pincer-rollover coordination involved the potentially tridentate ligands 90–92, defined
“pincer click ligands” (PCL) due to their coordinative versatility.

Under a choice of reaction conditions, these ligands can selectively behave as pin-
cer tridentate or rollover bidentate ligands both with Pd(II) and Pt(II) metal precursors
(Figure 50). The authors were able to demonstrate a “rollover switch” of kinetically formed
products (i.e., rollover bidentate complexes) to the thermodynamically favored products
(i.e., tridentate pincers) [100]. As an example, the authors were able to “rollover switch”
the PˆN bidentate complexes 95, kinetically controlled, to the tridentate complex 96, which
is the thermodynamically favored species (Figure 50).
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A second case of pincer-rollover switch regarded the behavior of two unsymmetrical
phosphine-pyrazole PˆCˆN pincer ligands (PˆCˆN = 1-[3-[(di-tert-butylphosphino)methyl]-
phenyl]-1H-pyrazole, and its methylated analogue, PˆCˆN-Me) 97 and 98).

In the course of the synthesis of palladium(II) complexes, starting from complex 99,
the monomeric intermediate hydroxide species [Pd(PˆCˆN)(OH)] showed an unexpected
N-detachment, followed by room temperature rollover C–H activation on the pyrazole ring,
which converts the formally anionic PˆCˆN pincer ligand into a formally dianionic PˆCˆC
rollover-pincer ligand, finally affording the dinuclear species 100. In contrast, with the
methylated analogue PCN-Me, no rollover reactivity was observed and the mononuclear
complex 101 was isolated and characterized (Figure 51) [28].
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Figure 51. Pincer ligands 97 and 98 and rollover PˆCˆC tridentate Pd(II) complex 100. Adapted with
permission from Organometallics 2015, 34, 16, 3998–4010. Copyright (2015) American Chemical Society.

A DFT computational investigation revealed low energy barriers for pyrazole C–H
activation following a σ-bond metathesis pathway, in line with the experimental data.

A few years later, the same group studied the hydrogenolysis of mono- and dinuclear
Pd(II) hydroxides of the same ligands, 97 and 98. Whereas reaction of the dinuclear
hydroxo complexes [(PˆCˆN)2Pd2(µ-OH)]+ with H2 afforded the corresponding dinuclear
hydrides [(PˆCˆN)2Pd2(m-H)]+, the same reaction of the mononuclear complex (PCN)Pd-
OH (102) resulted in a rollover activation of one pyrazole ring, affording the dinuclear
species [(PCNH)Pd](µ-H)[(PCC)Pd], 103, bearing two different pincer ligands (PˆCˆN and
PˆCˆC, Figure 52). The analogous reaction, under the same conditions, with the terminal
hydroxo complex of the rollover-protected methylated ligand, 101, did not produce any
hydride. Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric
hydroxo species were proposed on the basis of DFT calculations [101].

Molecules 2021, 26, x FOR PEER REVIEW 31 of 59 
 

 

 
Figure 51. Pincer ligands 97 and 98 and rollover P^C^C tridentate Pd(II) complex 100. Adapted 
with permission from Organometallics 2015, 34, 16, 3998–4010. Copyright (2015) American Chemi-
cal Society. 

A DFT computational investigation revealed low energy barriers for pyrazole C−H 
activation following a σ-bond metathesis pathway, in line with the experimental data. 

A few years later, the same group studied the hydrogenolysis of mono- and dinuclear 
Pd(II) hydroxides of the same ligands, 97 and 98. Whereas reaction of the dinuclear hy-
droxo complexes [(P^C^N)2Pd2(µ-OH)]+ with H2 afforded the corresponding dinuclear 
hydrides [(P^C^N)2Pd2(m-H)]+, the same reaction of the mononuclear complex (PCN)Pd-
OH (102) resulted in a rollover activation of one pyrazole ring, affording the dinuclear 
species [(PCNH)Pd](µ-H)[(PCC)Pd], 103, bearing two different pincer ligands (P^C^N 
and P^C^C, Figure 52). The analogous reaction, under the same conditions, with the ter-
minal hydroxo complex of the rollover-protected methylated ligand, 101, did not produce 
any hydride. Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric 
hydroxo species were proposed on the basis of DFT calculations [101]. 

 

Figure 52. Synthesis of the dinuclear hydrido complex 103. Adapted from Chem. Eur. J. 2019, 9920–
9929. 

Another subclass of rollover cyclometalation involves P^N hemilabile ligands, such 
as phosphino pyridines. Goldberg and coworkers investigated the thermolysis behavior 
of two Pt(II) methyl-complexes [Pt(P^N)Me2] where P^N is (di-tert-butylphosphinito)pyr-
idine or (di-tert-butylphosphino)-2-aminopyridine 104 (Figure 53).  

Figure 52. Synthesis of the dinuclear hydrido complex 103. Adapted from Chem. Eur. J. 2019, 9920–9929.

Another subclass of rollover cyclometalation involves PˆN hemilabile ligands, such as
phosphino pyridines. Goldberg and coworkers investigated the thermolysis behavior of
two Pt(II) methyl-complexes [Pt(PˆN)Me2] where PˆN is (di-tert-butylphosphinito)pyridine
or (di-tert-butylphosphino)-2-aminopyridine 104 (Figure 53).
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In 2002, the NHC-pyridine ligand 107, 1-[(2-(6-trimethylsilyl)pyridyl]-3-[(2,6-di-iso-

propyl)phenyl]imidazole-2-ylidene (Figure 55), showed for the first time room-tempera-
ture rollover C–H activation in a pyridine functionalized with a heterocyclic carbene, by 
reaction with the Ir(I) precursor Ir(η4-COD)Cl]2. This reaction allowed the isolation of the 
unusual Ir(III) C^C rollover complex 108 in quantitative yield. The reaction with the anal-
ogous Rh(I) complex [Rh(h4-COD)Cl]2 gave only the classical Rh(I) cyclometalated car-
bene complex [Rh(N^C)(h4-COD)]+ [104]. 

Figure 53. Rollover with PˆN hemilabile ligands.

The authors started, as usual for rollover Pt(II) processes, from the dimethyl adduct
[Pt(PˆN)Me2] (PˆN = 104, X = O). Heating the complex in benzene, in the presence of
pyridine, activated the C(3)-H pyridine bond by means of a rollover pathway, resulting in
the synthesis of complex 105. In contrast to the phosphinito complex, thermolysis of the
adduct [Pt(PˆN)Me2] (PˆN = 104, X = NH) resulted in a competition between intramolecular
C–H activation via rollover cyclometalation and intermolecular benzene C–H activation,
with formation of a mixture of CH4 and CH3D [102].

Finally, one further ligand potentially able to coordinate in different ways, pyridineben-
zothiazole, reacted with PdCl2 in DMF under mild heating (60 ◦C), activated the pyridine
C(3)–H bond to afford the rollover complex 106. Notably, the DMF solvent seems to play
a key role in the rollover process, because use of other solvents resulted only in classical
coordination (Figure 54) [103].
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4.2.2. Iridium and Rhodium Complexes

Iridium, as well as platinum, is able to produce the just discussed subclasses “carbene
CˆC rollover” and “pincer-rollover “complexes.

