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Abstract 

The simple and greener one-pot approach for the synthesis of biscoumarin derivatives using catalytic amounts of 
nano-MoO3 catalyst under mortar-pestle grinding was described. The use of non-toxic and mild catalyst, cost-effec-
tiveness, ordinary grinding, and good to the excellent yield of the final product makes this procedure a more attrac-
tive pathway for the synthesis of biologically remarkable pharmacophores. Accordingly, biscoumarin derivatives were 
successfully extended in the developed protocols. Next, a computational investigation was performed to identify the 
potential biological targets of this set of compounds. In this case, first, a similarity search on different virtual libraries 
was performed to find an ideal biological target for these derivatives. Results showed that the synthesized derivatives 
can be α-glucosidase inhibitors. In another step, molecular docking studies were carried out against human lysoso-
mal acid-alpha-glucosidase (PDB ID: 5NN8) to determine the detailed binding modes and critical interactions with 
the proposed target. In silico assessments showed the gold score value in the range of 17.56 to 29.49. Additionally, 
molecular dynamic simulations and the MM-GBSA method of the most active derivative against α-glucosidase were 
conducted to study the behavior of selected compounds in the biological system. Ligand 1 stabilized after around 
30 ns and participated in various interactions with Trp481, Asp518, Asp616, His674, Phe649, and Leu677 residues.
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Introduction
Coumarin compounds exhibited brilliant and remark-
able pharmaceutical activities [1]. Geiparvarin (1) [2], 
daphsafnin (2) [3] as well as daphjamilin (3) [4] known as 
natural coumarin compounds with anti-cancer and anti-
monoamine oxidase activities (Fig. 1).

Biscoumarins derivatives comprise a diverse and inter-
esting group of heterocyclic drugs which are extremely 
important for their biological activities. Some coumarin 

derivatives, in general, and biscoumarins, in particu-
lar, are well known for their biological activity [5]. Some 
approved drugs with various properties are shown in 
Fig. 2. Dicoumarol (4) and warfarin (5) are naturally anti-
coagulant that depletes stores of vitamin K. Another anti-
coagulant drug is acenocoumarol (6) which inhibited the 
reduction of vitamin K by vitamin K reductase [6]. Ami-
nocoumarin (7) as a coumarin derivative was an antibi-
otic for the treatment of staphylococci infections.

Several methods have been reported for the synthe-
sis of biscoumarins, recently Kurt et  al. synthesized a 
series of novel bis-coumarin derivatives containing 
triazole moiety [7]. Bavandi et  al. demonstrated the 
synthesis of bis-4-hydroxy coumarins derivatives in 
the presence of Porcine pancreas lipase as a green cata-
lyst [8]. Zeynizadeh et al. reported the novel magnetic 
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graphene oxide/Zn–Ni–Fe layered double hydroxide 
nanocomposite for the green preparation of biscou-
marins [9]. Hagiwara et  al. showed the use of Et2AlCl 
as a Lewis acid for the condensation of 4-hydroxycou-
marin and aldehydes in acetonitrile or dichloromethane 
at room temperature [10]. In continue, other research-
ers reported a similar reaction using piperidine, molec-
ular iodine [11], tetrabutylammonium bromide (TBAB) 
[12], heteropolyacids [13], phospho- tungstic acid [14] 
and sodium dodecyl sulfate (SDS)[15] as catalysts. 
Some of these procedures required refluxing for hours 
in organic solvents, use of expensive catalysts, and tedi-
ous work-up. With the increasing public concern over 
environmental degradation, water is commonly con-
sidered as a benign solvent because of its non-toxicity, 
lower cost, and abundant natural occurrence [16].

Recently, mechanochemical synthesis has received 
lots of attention among synthetic chemists as a bril-
liant standard technology [17]. Many chemical reac-
tions such as Grignard reactions [18] reductions [19] 
click reactions [20] and Knoevenagel condensations 
[21] have been carried out using the green and mecha-
nochemical techniques. The importance of this type of 
protocol is free from organic solvents.

