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The development of chimeric antigen receptor T (CAR-T) cell therapy, a specific

type of immunotherapy, in recent decades was a fantastic breakthrough for the

treatment of hematological malignancies. However, difficulties in collecting

normal T cells from patients and the time cost of manufacturing CAR-T cells

have limited the application of CAR-T-cell therapy. In addition, the termination of

related clinical trials on universal CAR-T cell therapy has made further research

more difficult. Natural killer (NK) cells have drawn great attention in recent years.

Chimeric antigen receptor-NK (CAR-NK) cell therapy is a promising strategy in the

treatment of malignant tumors because of its lack of potential for causing graft-

versus-host disease (GVHD). In this review, we will address the advances in and

achievements of CAR-NK cell therapy.
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Introduction

In recent decades, CAR-T-cell therapy was a research focus and was thought to be a

promising targeted immunotherapy, especially in the treatmentof relapsedandrefractoryB-cell

malignant tumors. To date, two CD19-CAR-T-cell therapies have been approved for the

treatmentofacute lymphocytic leukemia(ALL)anddiffuselargeB-cell lymphoma(DLBCL)(1).

StudiesofCAR-Tcells targetingCD38andBCMAforthetreatmentofmultiplemyeloma(MM)

have been implemented in clinical trials (2). However, CAR-T cell therapy is still facing several

problems. The FDA has terminated all clinical trials concerning universal CAR-T-cell therapy

due to safety consideration and related increased attention on gene editing. It is also difficult to

collect sufficient numbers of T lymphocytes from patients who have been heavily pretreated.

Furthermore, several weeks of CAR-T-cell preparation time hinder the use of this therapy to

patients with rapid disease progression (3). In addition, cytokine release syndrome (CRS) and
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neurological toxicity (NT), the most common adverse events of

CAR-T-cell therapy, are life-threatening (4). All of these factors

may restrict further clinical applications of CAR-T-cell therapy.

In recent years, NK cells have been regarded as an alternative to

T cells due to their accessibility and safety (5). Considering the short

duration in vivo, the cytotoxicity and adverse events of CAR-NK-

cell therapy are better manageable than those of CAR-T cell

therapy. Moreover, the lower incidence of GVHD induced by NK

cells makes them a promising immunotherapy for allogenic cell

transplantation (6). CAR-NK-cell therapy has thus become a

research hotspot and new strategy for malignancies.

In this review, we will discuss the similarities and differences

between CAR-T cells and CAR-NK cells and focus on recent

advances and preclinical studies of CAR-NK cells.
The biological characteristics
of NK cells

NK cells are innate immune effectors and are found mainly in

the bone marrow, peripheral blood, spleen and liver (7). NK cells

possess cytotoxic features similar to those of CD8+ T cells and play

important roles in tumor immunology. CD8+ T-cell-mediated

cytotoxicity relies on the combination of the T-cell receptor

(TCR) and an antigen presented by major histocompatibility

complex-I (MHC-I). NK cells can recognize MHC-I expressed on

healthy cells and avoid attacking them (8, 9). Tumor cells can

down-modulate MHC-I to escape CD8+ T-cell-mediated

cytotoxicity, while NK cells can be activated through the loss of

MHC-I and control the proliferation and metastasis of tumors (8,

10). Thus, NK cells have more specific anti-tumor effects and are

associated with fewer off-target complications (9, 11).

The activation of NK cells can be mediated through different

pathways, including signals from Toll-like receptors (TLRs)

recognizing pathogen-associated molecular patterns (PAMPs),

cytokines such as interleukin (IL)-2 or IL-15, and interplay

between activating and inhibitory receptors (7, 12, 13). Activating

NK-cell receptors include members of the natural cytotoxicity

receptor (NCR) family (NKp30, NKp44 and NKp46), C-type

lectin-like activating receptors (NKG2C and NKG2D), activating

killer immunoglobulin receptors (KIR2DS1, KIR2DS4 and

KIR2DL4) and costimulatory receptor DNAX accessory molecule

1 (DNAM-1) (14). While killer cell immunoglobulin-like receptors

(KIRs) and the heterodimeric C-type lectin receptor NKG2A are

inhibitory receptors associated with the tolerance of NK cells to

normal cells (14).
The sources of NK
cells for immunotherapy

NK cells for preclinical studies and clinical therapy may be

derived from a wide range of sources, such as peripheral blood
Frontiers in Immunology 02
(PB), cord blood (CB), hematopoietic stem cells (HSCs), induced

pluripotent stem cells (iPSCs) and NK-cell lines (15–19).