In 2002, the NHC-pyridine ligand 107, 1-[(2-(6-trimethylsilyl)pyridyl]-3-[(2,6-di-iso-
propyl)phenyl]imidazole-2-ylidene (Figure 55), showed for the first time room-temperature
rollover C–H activation in a pyridine functionalized with a heterocyclic carbene, by reaction
with the Ir(I) precursor Ir(η4-COD)Cl]2. This reaction allowed the isolation of the unusual
Ir(III) CˆC rollover complex 108 in quantitative yield. The reaction with the analogous Rh(I)
complex [Rh(h4-COD)Cl]2 gave only the classical Rh(I) cyclometalated carbene complex
[Rh(NˆC)(h4-COD)]+ [104].
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tion of external pyridine ring), N^C (rollover activation of internal pyrrole) complexes 
were obtained by reaction with [Ir(PPh3)3Cl]. In particular, the Ir(III) compounds 110 and 
111 were both formed in refluxing toluene, following two different C–H bond rollover 
activation pathways, in the pyrrole and pyridine rings, respectively. This case represents 
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Examples of pseudo-rollover pathway, mediated both by Zr and Hf complexes, were 
shown by neutral Zr(IV) and Hf(IV) alkyl/amido complexes stabilized by a tridentate 
N^N^N ligand, which contains a “rolling” heterodentate benzoimidazole fragment. We 
only shortly mention this case because no metal-carbon bonds are formed, but the “roll-
ing” benzoimidazole fragment gave different N^N^N tridentate complexes [107]. 

Three further examples regarding polypyrazolyl ligands occurred with ruthenium, 
nickel, and iron complexes. 

The Ru(II) polypyrazolyl complex [(C(pz)4)Ru(P-(OCH2)3CEt)(CH3CN)Me][BAr′4], 
heated in a deuterated benzene solution in the presence of CH3CN underwent rollover 
C−H activation in one pyrazolyl ring to yield [(κ3-
(N^C^N)C(pz)4)Ru(P(OCH2)3CEt)(CH3CN)2][BAr′4] and methane [108]. 

Intramolecular rollover C−H functionalization in a terdentate Ni azido complex 
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Figure 55. NHC-Ir(III) unusual CˆC rollover complex 108. Reproduced (redrawn) from Ref. [104]
with permission from The Royal Society of Chemistry.

Years later, a second case of rollover cyclometalation promoted by [IrCp*Cl2]2 was
reported with a bidentate triazolinylidene-pyrazole ligand. The reactivity of the NHC-
rollover resulting CˆC chelated complex was subsequently investigated in relation to
insertion reactions [105].

The ligand 2-[5-(pyridin-2-yl)-1H-pyrrol-2-yl]pyridine, 109 (Figure 56), has a rich
coordination ability, being able to coordinate in different ways, beyond the classical NˆNˆN
tridentate pincer mode. According to reaction conditions, NˆN, NˆNˆC (rollover activation
of external pyridine ring), NˆC (rollover activation of internal pyrrole) complexes were
obtained by reaction with [Ir(PPh3)3Cl]. In particular, the Ir(III) compounds 110 and 111
were both formed in refluxing toluene, following two different C–H bond rollover activation
pathways, in the pyrrole and pyridine rings, respectively. This case represents a very rare
case of regioselective rollover activation between two different rollover pathways [106].
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Examples of pseudo-rollover pathway, mediated both by Zr and Hf complexes, were
shown by neutral Zr(IV) and Hf(IV) alkyl/amido complexes stabilized by a tridentate
NˆNˆN ligand, which contains a “rolling” heterodentate benzoimidazole fragment. We
only shortly mention this case because no metal-carbon bonds are formed, but the “rolling”
benzoimidazole fragment gave different NˆNˆN tridentate complexes [107].

Three further examples regarding polypyrazolyl ligands occurred with ruthenium,
nickel, and iron complexes.

The Ru(II) polypyrazolyl complex [(C(pz)4)Ru(P-(OCH2)3CEt)(CH3CN)Me][BAr′4],
heated in a deuterated benzene solution in the presence of CH3CN underwent rollover C–H ac-
tivation in one pyrazolyl ring to yield [(κ3-(NˆCˆN)C(pz)4)Ru(P(OCH2)3CEt)(CH3CN)2][BAr′4]
and methane [108].

Intramolecular rollover C–H functionalization in a terdentate Ni azido complex
Ni(NˆNˆN)(N3) occurred on one external pyrazolyl ring of the tridentate ligand, yielding
an NˆNˆNˆC tetradentate rollover complex [109].

Finally, a low-coordinate iron(II) complex with an NˆNˆN pincer ligand containing two
hemilabile pyrazole groups underwent rollover C–H activation on one pyrazole affording
an unusual pyrazolide-bridged iron(II) complex [110].
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5. Organic Synthesis (Stochiometric Functionalization)

The rollover reaction allows activation at C(3) position in 2,2′-bipyridines as well as
in analogous heteroaromatic ligands, a site which is typically hard to activate because
these chelated ligands are strongly bonded to the metal and C–H bonds activation in this
position requires partial ligand detachment.

Once regiospecifically activated by means of rollover metalation, the C–H bond func-
tionalization becomes accessible. In this chapter, we report stoichiometric functionalization
reactions, leaving catalytic processes to Section 6 .

5.1. Palladium-Mediated Functionalization

Taking advantage of rollover cyclometalation, in 2010, Zucca and coworkers reported
a first application of rollover functionalization of 2,2′-bipyridines. The authors showed
that dinuclear palladium(II) rollover derivatives [Pd(NˆC)Cl]2 111 react in ethanol with
CO, under pressure at 60 ◦C, affording the corresponding esters and acids, 112 and 113,
respectively (Figure 57) [111]. As key steps of the process were proposed insertion of
CO into the palladium–carbon bond (leading an unstable six-membered acyl complex,
subsequent nucleophilic attack of ethanol on the acylic carbonyl, and final extrusion of the
organic product with reductive elimination of palladium. This reaction protocol allowed
the synthesis of 2-(2-pyridin-2-yl)-6-alkyl-nicotinic acids or esters, derivatives which are
rather rare and quite unreported in the case of the 6-substituted pyridine rings.
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5.2. Platinum-Mediated Functionalization

Starting from Pt(II) rollover precursors, a sequence of oxidative addition-reductive
elimination reactions can be useful for C–H bond functionalization of 2,2′-bipyridines. By
reaction of Pt(II) rollover complexes [Pt(NˆC)Me(L)] 114 (L = P donor ligands) with MeI, a
series of analogous Pt(IV) complexes are readily accessible (Figure 58).

Molecules 2021, 26, x FOR PEER REVIEW 35 of 59 
 

 

 
Figure 58. Oxidative addition reaction of MeI to Pt(II) rollover complexes. 

Kinetic and thermodynamic factors of the oxidative-addition reaction are regulated 
by a mix of electronic and steric factors: electron-richer Pt(II) complexes will react faster, 
so that PMe3 complexes will be advantaged towards PPh3 analogues. At variance, the 
PMe3 ligand, due to its smaller cone angle, will remain longer in its position, and the ki-
netic isomer (PR3 in “equatorial positions) can be isolated and characterized, even by X-
ray spectroscopy [112]. With bulkier phosphanes, such as PPh3 or PCy3, the isomerization 
to the thermodynamic product, i.e., the cis product, is faster. 