Metal oxide nanoparticles possess huge surface areas 
as a useful heterogeneous catalyst traditionally for cata-
lyzing organic reactions. They are defined as friendly, 
and environmentally materials with attractive physical 
and chemical properties [22]. Metal oxide nanoparti-
cles are effective catalysts that can replace nonselective, 
unstable, or toxic catalysts [23].

Fig. 1  Natural coumarin compounds

Fig. 2  coumarin derivatives drugs
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MoO3-nanoparticle and its derivatives are extensively 
attractive due to its unique structure, it was used as an 
inexpensive, eco-friendly, and highly reactive catalyst. 
Moreover, this non-toxic catalyst can be easily applied 
for diverse organic synthesis, generating corresponding 
products in excellent yields [24]. MoO3 showed signifi-
cant Lewis acid property for diverse organic transfor-
mations in the liquid phase [25]. It demonstrated quite 
active over a wide range of temperatures and resistant to 
thermal excursions [26].

Similarity search, a subcategory of ligand-based virtual 
screening, has emerged as a reliable, fast, and inexpen-
sive method that finds compounds with high similarity 
in some ways, especially molecular features, to known 
bioactive molecules. The assumption that molecules that 
are globally similar in structure could exhibit similar bio-
logical activity is generally valid [27, 28]. Once a target 
has been identified, molecular docking and molecular 
dynamic simulation, known as structure-based virtual 
screening, can be applied [29–31]. In docking assess-
ments databases of available molecules are docked into 
the region of interest of protein in silico and scored based 
on predicted interactions with the site. In these cases, 
compounds with a higher affinity toward the target can 
be discovered [32]. Molecular dynamic (MD) simulation 
is an effective technique to measure the behavior of fluids 
at the molecular level. In the MD simulation, the move-
ment of system particles is determined in a certain period 
and the system evolution is investigated. MD simulation 
is a process similar to real experiments. Thus, it is an 
ideal tool to study the different interactions and confor-
mation of ligands in the biological system at the nanom-
eter scale [33, 34].

As a result, with inspiration from the remarkable bio-
logical activities of biscoumarin derivatives [35–37] 
hereby, the solid-phase pathway for Knoevenagel–
Michael reactions of biscoumarins (3) by the reaction of 
aldehydes (2) and 4- hydroxycoumarin (1) in the presence 
of 10  mol% nano-MoO3 were reported. The products 
were achieved by grinding the reactants in a mortar with 
a pestle under solvent-free conditions. Similarity search 
analysis and molecular docking studies were performed 
to find an ideal biological target for this set of com-
pounds. Finally, MD simulations were combined with the 
generalized-Born surface area method (MM/GBSA) to 
evaluate the solvation free energy of the protein and the 
ligand in the dynamic situations.

Experimental section
General
Solvents were purified by standard procedures. Reactions 
were followed by TLC using. Melting points were deter-
mined with an Electrothermal 9100 apparatus in open 

capillary tubes and are uncorrected. The chemicals used 
in this work were purchased from Fluka or Merck com-
panies and were used without further purification. FT-IR 
spectra were recorded on Thermo Nicolet Nexus 670 and 
1H NMR were determined by Bruker Avance 300  MHz 
spectrometers.

General procedure for the synthesis of biscoumarin 
derivatives using mortar–pestle grinding
An aromatic aldehyde (1  mmol), 4-hydroxycoumarin 
(2  mmol) and MoO3 (10  mol%) were subjected to mor-
tar and pestle grinding for specified time. After comple-
tion of the reaction (monitored by TLC), 3 mL of distilled 
water was added to the reaction mixture and the product 
was extracted and washed with water (10  ml). Recrys-
tallization from hot ethanol afforded pure biscumarin 
derivatives in good to excellent yield. The structure of all 
products was confirmed by appropriate spectroscopic 
and physical methods (Melting point or IR, 1HNMR) 
with those reported or with authentic samples prepared 
by the conventional method.