The most accessible source of NK cells is peripheral blood.

However, a number of issues limit the use of NK cells from

peripheral blood, including the high monetary and time costs,

low cell proliferation capacity and short survival time (20). The

expression of genes related to the cell cycle and cell proliferation

is higher in NK cells from umbilical cord blood (UCB) than in

those from peripheral blood (21). Furthermore, the advantages

of UCB-derived NK cells, including the convenience of

collection and low associated incidence of GVHD, make UCB

a better source of NK cells than PB (22, 23). In addition, human

stem and progenitor cells (HSPCs) isolated from cord blood can

also be derived into NK cells with the stimulation of various

growth factors and cytokines, including IL-2, IL-7 and IL-15

(24). Similarly, NK cells can also be derived from iPSCs in the

presence of these stimulators (25).

NK-cell lines, mostly derived from NK/T-cell lymphoma

(NKTCL) patients, such as the NK-92 and KHYG-1 cell lines,

may be a potential rapid and abundant source for NK cells for

immunotherapy (26, 27). These cell lines are easily transduced

and maintain cytotoxicity during expansion. The NK-92 cell

line, obtained from a good manufacturing practice (GMP)-

compliant master cell bank and treated in a GMP-compliant

procedure, is the only cell line approved by the FDA for clinical

use (28, 29). Since the first report of the transfusion of irradiated

NK-92 cells for adoptive immunotherapy of malignancies (30)

and the first CAR-NK-92 cells targeting HER-2 (31), NK-92 cells

has been applied in several clinical trials, and some encouraging

results have been achieved in the treatment of refractory

lymphoma, multiple myeloma and other solid tumors. Several

patients even achieved a complete response (CR) (32–34). NK-

cell lines must be irradiated before infusion due to the risk of

tumor engraftment and tumorigenicity. The short lifespan of

irradiated cells may result in treatment failure or a short

duration of disease remission, thus limiting their clinical

application (32, 33, 35).
The similarities and
differences between
CAR-T cells and CAR-NK cells

CARs consist of an extracellular domain (a single-chain variable

antibody fragment (scFv) or a functional domain of a specific

ligand) for the identification of target antigens, a transmembrane

region and an intracellular domain (36). The intracellular domain of

CAR-T cells is composed of CD3z activation signaling (first

generation of CARs) and costimulatory molecules (CD28, 4-1BB

or CD134) (second or third generation of CARs) (Figure 1A). Based

on NK-cell characteristics, several CAR-NK cells contain DNAX-

activation protein (DAP) 10 or DAP12 as an intracellular domain
frontiersin.org
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(Figure 1C). DAP12 and NKG2D are expressed on NK cells and

participate in the activation of downstream signals, while DAP10 is

necessary for NKG2D costimulatory signaling. These CAR-NK cells

were mainly designed for the treatment of both leukemia and solid

tumors and showed strong anti-tumor effects (37, 38). A lack of

cytokines such as IL-2 or IL-15may lead to the short in vivo lifetime

of NK cells. NK cells can be engineered to both express CARs and

autonomously produce IL-2 or IL-15 (fourth generation of CARs),

thus enhancing their persistence and proliferation (Figure 1B)

(39, 40).
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Lentivirus-based vectors have been extensively used in CAR

gene transduction of T cells. Compared with T cells, NK cells

showed resistance to viral transfection and lower transduction

efficiency, which may be due to the natural capacity of NK cells

to defend against viral infection (41, 42). Other approaches,

including retroviral vectors, transposon vectors and the

electroporation of DNA or mRNA plasmids, are alternative

ways to transfer the CAR gene into NK cells (43–48).