The influence of the cyclometalated ligand was studied by Rashidi and coworkers 
who reported the reactivity of the roll-over platinum(II) complexes [PtMe(bpy-
H)(PPh2Me)] and [PtMe(bpy-H)(PPh3)], 114, with MeI, to give the corresponding rollover 
Pt(IV) complexes [PtMe2(bpy-H)(PR3)I]. Kinetic data suggested a classical SN2 mechanism 
with large negative DS‡ values. The PPh3 complex reacted slower with MeI than the 
PPh2Me one likely due to the stronger donor ability and the less steric hindrance of the 
PPh2Me ligand. Comparison with the classical cyclometalated complexes [PtMe(ppy-
H)(L)], 117, (ppy-H = 2-phenylpyridinate, L = PPh3, PPh2Me) showed that rollover com-
plexes reacted slower than phenylpyridine analog. This was attributed to the presence of 
the uncoordinated nitrogen atom which makes rollover coordinated 2,2’-bpy a slightly 
weaker donor than cyclometalated 2-phenylpyridine [113]. 

The same reaction was studied with the corresponding dinuclear double rollover 
complex 118, [Pt2(m-bpy-2H)Me2(PPh3)2]: Additionally, in this case, oxidative addition oc-
curs, to give the dinuclear Pt(IV) complex 119 (Figure 59). The rate for the oxidative addi-
tion reaction was found to be almost 3–5 times slower in the second step (i.e., that on the 
second platinum center) as compared to the first one. This result is important, because it 
confirms transmission of electronic effects through the delocalized rollover bipy ligand. 
In comparison with the corresponding monomeric [Pt(bipy-H)Me(PPh3)] complex, in the 
dinuclear species 118, the rate for the oxidative addition reaction was found to be higher 
in step 1 and lower in step 2 [114]. 

 
Figure 59. Mono- and di-nuclear complexes 117–119. 

The Pt(II) rollover complexes of these series have several nucleophilic centers, in par-
ticular, the uncoordinated nitrogen and the platinum(II). Hosseini and coworkers studied 
the reaction of three cyclometalated isomers [Pt(N^C)Me(PPh3)], 114, 120, and 121, with 
methyl iodide finding that only in the rollover complex, the stronger nucleophile is the 
platinum center, affording the Pt(IV) complex 116. In contrast, complexes 120 and 121 
were predicted to react, by DFT calculations, with the nitrogen donor, to form N-methyl-

Figure 58. Oxidative addition reaction of MeI to Pt(II) rollover complexes.

This oxidative addition reaction has been studied in detail by several groups; as for
classical cycloplatinated complexes, the reaction of rollover analogues with MeI proceeds
thorough the classical SN2 oxidative addition mechanism. The reactions afford the analo-
gous Pt(IV) complexes [Pt(NC)(L)(Me)2I]; even though several isomers can be formed, due
to trans-phobia, only fac PtC3 isomers are expected to be fairly stable, so that, considering
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the presence of the cyclometalated ligand, only two isomers should realistically be formed,
i) the “trans” isomer 115, which is expected to be the kinetic product, with the incoming
ligands CH3 and I in mutual trans position, and the phosphane in “equatorial” position
with respect to the bipyridine plane); ii) the “cis” isomer 116, i.e., the thermodynamic
product, with the phosphane ligand in “axial” position.

Kinetic and thermodynamic factors of the oxidative-addition reaction are regulated
by a mix of electronic and steric factors: electron-richer Pt(II) complexes will react faster, so
that PMe3 complexes will be advantaged towards PPh3 analogues. At variance, the PMe3
ligand, due to its smaller cone angle, will remain longer in its position, and the kinetic
isomer (PR3 in “equatorial positions) can be isolated and characterized, even by X-ray
spectroscopy [112]. With bulkier phosphanes, such as PPh3 or PCy3, the isomerization to
the thermodynamic product, i.e., the cis product, is faster.

The influence of the cyclometalated ligand was studied by Rashidi and coworkers who
reported the reactivity of the roll-over platinum(II) complexes [PtMe(bpy-H)(PPh2Me)]
and [PtMe(bpy-H)(PPh3)], 114, with MeI, to give the corresponding rollover Pt(IV) com-
plexes [PtMe2(bpy-H)(PR3)I]. Kinetic data suggested a classical SN2 mechanism with large
negative DS‡ values. The PPh3 complex reacted slower with MeI than the PPh2Me one
likely due to the stronger donor ability and the less steric hindrance of the PPh2Me lig-
and. Comparison with the classical cyclometalated complexes [PtMe(ppy-H)(L)], 117,
(ppy-H = 2-phenylpyridinate, L = PPh3, PPh2Me) showed that rollover complexes reacted
slower than phenylpyridine analog. This was attributed to the presence of the uncoordi-
nated nitrogen atom which makes rollover coordinated 2,2′-bpy a slightly weaker donor
than cyclometalated 2-phenylpyridine [113].

The same reaction was studied with the corresponding dinuclear double rollover
complex 118, [Pt2(m-bpy-2H)Me2(PPh3)2]: Additionally, in this case, oxidative addition
occurs, to give the dinuclear Pt(IV) complex 119 (Figure 59). The rate for the oxidative
addition reaction was found to be almost 3–5 times slower in the second step (i.e., that on
the second platinum center) as compared to the first one. This result is important, because
it confirms transmission of electronic effects through the delocalized rollover bipy ligand.
In comparison with the corresponding monomeric [Pt(bipy-H)Me(PPh3)] complex, in the
dinuclear species 118, the rate for the oxidative addition reaction was found to be higher in
step 1 and lower in step 2 [114].
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Figure 59. Mono- and di-nuclear complexes 117–119.

The Pt(II) rollover complexes of these series have several nucleophilic centers, in
particular, the uncoordinated nitrogen and the platinum(II). Hosseini and coworkers
studied the reaction of three cyclometalated isomers [Pt(NˆC)Me(PPh3)], 114, 120, and 121,
with methyl iodide finding that only in the rollover complex, the stronger nucleophile is the
platinum center, affording the Pt(IV) complex 116. In contrast, complexes 120 and 121 were
predicted to react, by DFT calculations, with the nitrogen donor, to form N-methylated
cyclometalated complexes 122 and 123 (Figure 60). The reasons for this different behavior
in selectivity were found in the energy barrier needed for N-methylation (higher in the
rollover complex) vs. oxidative-addition reactions [115].
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Figure 60. Cyclometalated complexes derived from bipyridine isomers.

Shahsavari and coworkers studied the same oxidative reaction with the Pt(II) N-O
bipyridine-derived rollover complexes 124, comparing three phosphane ligands: PPh3,
PPh2Me, and PPhMe2 (Figure 61). The kinetic results showed that the electronic effects
of the phosphanes determine the reaction rates with, as expected, the following trend:
PPhMe2 > PPh2Me > PPh3. As previously found, the trans-cis isomerization (kinetic to
thermodynamic product) is mostly affected by steric effects due to phosphane ligands, so
that the kinetic trend is PPh3 > PPh2Me > PPhMe2 [116].
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tion step with C-C coupling in order to obtain a functionalized bipyridine. Starting from 
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The same reaction, with deuterated CD3I, was monitored by NMR, evidencing a
scrambling between the incoming CD3 ligand and the preexisting CH3 ligand, which
exchange their mutual positions.