The procedure for the synthesis of 3, 3’‑((4‑hydroxyphenyl) 
methylene) bis (4‑hydroxy‑2H‑chromen‑2‑one) using reflux:
4-hydroxybenzaldehyde (1  mmol) and 4-hydroxy-
coumarin (2  mmol) were taken in 25  mL round bot-
tom flask followed by the addition of a different solvent 
(15 mL) and MoO3 (10 mol%) was stirred and reflux for 
the appropriate times. The progress of the reaction was 
monitored by TLC, the reaction mixture was washed 
with H2O (10 mL) and EtOAc (10 mL) to almost afford 
the pure product. The crude products was recrystallized 
from hot ethanol to obtain the pure compound.

3,3’-((4-chlorophenyl)methylene)bis(4-hydroxy-2H-
chromen-2-one) (3h): FT-IR (KBr) (KBr, ν cm−1) 3072, 
2923,2856, 1667, 1610, 1562, 1349, 1095, 764; 1H NMR 
(300 MHz, CDCl3) δ (ppm): 11.5 (s, 1H, OH), 11.3 (s, 1H, 
OH), 8.0 (s, 2H, arom), 7.6 (s, 2H, arom),7.1–7.4 (m, 8H, 
arom), 6.04 ( s, 1H, CH).

3,3’-((4-methoxyphenyl)methylene)bis(4-hydroxy-2H-
chromen-2-one) (3i): FT-IR (KBr, cm−1) 3065, 2989, 
2842, 2727, 1665, 1613, 1563, 1349, 1042, 769; 1H NMR 
(300  MHz, CDCl3) δ (ppm): 11.52 (s, 1H, OH), 11.31 
(s, 1H, OH), 8.04 (s, 2H, arom), 7.65–7.63 (m, 2H, 
arom),7.42–7.39 (m, 4H, arom),7.27 (s,2H, arom) 7.14- 
7.12 (m, 2H, arom), 6.04 ( s, 1H, CH), 3.89 (s, 3H, CH3).

3,3’-((4-nitrophenyl)methylene)bis(4-hydroxy-2H-
chromen-2-one) (3j): FT-IR (KBr, ν cm−1) 3064, 2922, 
2857, 2720, 1654, 1609, 1564, 1339, 1096, 764 1H NMR 
(300 MHz, CDCl3) δ (ppm): 11.56 (s, 2H, OH), 8.15–8.02 
(m, 4H, arom), 7.65–7.26 (m, 8H, arom), 6.11 ( s, 1H, 
CH).
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3,3’-((3-nitrophenyl)methylene)bis(4-hydroxy-2H-
chromen-2-one) (3k): FT-IR (KBr, ν cm−1) 3071, 2925, 
2859, 2772, 1656, 1609, 1526, 1346, 1010, 763; 1H NMR 
(300 MHz, CDCl3) δ (ppm): 11.58 (s, 1H, OH), 11.38 (s, 
1H, OH), 8.14–7.99 (m, 4H, arom), 7.67–7.43 (m, 8H, 
arom),6.14 (s, 1H, CH).

3,3’-((2,4-dichlorophenyl)methylene)bis(4-hydroxy-2H-
chromen-2-one)(3l): FT-IR (KBr, ν cm−1) 3071, 2925, 
2861, 1653, 1311, 1096, 756; 1H NMR (300 MHz, CDCl3) 
δ (ppm): 11.60 (s, 1H, OH), 11.59 (s, 1H, OH), 7.98–7.34 
(m, 11H, arom), 6.07–6.01 (s, 1H, CH).