CAR-T cells can kill tumor cells with specific target antigens

through active cell lysis and the production of cytokines,
A

B

C

FIGURE 1

The structure of chimeric antigen receptors (CAR). (A) CAR consist of an extracellular antigen binding domain, a transmembrane hinge and
intracellular domain. The extracellular domain could be a single chain fragment of variable region (ScFv) antibody or a functional domain of
specific ligand. The intracellular domain is composed of a signaling domain (first generation) and one costimulatory domain (second generation)
or two (third generation). (B) Fourth generation CARs include a constitutive or inducible expression of a transgenic product (cytokine,
chemokine or receptor, etc.). (C) Differences in CAR constructs between CAR-T and CAR-NK: CAR-T cells usually contains a CD8
transmembrane domain, CD3z signaling domain and 4-1BB and/or CD28 costimulatory domain. CAR-NK cells may be with different domains
(for example, NKG2D transmembrane domain, DAP10 or DAP12 signaling domain and 2B4 costimulatory domain).
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including IL-1a, IL-2, IL-6, IL-8, IL-10, and tumor necrosis

factor-a (TNF-a) (6, 49). However, these cytokines are also

highly associated with CRS and severe neurotoxicity (49). CAR-

NK cells secrete a different cytokine profile, such as IFN-g and
GM-CSF, which are associated with a lower risk of CRS and

neurotoxicity (50). In addition, CAR-NK cells can lyse tumor

cells directly by releasing cytoplasmic granules containing

perforin and granzyme or inducing tumor cell apoptosis by

expression of Fas ligand or TNF-related apoptosis-inducing

ligand (TRAIL) (51). NK cells also participate in antibody-

dependent cellular cytotoxicity (ADCC) (52). NK cells can

activate and interact with other immune cells, such as T cells,

dendritic cells and macrophages (53). All these features enable

them to exert anti-tumor activity in pathways other than the

CAR-specific pathway and reduce the risk of relapse or

resistance mediated by target antigen escape (54–56).
Preclinical studies of
CAR-NK cells in the treatment
of hematopoietic malignancies

NK cells have been engineered to express CARs to redirect

their activity against B-cell malignancies. To date, CD19 is the

most common target in both preclinical and clinical studies of

CAR-T-cell therapy. Similarly, a number of preclinical studies of

CAR-NK therapy have focused on this target. NK-92 cells

engineered with CARs recognizing CD19 showed increased

cytotoxicity against B-cell malignancies (57, 58). CD19-CAR-

NK cells from other cell sources, including PB, iPSCs and CB,

also showed activity against B-cell malignancies in vitro (40, 59,

60). Other molecules, including CD20 and Flt3, were also

developed as specific targets for CAR-NK immunotherapy

against B-cell tumors (61, 62).

CD38 and CD138 are classic markers of plasma cells and are

highly expressed in multiple myeloma (MM). Although CD38-

CAR-T-cell therapy for MM and CD38-CAR-NK-cell therapy

for acute myeloid leukemia (AML) have been reported in several

studies (63, 64), CD38-CAR-NK cells have not been evaluated

for the treatment of multiple myeloma. Jiang et al. developed

CD138-targeting CAR-NK cells and demonstrated enhanced

anti-tumor activity in vitro and in xenograft mouse models

(65). B-cell maturation antigen (BCMA) is another ideal target

for CAR cell therapy due to its restricted expression in B-cell

lineage cells. BCMA-CAR-NK cells modified with CXCR4

significantly reduced the tumor burden and extended the

survival of tumor-bearing mice (66). Signaling lymphocytic

activation molecule family member 7 (SLAMF7 or CS1) is

another potential target for its high expression in plasma cells

and MM. Second-generation CS1-specific CAR-NK-92 cells
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were established by Chu et al. and showed cytotoxicity against

CS1-positive MM cells and xenograft models (67).

To date, T-cell malignancies, including peripheral T-cell

lymphoma and T-cell acute lymphoblastic leukemia (T-ALL),

remains a refractory disease. Three CAR-NK cell therapies

targeting CD3, CD5 and CD7 have been investigated for the

treatment of T-cell malignancies. These modified CAR-NK-92

cells showed significant anti-tumor cytotoxicity against T-cell

lymphomas and T-ALL both in vitro and in vivo (68–70).