In a successive paper, the same group studied the influence of the rollover cyclometa-
lated ligand, comparing the cyclometalated N-O bipyridyl ligand with the classical depro-
tonated phenylpyridine and benzo[h]quinoline ligands [117]. The study showed that the
reaction rate in the oxidative addition of MeI is significantly slower with the bipy-N-oxide
ligands, showing the effect of the N-O group on the Pt(II) reactivity.

The oxidative addition reaction can be coupled with a successive reductive elimination
step with C-C coupling in order to obtain a functionalized bipyridine. Starting from the
Pt(II) rollover complexes 125 (Figure 62), reaction with MeI gave the corresponding Pt(IV)
complex 126. A subsequent reductive elimination promoted by abstraction of the iodide
ligand resulted in C(sp2)-C(sp3) bond formation to finally afford the 3-functionalized
2,2′-bipyridines 128: 3-methyl-2,2′-bipyridine, 3,6-dimethyl-2,2′-bipyridine, as well as
3-methyl-2-(2′-pyridyl)-quinoline, which were isolated and characterized [118].

The reductive elimination step involves a rare C(sp3)-C(sp2) coupling, in place of
the more common C(sp3)-C(sp3) one (in this case, with ethane elimination), and whether
this reductive elimination takes place or not seems to be governed principally by steric
factors, as indicated by the behavior of PPh3, PMe3, and PCy3 complexes. Worth to
note, the reaction occurs only in the presence of the uncoordinated nitrogen, typical of
rollover complexes, because it takes advantage of a retro-rollover pathways, to give the
intermediate NˆN chelated analogues 127. For this reason, the reaction is unique to rollover
complexes; indeed, the analogous phenylpyridine cyclometalated complexes do not exhibit
C–C coupling when treated with silver salts.
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Figure 62. Pt(II)-Pt(IV) mediated functionalization of 2,2′-bipyridines by means of rollover C–H bond activation. Adapted
with permission from Chem. A Eur. J. 2014, 20, 5501–5510. Copyright (2014) John Wiley & Sons, Inc.

This route constitutes a new stoichiometric method for the activation and functional-
ization of C(3)-H position in bidentate heterocyclic compounds.

5.3. Ruthenium-Mediated Functionalization

A third case of rollover metal-mediated C–H bond functionalization involves a series
of ruthenium complexes with cyclometalated imines-based heterocycles [119]. The reaction
of [{RuCl(h6-p-cymene)}(m-Cl)2] with a series of imines-based heterocyclic ligands (129) in
the presence of Cu(OAc)2 (Figure 63) resulted in the rollover cyclometalation due to C–H
bond activation in the C(3) position of the five-membered heterocyclic ring (thiophene,
benzothiophene, furan, benzofuran, pyrrole, and indole derivatives) affording rollover
complexes 130. These complexes unexpectedly react with 3-hexyne to give complexes 131. 
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Figure 63. (a) C-C coupling mediated by ruthenium rollover cyclometalation; (b) fused bis-heterocycles 132 and 133.
Adapted with permission from Chem. A Eur. J. 2012, 18, 15178–15189. Copyright (2012) John Wiley & Sons, Inc.

Successive reaction with CuCl2, promotes rearomatization of the ligand and release of
the corresponding fused bis-heterocycles 132 and 133 (X = S, O, NMe) providing a novel
synthetic method for the preparation of this family of compounds.

Furthermore, the authors showed that it is also possible to obtain these organic
products in a one-pot sequential procedure allowing the synthesis of a series of new
derivatives.
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Finally, in may be mentioned a particular case of C(3) bond functionalization in
2,2′-bipyridine which does not involve transition metal coordination. The reaction of
pentaphenylborole with 2,2′-bipyridine forms an adduct which, upon thermolysis, converts
to the ortho addition product 134 (Figure 64).
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An analogous reaction occurs with 2-phenylpyridine. Such reactivity is uncommon
for main group elements and provides application to access boron compounds [120].

6. Catalysis

Cyclometalated compounds have been widely used as catalysts [121,122]. As an
example, pincer complexes have demonstrated to be active in large series of catalytic
reactions, such as C–C bond coupling, transfer hydrogenation, alkane dehydrogenation,
and polymerization [123].

Among the various electronic and steric properties furnished by cyclometalated
ligands, it is worth to remind that cyclometalation generates a formal carbanionic ligand,
that enhances the electron density on the metal center. In addition to the classical case,
rollover cyclometalation is able to act as a reversible process, allowing to play an uncommon
role in catalytic reactions.

This role can assume two different aspects: (i) rollover cyclometalated complexes can
be used as catalytic precursors, or (ii) the rollover process can be one step of a catalytic
cycle. In this case, the catalytic precursor may be a non-organometallic species, and rollover
complexes are formed, react, and decoordinate in the course of the catalytic cycle.

6.1. Rollover Complexes as Catalysts

To the best of our knowledge, the first catalytic application of a rollover complex has
been reported in 2009. Bera and coworkers synthesized the uncommon Ir(III) complex 135
(Figure 65) which incorporates a cyclometalated N-heterocyclic carbene and a rare “carbene-
rollover” ligand. The complex, characterized by means of X-ray spectroscopy, proved to
be catalytically active in the hydrogen transfer reaction of aromatic and heteroaromatic
ketones at room temperature with high yields (Figure 65) [124].
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6.1.1. Platinum Catalyzed Reactions

A few years later, a new Pt(IV) rollover complex, [Pt(NˆNˆC)Cl3], 136 (Figure 66), was
prepared by reaction of PtCl2 with a dimethyl quaterpyridine.
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No experimental conditions for the synthesis were provided by the authors. The
rollover complex 136, isolated and characterized by means, inter alia, of X-ray crystallogra-
phy, showed to be a highly selective catalyst precursor in the hydrosilylation of styrene
and terminal alkynes (Figure 67) [125].
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6.1.2. Ruthenium Catalyzed Reactions

As seen in Section 4.1.7, Niedner-Schatteburg, Thiel, and coworkers presented in 2013
the Ru(II) complex 68, able to convert into the corresponding rollover complex 69.

Complex 68 was found to catalyze both the transfer hydrogenation of ketones and the
reductive amination of aromatic aldehydes. The reactions proceed without presence of
a base, an important feature which, for instance, prevents chiral compounds to undergo
racemization. Indeed, the reported Ru(II)-rollover hydrogen transfer of arylalkyl ketones
constitutes the first case of an air stable “phosphane-free” and “base free” hydrogen
transfer catalysts [90]. The experimental and DFT data confirm that the key step of the
self-activation of the catalyst is the C–H bond rollover activation in the pyrimidine ring.

Four years later, a detailed mechanistic study on the process, extended to other
related ligands, allowed the classification of the ligands according to their stereoelectronic
properties. Additionally, in this case, rollover activation of the bidentate nitrogen ligand
was proposed to be a key step of the process. DFT calculations, CID EIS-MS (CID = collision
induced dissociation) and X-ray structural data helped the authors to conclude that a mix of
electronic and steric factors were active in weakening critical metal-ligand bonds, favoring
roll-over cyclometalation. In particular, the higher activity was shown with a tertiary amino
substituent in the pyrimidine ring.