3,3’-(phenylmethylene)bis(4-hydroxy-2H-chromen-2-
one) (3m): FT-IR (KBr, ν cm−1) 3065,3000, 2927, 2737, 
1659, 1609, 1336, 1090, 755; 1H NMR (300 MHz, CDCl3) 
δ (ppm): 11.43 (s, 2H, OH), 8.04 (s, 2H, arom), 7.39–7.31 
(m, 9H, arom), 6.10 (s, 1H, CH).

4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)ben-
zaldehyde (3n): FT-IR (KBr, ν cm−1) 3068, 2923, 2806, 
2730, 1701, 1607, 1097, 764, 1H NMR (300 MHz, CDCl3) 
δ (ppm): 11.54 (s, 1H, OH), 11.34 (s, 1H, OH), 9.93 (s, 1H, 
arom), 7.97–7.38 (m, 12H, arom), 6.10 (s, 1H, CH).

Insights into the biological activities of biscoumarin 
derivatives
In order to propose biological activities of the synthe-
sized compounds, three steps computational process was 
applied, using ligand-based similarity search, molecular 
docking, and molecular dynamics.

Similarity‑based analog searching
To find an ideal biological target for this set of com-
pounds, ligand-based similarity search on several 
libraries including SwissTargetPrediction (http://​www.​
swiss​targe​tpred​iction.​ch/), PubChem similarity search 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov/), SEA Search Server 
(https://​sea.​bkslab.​org/), MolTarPred (https://​molta​
rpred.​marse​ille.​inserm.​fr/), SuperPred was performed. 
In these databases, the structure of compounds was 
uploaded and different searching approaches including 
fingerprint and shape-based similarity pharmacophores 
were applied automatically to find the most similar bioac-
tive agents compared to the synthesized compounds.

Procedure for docking studies
In this study, the Gold docking program was used to carry 
out the docking calculations between the biscoumarin 
analogs and the binding site of human lysosomal acid-
alpha-glucosidase (PDB ID: 5NN8, https://​www.​rcsb.​org/​
struc​ture/​5nn8) [38]. The protein structure was prepared 
using the Discovery Studio Client so that ligands and 
waters were removed from 5NN8 and all hydrogens were 
added. The box for docking calculations was built tak-
ing into account the center of the co-crystallized ligand 

for the enzyme with a 10 Å radius sphere around the co-
crystallized ligand.

First, GOLD docking program with different functions 
was used for docking analyses via re-dock acarbose inside 
the 5NN8. All other options were set as default. The best 
accuracy with the lowest RMSD was seen in the Chem-
Score fitness function. The 3D structures of ligands were 
first generated by the Hyperchem and then energy mini-
mization and optimization were performed to generate 
the initial confirmation via molecular mechanics (Amber) 
followed by molecular dynamic (AM1) approaches. These 
approaches are widely applied in ligand-docking and MD 
simulations which offer acceptable criteria to determine 
the proper and favorable molecular arrangement and 
potential energy of a molecule [39–41]. The derivatives 
were docked into the active site of protein using default 
parameters 10 runs for each ligand; Genetic algorithm 
with 100% efficacy, min ops 10,000; max ops 125,000 
were chosen, All other options were set as default. The 
top ChemScore value was used for further analysis. The 
higher value confirms better interaction with the active 
site. Finally, protein–ligand interactions were analyzed 
with Discovery Studio Visualizer [42–44].