In addition to specific tumor markers, antigens that are

widely expressed in multiple malignancies have been developed

as immunotherapy targets. For example, NKG2D ligands are

expressed on a variety of tumor cells. MHC class I chain-related

protein A (MICA), an NKG2D ligand, has been identified on

some leukemia cells and solid tumor cells, such as lung, breast,

ovary and colon cancer cells (71–73). NKG2D ligands have also

been detected on MM cells and glioma cells (74, 75). Leivas et al.

developed engineered NK cells targeting NKG2D ligands in MM

(76). Data from in vitro tests and mouse models showed

enhanced anti-tumor activity of NKG2D-CAR-NK cells

compared with memory CAR-T cells (76). Du et al. generated

peripheral blood-derived NK cells coexpressing NKG2D-specific

CAR and IL-15 and demonstrated their activity in lysing tumor

cells both in vitro and in a xenograft AML model (77).
Preclinical studies of CAR-NK cells
in the treatment of solid tumors

Although CAR-T-cell therapies have achieved great progress

in the treatment of hematological malignancies, their effect on

solid malignancies has been poor. This poor efficacy may be due

to the insufficient homing capacity and the immunosuppressive

tumor microenvironment (78). Thus, CAR-NK cell therapies for

solid tumors have become a promising immunotherapy strategy.

Glioblastoma, breast cancer and ovarian cancer are the most

widely researched solid tumors to determine the potential of

CAR-NK-cell therapy (summarized in Table 1).
Glioblastoma

Glioblastoma is the most common malignant primary

cerebral tumor in adults. Even though patients undergo

surgical resection and receive radio- and/or chemotherapy, the

median survival time is approximately 15 months (98).

Interleukin-13 receptor a2 (IL-13Ra2), epidermal growth

factor receptor (EGFR), EGFR variant III (EGFRvIII) and

growth factor receptor tyrosine kinase Erb2 (HER2) have been

explored as immunotherapy targets for glioblastoma. They are
frontiersin.org
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overexpressed in 40-60% of glioblastoma patients, while these

antigens are undetectable or only minimally expressed in normal

brain tissue (99–102). IL-13Ra2 can enhance the invasiveness of

glioblastoma (103). EGFRvIII drives tumorigenicity and

mediates resistance to radiotherapy and chemotherapy (104,

105). Together, IL-13Ra2 and EGFRvIII can promote the

proliferation of glioblastoma cells (103), while overexpression

of HER2 contributes to malignant transformation (106).

There have been several preclinical studies of IL-13Ra2-
specific CAR-T-cell therapy in the treatment of glioblastoma

(107–110). Other studies demonstrated the significant

cytotoxicity of CAR-T cells against EGFRvIII- or HER2-

positive glioblastoma both in vitro and in vivo (111–114).

Until now, most preclinical studies of CAR-NK-cell therapy

for glioblastoma were targeting EGFR, EGFRvIII and HER2.

Different NK cells, including NK-92, NKL, KHYG-1 and YTS

cells, engineered to target EGFR and/or EGFRvIII, showed

enhanced cytotoxicity against glioblastoma both in vitro and

in vivo (80–83). CAR-NK cells recognizing both EGFR and
Frontiers in Immunology 05
EGFRvIII showed stronger anti-tumor effects than single

targeted NK cells (84). NK-92/5.28z cells, engineered HER2-

specific NK cells with CD28 and CD3z signaling domains, have

been demonstrated to have the ability to lyse HER2-positive

glioblastoma cells in vitro and in orthotopic glioblastoma

xenograft NSG mouse models (79).
Breast cancer

As a very common malignancy in female patients, breast

cancer is another solid tumor that is studied for CAR-NK-cell

immunotherapy. Similar to glioblastoma, HER2, EGFR and

EGFRvIII are also targets for breast cancer.

The anti-tumor activity of NK-92/5.28z cells was also

evaluated in HER-2-positive breast cancer. Data revealed that

tumor cells expressing HER-2 enhanced the proliferation and

cytokine release (such as granzyme B, IFN-g, IL-8 and IL-10) of

NK-92/5.28z cells [87]. The modified NK-92 cells displayed
TABLE 1 Preclinical studies of CAR-NK cell therapy.