A proposed catalytic cycle (Figure 68), involving hydrogen transfer reactions, rollover
and retro-rollover reactions, was supported by NMR spectroscopy, kinetic studies, IR-MPD,
ESI-MS, and DFT calculations [18,71,72,126].

Developing the potentialities and applicability of the Ru(II)-rollover catalyst, Thiel
and co-workers also showed that complex 69 is highly active in catalyzing the reductive am-
ination of aromatic aldehydes with imines in 2-propanol, which acts both as the hydrogen
source and solvent [127].
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The hydrogenation of carbon monoxide to formate is catalyzed by another Ru(II)
complex, containing a pincer NˆCˆN di-pyridyl-imidazol-2-ylidene ligand [128]. A key
step of the catalytic process was proposed to be a rollover switch of a pyridine ligand in a
bidentate former-pincer complex, to afford an unusual C(carbene)ˆC(pyridyl) chelate. The
process allows hydride exchange likely occurring via a dihydrogen complex according to
the Perutz and Sabo-Etienne CAM mechanism (complex assisted metathesis) [129].

6.1.3. Palladium-Catalyzed Reactions

Thiel and coworkers synthesized a series of Pd(II) complexes with (2-aminopyrim-
idinyl)phosphanes. Among the complexes, besides [Pd(NˆN)Cl2] adducts, the rollover
complexes [Pd(PˆC)Cl2], 137, were isolated and studied. In these complexes, the ligand,
due to nitrogen protonation, acts as a formally neutral ligand and may be regarded as a
mesoionic NHC ligand. The new complexes, adducts, and rollover cyclometalates were
investigated as catalysts in the Suzuki–Miyaura coupling reaction of aryl halides with
phenylboronic acid at room temperature (Figure 69). The experimental data showed that
slight changes at the amino group of the ligands result in pronounced differences both in
the stability and catalytic activity of the corresponding complexes [130].

The same group, years later, reported the elevated catalytic activities of the uncommon
rollover NHC complex 89 (described in Section 4.2.1) in Suzuki–Miyaura cross-coupling
reactions of arylboronic acids with aryl chlorides [100].
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6.2. Rollover Pathways in Catalytic Cycles

Several aspects of the rollover reaction, such as its reversibility, make it useful for
catalytic applications. A functionalization strategy for C–C coupling reactions may involve
coordination of a bidentate ligand, rollover C–H bond activation, metal-mediated function-
alization, and final decoordination of the functionalized ligand. Other applications may
involve a rollover-retro-rollover sequence with hydrogen transfer reactions (Figure 70).
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Figure 70. Rollover activation and functionalization strategy.

In the course of the last years, several synthetic catalytic protocols involving rollover
C–H activation and functionalization have been reported. We will present the results
according to the metal used to catalyze the reactions.

6.2.1. Rhodium
C–C Couplings

Being relatively rare, at least until a few years ago, rollover cyclometalation and/or acti-
vation was not always recognized. To the best of our knowledge, the first case of the rollover
catalyzed process was reported in 2009 by Miura et al., which showed that [RhCl(COD]2
catalyzes a consecutive double C–H bond activation in 2,2′-bipyridine affording the corre-
sponding 3,3′-dialkenylated product by reaction with silylacetylene (Figure 71) [131].
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In the following years, the Chang’s group developed a catalytic method for the func-
tionalization of pyridine-based bi- and tri-dentate ligands by means of a rollover pathway.
The first paper of the series, in 2012 [132], reported the hydroarylation of alkenes and
alkynes with 2,2′-bipyridines and 2,2′-biquinolines promoted by Rh(III)-NHC (Nitrogen
Heterocyclic carbene) catalysts.
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Two subsequent rollover cyclometalations give rise to double functionalization of the
bidentate molecules (Figure 72). The rollover pathway is facilitated by the strong trans effect
of the coordinated N-heterocyclic carbenes, which labilize the rhodium–pyridyl bond in
trans position. The method enables a highly selective and efficient double functionalization
of 2,2′-bipyridines and 2,2′-biquinolines.
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Application of the same protocol to tridentate NˆNˆN ligands, such as 2,2′:6′,2”-ter-
pyridine or related ligands, resulted in regioselective bis-alkylation of the terdentate ligands.

The regioselectivity in the double C–H functionalization can be ascribed to a bis-
rollover pathway preferring, as previously seen with Pt(II) [25], the central pyridine ring.
The method allows the preparation, with high yields, of a series of functionalized triden-
tate compounds, with application to a wide range of tridentate heteroarenes and alkene
reactants [133].

Rh(III)-NHC complexes (NHC = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene)
were also found to catalyze the selective rollover functionalization of 2-(2-thienyl)pyridine
with a series of alkenes and internal alkynes. In course of the reaction, a rollover C–H bond
activation converts the NˆS chelated intermediate into a CˆN rollover complex, by means
of a proposed oxidative-addition process (Figure 73) [25].
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As we will see hereinafter, the [RhCp*Cl2]2 catalyst has been used for a large series of
rollover-catalyzed reaction. Recently, the regioselective C–H bond functionalization on tri-
dentate 2,2′-bipyridine-6-carboxamides by means of a rollover pathway was reported [134].

The authors showed that a series of 2,2′-bipyridine-6-carboxamides can be selectively
monoalkylated at the C(3) position. In the proposed catalytic cycle, reported in Figure 74,
after coordination of the tridentate ligand and rollover cyclometalation, reaction with
sulfoxonium ylides gives carbene complexes. Subsequently, migratory insertion of the
coordinated carbene into the Rh-C(3) bond is followed by protonolysis, to give the 3-
alkylated products in high yields. This reaction protocol has a large applicability (the
authors furnish 40 examples) and also showed an excellent tolerance to functional groups.

In contrast to this “internal pyridine ring activation”, the Cheng group, working
with the same ligands, presented a Pd(II)-catalyzed process in which the rollover process
activates only the external pyridine ring (see later).
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Cycloannulation Reactions

Fused polycyclic heteroarenes constitute an important scaffold in organic chemistry. In
this context, it is well-known the rhodium(III)-catalyzed annulation of 2-phenylpyridines
with alkynes: the reaction proceeds through successive C–C and C–N bond formations and
is initiated by a C–H bond activation through cyclometalation [135–137]. In this framework,
the [RhCp*Cl2]2 catalyst has been often successfully used. A different series of annulation
reactions involves a twofold C–H bond cleavage and C–C bond formation and is initiated
by means of rollover C–H bond activation and metalation. This second case appears to be
attractive because it enables the assembly of different polycyclic systems. The two possible
annulation reactions are reported in Figure 75. Path a represents single C–H bond cleavage
and C–C and C–N bond formations, whereas rollover path b represents double C–H bond
cleavage and twofold C–C bond formation.

Molecules 2021, 26, x FOR PEER REVIEW 44 of 59 
 

 

 
Figure 75. Possible cycloannulation pathways with single and double C–H bond activations. 
Adapted with permission from Org. Lett. 2015, 17, 12, 3130–3133. Copyright (2015) American Chem-
ical Society. 

Although the second pathway of 4 + 2 cycloannulation looks attractive, to the best of 
our knowledge, it has not been observed yet with 2-phenylpyridine. In contrast, several 
other heteroaromatic nitrogen ligands have been functionalized taking advantage of this 
reaction. 