Molecular dynamics simulations
Starting model was obtained by imposing the best 
ChemScore to acid-α-glucosidase (PDB ID: 5NN8). 
MD simulations were conducted using the desmond 
operator of Schrodingers suit maestro [45–47]. To 
build the system for MD simulation, the protein–
ligand complexes were solvated with SPC explicit 
22,530 water molecules and placed in the center of 
an orthorhombic box in the periodic boundary con-
dition. The system’s charge was neutralized by add-
ing 84 atoms of Na and 63 atoms of Cl to simulate the 
real cellular ionic concentrations, respectively. The 
MD simulations protocol involved minimization, pre-
production, and finally production MD simulation 
steps. In the minimization procedure, the entire sys-
tem was allowed to relax for 2500 steps by the steep-
est descent approach. Then the temperature of the 
system was raised from 0 to 300  K with a small force 
constant on the enzyme to restrict any drastic changes. 
MD simulations were performed via NPT (constant 
number of atoms; constant pressure, i.e., 1.01325 bar; 
and constant temperature, i.e., 300  K) ensemble. The 
Nose–Hoover chain method was used as the default 
thermostat with 1.0  ps interval and Martyna-Tobias-
Klein as the default barostat with 2.0  ps interval by 
applying an isotropic coupling style. Long-range elec-
trostatic forces were calculated based on the particle-
mesh-based Ewald approach with the cutoff radius 
for Columbia forces set to 9.0  Å. Finally, the system 

http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://pubchem.ncbi.nlm.nih.gov/
https://sea.bkslab.org/
https://moltarpred.marseille.inserm.fr/
https://moltarpred.marseille.inserm.fr/
https://www.rcsb.org/structure/5nn8
https://www.rcsb.org/structure/5nn8
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was subjected to produce MD simulations for 100  ns 
for each protein–ligand complex. During the simula-
tion, every 1000 ps of the actual frame was stored. The 
dynamic behavior and structural changes of the sys-
tems were analyzed by the calculation of the RMSD 
and RMSF. Subsequently, the energy-minimized struc-
ture calculated from the equilibrated trajectory system 
was evaluated for the investigation of each ligand–pro-
tein complex interaction.

Results and discussion
Chemical synthesis
MoO3-nanoparticles were previously synthesized [26, 
48]. For identification of nanostructure powder X-ray 
diffraction (PXRD) and scanning electron microscopy 
(SEM) analysis were carried out. Figure 3, displayed pow-
der X-ray diffraction (PXRD), and the surface morphol-
ogy and the diameter of the nanostructure were studied 
by SEM in Fig.  4. Debye–Scherrer Eq.  (1) was used for 
calculating crystal size structure, according to this equa-
tion: D is the mean size of crystalline, k is a constant 
(= 0.9 assuming that the particles are spherical), λ is the 
X-ray wavelength, β is the line width (obtained after cor-
rection for the instrumental broadening) and θ is the 
angle of diffraction (Bragg angle). The average particle 
size obtained from XRD data is approximately ~ 50  nm 
[26]

The synthetic route to access compounds 3a- 3n are 
achieved by the solid phase general pathway illustrated 
in Fig.  5. The condensation reaction between 4-hydrox-
ycoumarin and various aldehydes is summarized. This 
solvent-free reaction needed only a few minutes of reac-
tion time. This kind of reaction is expected to be the most 
economical method since neither solvent is used.

(1)D = k�/βcosθ

Fig. 3  PXRD patterns of the synthesized MoO3 nano-crystals

Fig. 4  Scanning electron micrographs for prepared nano-MoO3

Fig. 5  General pathway for synthesis of biscoumarin derivatives

Table 1  Optimization of the solvent-free reaction

a Isolated yield

Entry Catalyst (mol%) Time (min) Yield (%)a

1 - 60 5

2 H2SO4 (15) 35 60

3 CF3CO2H(10) 50 40

4 CCl3CO2H (10) 50 55

5 PTSA(10) 50 45

6 AlCl3(10) 50 60

7 MoO3(10) 20 93

8 MoO3(11) 20 93

9 MoO3(12) 20 93

10 MoO3(8) 20 75

11 MoO3(4) 20 70
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Table 2  Synthesis of biscoumarins derivatives (4a–n) using nano-MoO3 under mortar and pestle grinding

Entry Aldehyde Product Found
m.p.(
°C)

Reported
m.p.( °C)

Time
(min)

Yielda

(%)