Malignancy Target Source of NK cells Reference

Hematological cancer

B-cell malignancies CD19 NK-92, PB-NK or CB-NK (40, 57–60)

CD20 NK-92 (61)

Flt3 NK-92 (62)

Multiple myeloma CD138 NK-92 (65)

BCMA NK-92 (66)

CS1 NK-92 (67)

NKG2D PB-NK (77)

T-cell malignancies CD3 NK-92 (68)

CD5 NK-92 (69)

CD7 NK-92 (70)

AML NKG2D PB-NK (77)

Solid cancer

Glioblastoma HER2 NK-92 (79)

EGFR and/or EGFRvIII NK-92, NKL, KHYG1 or YTS (80–84)

Breast cancer HER2 NK-92 (29, 85, 86)

EGFR and/or EGFRvIII NK-92 or PB-NK (87)

EpCAM NK-92 (88)

TF NK-92 (89)

B7-H6 NK-92 (90)

Ovarian cancer HLA-G PB-NK (91)

CD24 NK-92 (92)

CD44 NK-92 (93)

CD133 NK-92 (94)

Mesothelin iPSC-NK or NK-92 (95, 96)

aFR NK-92 (97)
fro
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significant cytotoxicity in vitro and in xenograft mouse models

(85). NK-92 cells engineered to target HER2 developed by Liu

et al. also demonstrated similar anti-tumor effects (86).

A second-generation CAR that can recognize both EGFR

and EGFRvIII was constructed by Chen et al. (87). NK-92 cells

transduced with this CAR showed enhanced cytotoxicity and

production of IFN-g against breast cancer cells. Xenograft mouse

models of breast cancer brain metastasis were used for in vivo

evaluation of anti-tumor activity. CAR-NK-92 cell infusion

significantly suppressed tumor growth. Similarly, two EGFR-

targeted CAR-NK cells were developed (87). Cytokine release

and cytotoxicity assays were performed and revealed that EGFR-

CAR NK cells specifically lysed triple-negative breast cancer cells

in vitro and suppressed breast cancer cell line-derived xenograft

and patient-derived xenograft (PDX) tumors in mouse

models (87).

Epithelial cell adhesion molecule (EpCAM), tissue factor

(TF) and B7-H6 have also been reported as targets for the

treatment of breast cancer. Studies have shown the increased

tumor killing ability of these CAR-NK-92 cells against breast

cancer cells (88–90).
Ovarian cancer

Ovarian cancer is a highly malignant tumor with a 5-year

survival rate lower than 40% (115). Several studies have focused

on CAR-NK immunotherapies for the treatment of

ovarian cancer.

Human leukocyte antigen G (HLA-G) is a tumor-associated

antigen (TAA) that is expressed on 40-100% of solid tumors and

a limited subset of immune-privileged tissues and adult tissues,

such as erythroid precursors and pancreatic islets (116, 117). Jan

et al. developed CAR-NK cells targeting HLA-G and evaluated

the synergy of CAR-NK cells combined with low-dose

chemotherapy (118). Jan et al. developed CAR-NK cells

targeting HLA-G and evaluated the synergy of CAR-NK cells

combined with low-dose chemotherapy (116). Their study

showed that pretreatment with low-dose chemotherapy can

induce the overexpression of HLA-G, thus enhancing the anti-

tumor cytotoxicity of HLA-G-CAR-NK cells (91).

Since cancer stem cells (CSC) play an important role in

metastatic spread and chemoresistance in solid tumors, CSC

markers such as CD24, CD44 and CD133 have been explored as

specific targets for ovarian cancer immunotherapy (92–94).

CAR-NK-92 cells targeting CD24, CD44 or CD133 have

shown significant anti-tumor effects in preclinical studies

(92–94).

Mesothelin and folate receptor alpha (aFR) are alternative

targets that are overexpressed in ovarian cancer. Both iPSC-
Frontiers in Immunology 06
derived CAR-NK cells and NK-92 cell line-derived CAR-NK

cells targeting mesothelin showed robust specific anti-tumor

activity both in vitro and in vivo (95, 96). Ao et al. developed

aFR-targeted CAR-NK-92 cells and demonstrated not only their

antigen-specific cytotoxicity and proliferation in vitro but also

their ability to eliminate cancer cells in mouse models (97).
Clinical applications of CAR-NK cells

Since the first CAR-NK-cell clinical trials (NCT00995137,

clinicaltrials.gov) started in 2009, there have been 39 studies

registered in clinicaltrials.gov evaluating the feasibility, safety

and efficacy of CAR-NK cells in the treatment of malignancies.