Firstly, in 2011, Miura and coworkers reported the oxidative coupling of phenyla-
zoles with internal alkynes, in the presence of [RhCp*Cl2]2 as catalyst and Cu(OAc)2 as 
oxidant. Several products were formed by means of double or even quadruple C–H bond 
activation. The reaction pathway was found to be highly dependent on the reaction con-
ditions employed, and activation preferentially took place at the electron deficient sites in 
the aromatic rings. Among the various reaction pathways and the ample series of sub-
strates and products, it should be mentioned for the first time a rollover annulation path-
way, regarding 1-phenyl-pyrazoles, which implies a two-fold C–H bond activation to give 
the annulated compounds 138 (Figure 76) [138]. 

 
Figure 76. Cycloannulation reaction of 1-phenyl-pyrazoles alkynes. Adapted with permission 
from. J. Org. Chem. 2011, 76, 1, 13–24. Copyright (2011) American Chemical Society. 

Modification of the heteroaromatic scaffold opens vast synthetic perspectives. Fol-
lowing their studies, the same research group reported the rhodium-catalyzed dehydro-
genative coupling of N-pyridylindoles with alkynes, in the presence of copper or silver 
salts. The reaction easily afforded indolo [1,2-a]-naphthyridine 139 derivatives following 
a rollover pathway [139]. According to reaction conditions (Cu or Ag salt as oxidant, 
choice of solvent, temperature, substrate), in addition to compound 139, also the C2-
alkenylated product 140 was formed in different amounts. A plausible reaction mecha-
nism, proposed by the authors, is reported in Figure 77. 

 

Figure 75. Possible cycloannulation pathways with single and double C–H bond activations. Adapted
with permission from Org. Lett. 2015, 17, 12, 3130–3133. Copyright (2015) American Chemical Society.

Although the second pathway of 4 + 2 cycloannulation looks attractive, to the best
of our knowledge, it has not been observed yet with 2-phenylpyridine. In contrast, sev-



Molecules 2021, 26, 328 44 of 58

eral other heteroaromatic nitrogen ligands have been functionalized taking advantage of
this reaction.

Firstly, in 2011, Miura and coworkers reported the oxidative coupling of phenylazoles
with internal alkynes, in the presence of [RhCp*Cl2]2 as catalyst and Cu(OAc)2 as oxidant.
Several products were formed by means of double or even quadruple C–H bond activa-
tion. The reaction pathway was found to be highly dependent on the reaction conditions
employed, and activation preferentially took place at the electron deficient sites in the
aromatic rings. Among the various reaction pathways and the ample series of substrates
and products, it should be mentioned for the first time a rollover annulation pathway,
regarding 1-phenyl-pyrazoles, which implies a two-fold C–H bond activation to give the
annulated compounds 138 (Figure 76) [138].
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1, 13–24. Copyright (2011) American Chemical Society.

Modification of the heteroaromatic scaffold opens vast synthetic perspectives. Follow-
ing their studies, the same research group reported the rhodium-catalyzed dehydrogenative
coupling of N-pyridylindoles with alkynes, in the presence of copper or silver salts. The
reaction easily afforded indolo [1,2-a]-naphthyridine 139 derivatives following a rollover
pathway [139]. According to reaction conditions (Cu or Ag salt as oxidant, choice of solvent,
temperature, substrate), in addition to compound 139, also the C2-alkenylated product
140 was formed in different amounts. A plausible reaction mechanism, proposed by the
authors, is reported in Figure 77.
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This reaction protocol was successfully applied to a number of tetra-, penta-, and
hexacyclic N-containing heteroaromatic compounds, showing to be of ample interest, also
because the annulation products exhibit intense fluorescence in the solid state.
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Other cases of oxidative rollover-annulation reactions catalyzed by Cp*Rh(III) com-
plexes involve the oxidative annulation of 7-azaindoles and alkynes, taking advantage
of the high reactivity of the 2-position in the pyrrole ring (Figure 78a) [140] and of 2-
phenylimidazo[1,2-a]pyridines with alkynes, to give 5,6-disubstituted naphtho[1′,2′:4,5]imi-
dazo[1,2-a]pyridines 141 and 142 (Figure 78b) [141].
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Figure 78. Synthesis of 5,6-disubstituted naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines. (a) 7-azaindoles
and alkynes; (b) 2-phenylimidazo[1,2-a]pyridines with alkynes. Adapted with permission from. J.
Org. Chem. 2015, 80, 7, 3471–3479. Copyright (2015) American Chemical Society.

The above-described method was also successfully applied to the annulation of
pyridine-imidazolium substrates. Choudhury and coworkers reacted both normal [142]
and abnormal [143] CHN imidazolium-based carbenes with internal alkynes, finding how
stereoelectronic factors drive the process. Different rollover C–H activation pathways
were operative (NHC rotation vs pyridine rollover) depending on the properties of the
organometallic intermediate, to give compounds 143 or 144 (Figure 79).
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An important novelty of these studies is the “controlled mechanistic dichotomy”,
which allowed to switch the pathway of the functionalization reaction. The authors found
that the reactions were selectively driven toward rollover or non-rollover C–H function-
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alization routes on the basis of the steric and electronic properties of the rhodium(III)
metallacyclic intermediates. In the presence of copper(II) acetate and non-polar solvent,
the basic and coordinating acetate anion favor the rollover pathway leading to annulation
products. In contrast, working in polar solvents with Cu(BF4)2 the influence of the BF4
anion (both weakly basic and coordinating) switches the reaction towards double alkyne
insertion, affording C-N annulated cationic products [144].

Other cases of Cp*Rh(III)-catalyzed oxidative rollover-annulations with alkynes in-
volve a series of pyridinones, to produce functionalized 4H-quinolizin-4-ones [145], and
o-alkenyl anilides, from which unexpected naphthalene adducts were formed [146].

Recently, the cycloannulation Rh(III)Cp* catalytic protocol was extended to the func-
tionalization of 2-(1H-pyrazol-1-yl)pyridine with internal alkynes. The reaction provided a
switchable solvent-controlled C–H functionalization, affording alkenylated 2-(1H-pyrazol-
1-yl)pyridine or indazole derivatives, with moderate to good yields. In both cases, only the
pyrazolyl ring was involved in the C–H activation. Control experiments, conduced with
“pre-rollover“ and “post-rollover” intermediates, suggested a rollover pathway for both
cases [147].

The same strategy ([RhCp*Cl2]2 as catalyst, heating in the presence of AgOAc and
a base) was adopted for 2,2′-bipyridine functionalization. Experimental and DFT data
showed a considerable substituent effect: as often observed for substituted 2,2′-bipyridines,
a substituent in position 6 plays an important role, weakening the nearby Rh–N bond and
facilitating subsequent rollover C–H bond activation and functionalization [148].

Furthermore, the Rh-catalyzed oxidative annulation of imidazopyridines and inda-
zoles was recently achieved using vinylene carbonate as a “vinylene transfer agent”. In
the proposed reaction mechanism, a rollover C–H bond activation was a key step in the
catalytic cycle [149].

The [RhCp*Cl2]2 complex was also reported to catalyze a divergent C–H bond ac-
tivation and functionalization in aromatic picolinamide derivatives. Two sites for C–H
activation are available, in pyridine and arene rings. Activation afforded isoquinoline
derivatives or ortho-olefinated benzylamine (or phenethylamine) compounds, based on
the mechanism involved. This different reactivity was achieved switching the catalyst
between Rh(III) and Rh(I), which results in a modification of the mechanism of the process.
In addition, a series of experimental and DFT mechanistic studies helped to understand
insights of the divergent regiochemical outcome [150].