1

219-

223

221-

225(49)
20 93

2

142–

144

144–

146(50)
20 90

3

242–

244

240–

242(50)
25 91

4

218–

220

219–

221(50)
22 90

5

285–

289

288–

290(50)
30 85

6

263–

265

262–

264(50)
32 84

7

270–

272

268–

270(50)
28 89
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Table 2  (continued)

8

251-

254

252-

254(9)

25 85

9

248-

250

249-

251(9)

25 88

10

231-

233

232-

235(9)

30 92

11

216-

219

215-

217(9)

20 90

12

199-

202

200-

202(9)

20 91

13

229-

221

230-

232(9)

25 90

14

181-

183

180-

182(9)

30 85

a Isolated yield

Entry Aldehyde Product Found
m.p.(
°C)

Reported
m.p.( °C)

Time
(min)

Yielda

(%)

a Isolated yield
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Effect of different catalyst
The amount of catalyst has shown an excellent effect on 
the rate and yield of the reaction, To optimize the reac-
tion conditions, the amount of various catalysts were 
applied in the solid phase synthesis of 3,3’-((4-hydrox-
phenyl) methylene)bis(4-hydroxy-2H-chromen-2-one) 

3a from the condensation of 4-hydroxycoumarin with 
4-hydroxybenzaldehyde and the best result at room tem-
perature was obtained (Table 1).

According to the result in Table  1, when the reaction 
was performed in the absence of catalyst, longer reaction 
time was required (60 min) and very low yield of prod-
uct was achieved (≤ 5%) even if the reaction time was 
prolonged (Table  1, entry 1). To obtain the satisfactory 
results of (3a), the reaction using various homogeneous 
and heterogeneous Bronsted and/or Lewis acids was 
performed (Table 1, entries 2–7). Accordingly, the nano-
MoO3 was the best catalyst and applied for all reactions. 
Using 10  mol % of nano-MoO3, 3a was isolated in 93% 
yield after the progress of the reaction for a few minutes 
(Table 1, entry7). By increasing the amount of the cata-
lyst in the model reaction, no change was observed in the 
time and yield of the reaction (Table 1, entries 8–9). The 
decline in the use of the catalyst amount less than 10% 
resulted in low yields (Table 1, entries 10–11).

Under the optimized reaction conditions, a series of 
biscoumarins derivatives (3a–n) were synthesized, the 
structure of all products was confirmed by appropriate 
spectroscopic and physical methods (Table 2).

Table 3  Optimization of the solvent and temperature in room 
temperature or reflux condition

a Isolated yield

Entry Solvent T (°C) Time (min) Yield (%)a

1 CH3CN r.t 120 30

2 CH3CN Reflux 120 50

3 CH2Cl2 r.t 120 40

4 CH2Cl2 Reflux 120 55

5 EtOH r.t 120 60

6 EtOH Reflux 120 68

7 H2O r.t 120 70

8 H2O Reflux 120 77

9 EtOH/H2O r.t 120 80

10 EtOH/H2O Reflux 120 91

11 MeOH r.t 120 70

12 MeOH Reflux 120 72

Fig. 6  A plausible mechanism for synthesis of biscoumarins derivatives using MoO3
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Effect of different solvents and temperature in reflux 
condition
Our next approach was to study various solvents in dif-
ferent temperatures on the model reaction of 4-hydroxy-
coumarin and 4-hydroxybenzaldehyde in the presence of 
(10 mol %) of MoO3 for preparation of 3a (Table 3).

The model reaction was performed in the different sol-
vents and various temperatures (Table  3 entries 1–12), 
the results confirmed that carrying out the reaction in 
EtOH/ H2O (1:1) in reflux condition gave the highest 
yield (Table 3, entries 10). Eventually, the reaction using 
mortar–pestle grinding method is low cost, more effi-
cient, and simple reaction without the usage of organic 
solvent that gives the desired product.