Eight clinical trials sponsored by PersonGen BioTherapeutics

and Asclepius Technology Company Group, including

NCT02742727, NCT02839954, NCT02892695, NCT02944162,

NCT03941457 , NCT03931720 , NCT03940820 and

NCT03940833, which were estimated to be completed in

2018-2019, have been stopped updating for 3 years. It’s a pity

that no data of these trials were reported till now. The rest of 31

trials were summarized in Table 2.

Similar to CAR-T-cell therapies, most CAR-NK-cell trials

target markers on hematopoietic malignancies, such as CD19,

CD20, CD22 and BCMA. Notably, there have been eight CAR-

NK-cell clinical studies have focused on solid malignancies,

which are thought to poorly responsive to CAR-T cells. These

CAR-NK cells may target markers such as HER2, NKG2D,

mesothelin and PSMA expressed on malignancies, including

brain, prostate, ovarian, pancreatic and lung cancers (Table 2).
Discussion

Studies in recent years suggest that CAR-NK-cell therapies

may be equally effective as CAR-T-cell therapies. Compared

with CAR-T cells, CAR-NK cells have multiple advantages for

the treatment of malignancies. CAR-NK-cell therapy seldom

causes severe CRS or neurotoxicity. The low associated risk of

GVHD and the safety of allogeneic NK-cell infusion shorten the

time of cell preparation, which greatly benefits patients with

lymphopenia or rapid progression. However, several

nonnegligible problems still exist. The best source of NK cells

and their in vitro expansion strategy, and the most effective

signaling domain for CAR activation still need to be elaborated.

Antigen escape and tumor heterogeneity, the most common

difficulties in immunotherapies, as well as in vivo duration, are

also problems to be considered. CAR-NK-cell immunotherapy is

still in its early stages. Strategies to improve the efficacy and
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TABLE 2 Clinical trials for CAR-NK cell immunotherapy.

NO. NCT Other
Name/ID
Numbers

States Start
Date

Phase Disease Target Sponsor locations NK
source

NCT00995137 NKCD19
R01CA113482
NCI-2011-
01226

Completed in May 2013. October
2009

I B-Lineage Acute
Lymphoblastic
Leukemia

CD19 St. Jude Children’s Research
Hospital

PB-NK

NCT01974479 NKCARCD19 Suspended for an interim
review of (CAR) CD19
research strategy

September
2013

I B-Lineage Acute
Lymphoblastic
Leukemia

CD20 National University Health
System, Singapore

PB-NK

NCT03056339 2016-0641
NCI-2018-
01221

Active, not recruiting
Primary results
published.(119)

June 21,
2017

I and
II

B Lymphoid
Malignancies

CD19 M.D. Anderson Cancer
Center

UCB-NK

NCT03383978 EudraCT
2016-000225-
39

Recruiting December
1, 2017

I Glioblastoma HER2 Johann Wolfgang Goethe
University Hospital

NK-92

NCT03415100 NRC-NK-01 Completed Results
submitted in February 2021

January 2,
2018

I Metastatic Solid Tumors NKG2D The Third Affiliated
Hospital of Guangzhou
Medical University

PB-NK

NCT03656705 CNK-101 Enrolling by invitation September
29, 2018

I Non-small Cell Lung
Carcinoma

PD-1 Xinxiang medical university NK-92

NCT03692663 TABP EIC-01 Recruiting December,
2018

Early I Castration-resistant
Prostate Cancer

PSMA Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03824964 CD19/CD22
CAR NK-
BJZL-01

Unknown February 1,
2019

Early I Relapsed or Refractory
B Cell Lymphoma

CD19/
CD22

Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03692767 CD22 CAR
NK-BJZL-01

Unknown March
2019

Early I Relapsed and Refractory
B Cell Lymphoma

CD22 Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03690310 CD19 CAR
NK-BJZL-01

Unknown March
2019

Early I Relapsed and Refractory
B Cell Lymphoma

CD19 Allife Medical Science and
Technology Co., Ltd.

Unknown

NCT03692637 Mesothelin
Car NK-
HNRM-01

Unknown March
2019

Early I Epithelial Ovarian
Cancer

Mesothelin Allife Medical Science and
Technology Co., Ltd.