Internal rotation of pyridine rings can assume various shapes: an internal rotation,
without rollover C–H bond activation promotes intramolecular reaction of 3-alkynyl and
3-alkenyl-2-arylpyridines, in the presence of [Cp*RhCl2]2 as catalyst and Cu(OAc)2 as cat-
alytic additive. The reaction allowed the synthesis of new carbon skeleton of 4-azafluorenes
145 (Figure 80) [151].
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Two years later, the Rh(III)-catalyzed rollover method was extended to the synthesis
of a series of multicyclic heterocycles. The authors showed that intramolecular reaction
of 3-alkynyl-2-heteroarylpyridines afforded tri- and tetracyclic nitrogen heterocycles 146
and 147 incorporating also oxygen, sulfur, or nitrogen (Figure 81). Catalytic amounts of
pivalate or acetate salts were found to facilitate the reaction. Furthermore, the analogous
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reaction of 3-aryloyl-2-arylpyridines gave 7-substituted 4-azafluoren-9-ols. In order to
prove the role of the pyridine nitrogen atom in the process, the authors showed that no
reaction proceeded starting from nitrogen-free analogues, or positional isomers, not able to
assist C–H bond cleavage and the subsequent rollover process [152].
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Internal rotation of a phenyl ring in a cyclometalated 2-phenylpyridine also occurs in
the course of catalytic studies on the reaction with [RhCp*Cl2]2 and cyclopropenones [153].

Rotation of a Phenyl Ring

Several papers report cases of “rollover” activation related to phenyl ring rotation
instead of heteroaromatic ring rotation. This generalization of the rollover concept is
interesting, because it enlarges the field to an ample series of internal ring rotations,
even though a “true” rollover process should entail chelation and internal rotation of
heteroaromatic rings. However, an interesting example of this enlarged interpretation is
the ([RhCp*Cl2]2 amination of arenes, using pyridine as a directing group. The “rollover”
reaction, promoted by water, proceeds with selectivity on a wide range of substrates (both
electron-deficient and electron-rich), affording both mono- and di-aminated products 148
and 149 (Figure 82). In this case, rotation of a cyclometalated phenyl ring is a key step of
the process, and the pyridine nitrogen is assumed to retain its coordination to the rhodium
center [154].
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A second case of “rollover” cyclometalation involving a phenyl ring rotation regards
the selective bis-cyanation of arylimidazo[1,2-α]pyridines by means of double C–H bond
activation, once again with[RhCp*Cl2]2 as catalyst. The reaction, which proceeds with
wide functional group tolerance, enable the synthesis of various cyanated imidazopy-
ridines in high yields; the reaction protocol was also explored toward imidazo containing
heterocycles [155].
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6.2.2. Palladium

At variance with rhodium, only a few cases of palladium-catalyzed reactions based on
a rollover pathway were published in the course of the last years. In these cases, Pd(OAc)2
was used as catalyst.

The first palladium-catalyzed process with an internal rotation of a pyridine-like ring
regards the intramolecular aerobic oxidative C–H amination of 2-aryl-3-(arylamino)quin-
azolinones; the reaction afforded a series of fluorescent indazolo[3,2-b]quinazolinones
derivatives, 151, in moderate to excellent yields (Figure 83). Mechanistic evidences sug-
gested the cyclometalated palladium(II) dimer 150 as the key intermediate, which, after
cyclometalation, underwent an internal rotation of the quinazolinone ring. The reaction
should be classified as “pseudo-rollover” due to the absence of C–H bond activation in the
heteroaromatic ring. It is worth to note that this approach to indazolo[3,2-b]quinazolinones
has a “green” significance: in the course of the process, reaction with O2 as oxidant gener-
ates water as the only byproduct. Furthermore, the reaction products have potential utility
as a new class of blue fluorophores for fluorescent materials [156].
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Cheng and coworkers worked on Pd(II) catalyzed functionalization of 2,2′-bipyridine-
6-carboxamides by means of rollover cyclometalation pathways. The researchers showed
that Pd(II) acetate catalyzes the arylation of 2,2′-bipyridine-6-carboxamides with aryl
iodides in the presence of a base. Despite the presence in the substrate of several sites
available for rollover C–H activation, the reaction is regioselective, activating only the
external pyridine ring to give 152 as the final products [157]. The authors, on the basis
of their experimental results, propose a mechanism, reported in Figure 84, consisting
in coordination of the tridentate NˆNˆN bipy ligand (pre-rollover complex, isolated and
characterized), rollover cyclometalation only on the external pyridine ring, oxidative
addition of aryl iodide to form a Pd(IV) complex, reductive elimination of the arylated
product. Due the great array of substrates studied, the reaction has a broad applicability.
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It is worth to note that in a successive paper [135], the functionalization of the same
class of ligands, catalyzed by [RhCp*Cl2]2, acted regioselectively on the internal C(3)-H
bond (see Figure 85). This constitutes a very interesting case of two different rollover
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regioselective functionalizations, where Pd(II) and Rh(III) catalysts activate in a selective
way two different pyridine rings by means of distinctive rollover pathways.
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cal Society.

As previously shown, an easy rollover metalation occurs with N-oxide-2,2′-bipyridine
(see Section 4.1.2). Taking advantage of this, Tzschucke and coworkers studied the
rollover C(3)–H halogenation of bipyridine N-oxides by reaction with N-chloro- or N-
bromo-succinimide (NCS or NBS) using Pd(OAc)2 as catalytic precursor. C(3)-H pyridine
functionalization gave 3-chloro- or 3-bromobipyridine N-oxides with high yields [158]. The
authors found that the reaction is highly sensitive to steric hindrance in positions 4 and
6′. In the case of a 6′-substituted ligand coordination to palladium being hindered, and
3′-halogenation was observed. Deoxygenation with PCl3 or PBr3 allowed the obtainment
of 3-halogenated bipyridines 153 (Figure 86).
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Figure 86. Pd(II) rollover-catalyzed synthesis of 3-halogenated bipyridines. Adapted with permission
from J. Org. Chem. 2017, 82, 11, 5616–5635. Copyright (2017) American Chemical Society.

6.2.3. Rhenium

The ligand 2,7-dipyridinyl-1,8-naphthyridine can coordinate in different ways. This
ligand has two external pyridine rings, making it able to follow rollover pathways and,
consequently, to construct dinuclear complexes. Under certain conditions, a rhenium(I)
mononuclear complex was obtained and used for the synthesis of dinuclear complexes. The
first coordination involves a simple NˆN chelation of the ligand, whereas the second metal
promotes a rollover cyclometalation. In this way, homo Re-Re, 154, and heterodimetallic
Re-Ir, Re-Pd, 155 and 156, complexes were prepared and characterized (Figure 87).
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acetylenes into b-keto esters, it was investigated the catalytic activities of these hetero-
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bimetallic complexes on the same reaction, without any use of organic solvents. Among
the three dinuclear rollover complexes, only the dimetallic Re-Re complex 154 showed to
be active in the insertion of acetylenes into β-keto esters, under photoirradiation at 350 nm,
affording the corresponding 5-oxo-2-hexenoates 157 with high yields (Figure 88) [159]. The
heterodimetallic complexes showed, at variance, scarce catalytic activity.
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7. Applications of Rollover Complexes

Even though this review is dedicated to aspects regarding C–H bond activation and
functionalization, it may be of interest to furnish a brief survey of some potential applica-
tions of rollover cyclometalated complexes. This will highlight the importance assumed by
the reaction and its outcomes. In the course of the last years, several potential applications
were found. Synthetic and catalytic applications have been reported in Sections 5 and 6,
other fields involve antitumor compounds, chemosensors, and OLED emitters.