Effect of different aldehydes
After reaction optimization, different aldehydes were 
chosen and reacted under optimum conditions. This 
multi-component and solid phase approach can be used 
for both aromatic aldehydes with electron-withdrawing 
and electron-donating groups. Furthermore, a wide range 
of aromatic aldehydes was successfully used in this reac-
tion with excellent results.

A proposed mechanistic route for the condensation of 
aldehydes and 4-hydroxycoumarin that rationalizes the 
formation of the products is exhibited in (Fig.  6). First, 
nucleophilic attack of 4-hydroxycoumarin to the acti-
vated aldehyde (by MoO3 coordination), followed by H2O 
elimination provides intermediate “A” that was further 

activated by MoO3. This, in turn, undergoes a second 
nucleophilic attack by another 4-hydroxycoumarin to 
provide the final product.

Similarity search and docking studies
The similarity metrics analysis on several libraries indi-
cated that the synthetic biscoumarin derivatives can be 
ideal α-glucosidase inhibitors. Regarding the similarity 
of reported α-glucosidase inhibitors with the designed 
structure, molecular docking evaluations were performed 
to study the binding mode of all derivatives with the 
α-glucosidase active site. α-glucosidase enzyme catalyzes 
the hydrolysis of starch to simple sugars which leads to 
an increase in blood glucose levels. α-glucosidase inhibi-
tors can be ideal and effective anti-diabetic agents [51–
53]. Docking studies of the mentioned compounds were 
carried out with gold docking software using different 
score fitness functions including chem score, gold score, 
ChemPLP, and the best accuracy with the lowest RMSD 
was seen in the ChemScore fitness function. Validation 
of the molecular docking method was done by redocking 
the crystallographic ligand of the target enzyme, gainst 
5NN8, which testified the validation of the docking cal-
culations. Alignment of the best pose of acarbose in the 
active site of α-glucosidase and crystallographic ligand 
recorded an RMSD value of 1.45  Å via ChemScore fit-
ness functions. Results of ChemScore fitness values were 
reported in Table 4. It should be noted that fitness scores 
in gold software are dimensionless and the higher scale 

Table 4  Docking scores and interactions of compounds against α-glucosidase

The predicted binding pose of top-ranked docked compounds was presented in Fig. 7. All the residues involved in molecular interaction are shown in stick form and 
colored by atom types in which carbon is depicted in orange and oxygen in red

Compound ChemScore value Interactions with key residue

1 29.49 Asp404, Phe525, Arg600, Phe649, Leu650, Leu678

2 23.05 Trp376, Trp481, Leu650, Leu677, Leu678

3 17.56 Ala284, Trp376, Trp618, Phe649, Leu650

4 25.51 Trp376, Asp404, Trp481, Asp518, Met519, Phe525, 
Asp616, Phe649, Leu650, Leu677, Leu678

5 18.54 Trp481, Leu650, Leu677, Leu678

6 20.35 Trp376, Trp481, Phe649, Leu650, Leu678

7 22.92 Trp481, Phe649, Leu650, Ser676, Leu677, Leu678

8 24.63 Trp376, Trp481, Phe649, Leu650, Leu677

9 23.41 Trp376, Phe649, Leu650, Leu678

10 24.05 Asp282, Ala284, Ala555, Asp616, Trp618, Leu650

11 18.74 Trp376, Phe649, Leu650

12 24.06 Trp376, Trp481, Phe649, Leu650, Ser676, Leu677, Leu678

13 21.89 Trp376, Arg411, Trp481, Phe649, Leu650 Leu677, Leu678

14 22.26 Trp376, Trp481, Phe649, Leu650, Ser676, Leu677, Leu678
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Fig. 7  Docking conformations of compounds 1–14 (orange stick) in the α-glucosidase active site. Hydrogen bonds are depicted in green dashed 
lines, π-π stacked interactions are depicted in dark pink dashed lines, π-aryl interactions are depicted in pink dashed lines pi-sulfur interactions are 
depicted in pale orange dashed lines and and pi-anion interactions are depicted in dark orange dashed lines
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value showed better interactions with the active site [54, 
55].