PB-NK

NCT04245722 FT596-101 Recruiting March 19,
2020

I B-Cell Lymphoma,
Chronic Lymphocytic
Leukemia

CD19 Fate Therapeutics iPSC-NK

NCT04623944 NKX101-101 Recruiting September
21, 2020

I Adults With AML or
MDS

NKG2D Nkarta Inc. PB-NK

NCT05215015 IBR733-T01
WX-IBR-7

Recruiting November
30, 2020

Early I Acute Myeloid
Leukemia

CD33/
CLL1

Wuxi People’s Hospital Unknown

NCT04639739 CAR NK for
NHL

Not yet recruiting December
17, 2020

Early I Relapsed or Refractory
B Cell Non-Hodgkin
Lymphoma

CD19 Xinqiao Hospital of
Chongqing

Unknown

NCT04747093 ITNK-2021 Recruiting January 29,
2021

I and
II

B Cell Malignancies CD19 Nanfang Hospital of
Southern Medical
University

Induced-T
Cell
Like NK
cells

NCT04796675 CAR-NK-
CD19 cells

Recruiting April 10,
2021

I B Lymphoid
Malignancies

CD19 Wuhan Union Hospital,
China

CB

NCT04887012 IR2021002168 Recruiting May 1,
2021

I Refractory or Relapsed
B-cell Non Hodgkin
Lymphoma

CD19 Second Affiliated Hospital,
School of Medicine,
Zhejiang University

PB-NK

NCT05020678 NKX019-101 Recruiting August 20,
2021

I Adults With B-cell
Cancers

CD19 Nkarta Inc. PB-NK

NCT05137275 IBR854-03 Recruiting November
24, 2021

Early I Locally Advanced or
Metastatic Solid Tumors

5T4 Shanghai East Hospital Unknown

NCT05008536 BCMA NK for
MM

Recruiting October 1,
2021

Early I Relapsed or Refractory
Multiple Myeloma

BCMA Xinqiao Hospital of
Chongqing

UCB-NK
and CB-NK

(Continued)
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safety of CAR-NK-cell immunotherapy must be further explored

in the future.
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TABLE 2 Continued

NO. NCT Other
Name/ID
Numbers

States Start
Date

Phase Disease Target Sponsor locations NK
source

NCT05247957 CARNK-001 Recruiting October
13, 2021

I Relapsed or Refractory
Acute Myeloid
Leukemia

NKG2D Hangzhou Cheetah Cell
Therapeutics Co., Ltd

UCB-NK

NCT05213195 CARNK-002 Recruiting December
10, 2021

I Refractory Metastatic
Colorectal Cancer

NKG2D Zhejiang University Unknown

NCT04847466 10000096,
000096-C

Recruiting December
14, 2021

II Recurrent or Metastatic
Gastric or Head and
Neck Cancer

PD-L1 National Cancer Institute
(NCI)

NK-92

NCT05008575 CD33 CAR
NK-AML

Recruiting December
23, 2021

I Relapsed or Refractory
Acute Myeloid
Leukemia

CD33 Xinqiao Hospital of
Chongqing

Unknown

NCT05194709 IBR854-T01,
WX-IBR-8

Recruiting December
30, 2021

Early I Advanced Solid Tumors 5T4 Wuxi People’s Hospital Unknown

NCT05379647 NK-002 (QN-
019a)

Recruiting November
4, 2021

I B-Cell Malignancies CD19 Zhejiang University iPSC-NK

NCT05182073 FT576-101 Recruiting November
24, 2021

I Multiple Myeloma BCMA Fate Therapeutics iPSC-NK

NCT05110742 2021-0526 Not yet recruiting June 30,
2022

I and
II

Relapse or Refractory
Hematological
Malignances

CD5 M.D. Anderson Cancer
Center

CB-NK

NCT05092451 2021-0386 Not yet recruiting August 1,
2022

I and
II

Relapse or Refractory
Hematological
Malignances

CD70 M.D. Anderson Cancer
Center

CB-NK

NCT05336409 CNTY-101-
111-01

Not yet recruiting December
2022

I Relapsed or Refractory
CD19-Positive B-Cell
Malignancies

CD19 Century Therapeutics, Inc. iPSC-NK
fro
Allife Medical Science and Technology has just revised the completion date of NCT03692663. As for their other clinical trials, NCT03824964, NCT03692767, NCT03690310 and
NCT03692637, we are looking forward to their renewal.
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