Pt(II) rollover complexes with 2,2′-bipyridines have been investigated for their an-
titumor properties. In 2017, Shahsavari and coworkers evaluated the biological activity
of a series of Pt(II) rollover complexes with 2,2′-bipyridine N-oxide and ancillary phos-
phorus ligands (Section 4.1.2) against a panel of standard cancer cell lines. Two of the
complexes showed a potent cytotoxic activity [53]. One year later, the same group extended
the study to a series of cycloplatinated complexes (comprising rollover species) bearing
1,10-bis(diphenylphosphino)ferrocene (dppf) ligand. The authors reported the biologi-
cal evaluation of the species as well as molecular docking studies. The dppf-containing
rollover complexes exhibited strong interactions with DNA as well as high cytotoxicity
and apoptosis-inducing activities to human cancer cell lines [160]. In the same year, an
in vitro study demonstrated that one of the above complexes has better cytotoxicity effect
against breast cancer cell lines than cis-platin [161].

Again, in the same year, Babak, Hartinger, and coworkers presented an important
work on the anticancer activity of a series of mono- and dinuclear Pt(II) rollover complexes
with the simple 2,2-bipyridine ligand. The complexes demonstrated to be potent antitumor
agents both in vitro and in vivo. Substitution of the neutral and anionic co-ligands on
the Pt(k2NC-2,2′-bipyridyl) backbone allowed to establish structure–activity relationships.
The authors also showed that the properties of the complexes can be tuned in order to
“target different cancer pathways” and “overcome the side effects associated with platinum
compounds in cancer chemotherapy” [162].

As previously commented, in addition to Pt(II) derivatives, also Pt(IV) rollover com-
plexes have shown high cytotoxicity towards cancer cells [46].

An interesting potential application of Ir(III) rollover complexes was presented in 2015
by Laskar and coworkers. The complex [Ir(PPh3)2(NˆC)(Cl)(H], 158 (Figure 89), showed
properties that enable it to be employed as a multi-responsive luminescent material [163].
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The protonated form of the complex, 159, has been proven to be useful as a probe for 
solvents able to form H-bonds. The reversible protonation of complex 158 results in a dra-
matic change in emission color from bluish-green to yellowish-orange and vice versa after 
successive protonation and deprotonation reactions. 

This behavior allows the rollover complex 158 to act in several ways, as a phospho-
rescent acid sensor both in solution and in the solid state, and as a chemosensor for de-
tecting acidic and basic organic vapors. In addition, the protonated form, [Ir(bipy-H)H+], 
which is generated after protonation of [Ir(bipy-H)], can be used as a “solvatochromic 
probe for oxygen containing solvents”. 

Further potential applications arise from the reversible protonation of the uncoordi-
nated nitrogen in rollover helicenes 43 and 44, which allowed these organometallic com-
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The protonated form of the complex, 159, has been proven to be useful as a probe
for solvents able to form H-bonds. The reversible protonation of complex 158 results in a
dramatic change in emission color from bluish-green to yellowish-orange and vice versa
after successive protonation and deprotonation reactions.

This behavior allows the rollover complex 158 to act in several ways, as a phosphores-
cent acid sensor both in solution and in the solid state, and as a chemosensor for detecting
acidic and basic organic vapors. In addition, the protonated form, [Ir(bipy-H)H+], which
is generated after protonation of [Ir(bipy-H)], can be used as a “solvatochromic probe for
oxygen containing solvents”.

Further potential applications arise from the reversible protonation of the uncoor-
dinated nitrogen in rollover helicenes 43 and 44, which allowed these organometallic
compounds to act as “multifunctional switchable systems” [75].

Finally, the potential for the construction of emissive materials was also shown by
the double rollover Pt(II) complex 39, described above [61], with potential applications
as OLEDs.

8. Conclusions and Perspectives

Even after several years from its recognition as a distinct process, rollover cyclomet-
alation can be still considered a relatively unexplored topic. Investigations in this field
still constitute a small argument in chapters dedicated to cyclometalation, although their
weight is constantly increasing.

In our opinion, the field has only been marginally explored; as a matter of fact, only a
few ligands have been investigated, among the plethora of heterocyclic ligands potentially
available.

In general, every bi- or polydentate ligand having two or more heterocyclic rings,
sufficiently flexible to allow rotation of the rings and with C–H bonds “on the other side”
(usually in symmetric position to one of the donor atoms), is potentially able to follow a
rollover metalation. This allows a vast number of ligands to be studied, expanding the
area to five- or six-membered heterocyclic rings, metallacycles of different size (e.g., five-,
six-, or seven-membered rings) and different donors (N, S, P, C(sp2), C(sp3), normal or
abnormal heterocyclic carbenes, etc.).

As for all cyclometalated complexes, properties may be fine-tuned by modifications of
the stereoelectronic properties of substituents on the heterocyclic rings, and by an adequate
choice of coligands, oxidation state, and geometry.

Whereas the chemistry of classical cyclometalated complexes has become a mature
field of research, the same is far to be true for the rollover behavior.

Mechanistic concepts have been only partly cleared up; whereas the C–H bond activa-
tion step is expected to follow related mechanisms in classical and non-classical cases, the
factors which drive the conversion of stable chelated complexes into the corresponding
rollover complexes is still an obscure matter: only for a few metals, methods for this conver-
sion have been found. A great advancement of the field will be achieved by understanding
this crucial step, which could allow the activation of a great number of chelated complexes
and metals.

On the whole rollover, cyclometalation constitutes a highly resourceful reaction with
applications related to that of classical cases, enriched by the presence of the uncoordinated
donor atom. This presence, which enables rollover ligands to be defined as “ligands with
multiple personalities”, furnishes enhanced possibilities in biomedicine, for example, due
to hydrogen-bonding interactions, in catalysis, due the reversibility of the rollover process
(retro-rollover and hydrogen transfer reactions), in material chemistry (e.g., synthesis
of homo and hetero-bimetallic systems with metals connected by a highly delocalized
ligands), etc.

Future developments in these fields are difficult to foresee, due to ample variability in
metal, ligands, and substituents available, added to persisting obscurities in mechanistic
aspects (both on the rollover process and on the behavior of rollover complexes). However,
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we can expect developments in catalyzed C-C coupling processes, hydrogen transfer
reactions, photocatalysis, promoted by metals not yet investigated (e.g., Au, Pt, early
transition metals, etc.). Advancements in biomedicine (e.g., antitumor and antimicrobial
compounds) and material chemistry (sensors, switches, photosensitive devices, etc.) will
be expected as well.

However, it can be predicted that further progresses in the area will provide new
unforeseen applications and developments contributing to enrich this promising field of
organometallic chemistry.
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