Images were created by Discovery Studio Visualizer 
v20.1.0.19295.

As can be seen in Fig. 7, compound 1 demonstrated the 
best docking score (29.49) compared to other derivatives. 
The chromen-2-one moiety of compound 1 made two pi-
alkyl interactions with Leu650 and Leu678 as well as two 
pi-pi T-shaped interactions with Phe649. On the other 
side of the molecule, 4-hydroxy chromen-2-one showed 
a hydrogen bond with Arg600 plus a pi–alkyl interaction 

with Phe525. Another H-bounding interaction was also 
seen between the oxygen of 4-hydroxyphenyl ring with 
Asp404. 4-hydroxyphenyl also recorded additional pi-pi 
stacked interaction with Phe649.

MD simulations
Molecular docking studies alone can be misleading, 
as they are performed in static conditions. To validate 
these results and better understand the potential for 
interaction of ligand 1 and their ability to coordinate 
with α-glucosidase active site MD simulations were 

Fig. 7  continued
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performed. To study the steadiness of the protein–ligand 
complex, the root mean square deviation (RMSD) of 
the complexed backbone was investigated in MD simu-
lation. As can be seen in Fig.  8, the simulation period 
was adequate to reach a balanced ligand-complex struc-
ture over the simulation time and the RMSD values 
stabilize around a fixed value of 1.60 Å. Changes of the 
order of 1–3 Å are perfectly acceptable for small, globu-
lar proteins. Changes much larger indicate the protein 

is undergoing a large conformational change during the 
simulation.

The root mean square fluctuation (RMSF) is useful for 
characterizing local changes along the protein chain and 
the flexibility of the protein (Fig. 9).

Type and percent of protein interactions with the 
ligand throughout the simulation type are exhibited in 
Fig.  10. As can be seen interaction with Asp616 can be 

Fig. 8  RMSD plot of the enzyme in complexed compound 1 in the MD simulation time. RMSD values of the Ca atoms of the protein are depicted in 
blue, and ligand-complex values are exhibited in red

Fig. 9  RMSF plot of the α-glucosidase residue in complexed with compound 1
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Fig. 10  Protein–ligand contacts during the whole simulation time in α-glucosidase complexed with compound 1

Fig. 11  2D representation of ligand-residue interactions
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seen in almost 100% frame followed by Leu677, Asp518, 
Arg411, Trp376, and Phe649.

Interactions that occur more than 30.0% of the simu-
lation time in the selected trajectory (0.00  ns through 
100.02  ns) are shown in Fig.  11. Asp616 participated in 
impotent hydrogen bond interaction with 4-hydroxy 
phenyl in more than 90% of cases. Also, Asp518 demon-
strated interaction (90%) with OH of 2H-chromen-2-one 
through water bridge. Derivative 1 also exhibited interac-
tions with Trp481, Phe649, Leu677, and His674. Another 
water bridge was also recorded between Arg411 and 
C=O of 2H-chromen-2-one (Fig. 11).

Overall, it can be seen that synthesized biscoumarin 
derivatives due to containing special functionality (OH 
and C=O and O) can participate in several interactions 
with the residue of the active site. Also, the planner struc-
ture of the aromatic ring in biscoumarin provides several 
pi-interactions with the active site which stabilizes the 
binding site of the enzyme. Also, the binding energy of 
compound 1 calculated using the MM/GBSA method is 
presented in Table 5.

Conclusion
In summary, an easy and efficient protocol for the syn-
thesis of biscoumarin derivatives in the presence of 
MoO3 nanoparticles was explained. This methodology 
showed considerable synthetic advantages in terms of 
product diversity, simplicity of the reaction procedure, 
mild reaction conditions, and good to excellent yields. 
This procedure could be classified as green chemistry 
due to the elimination of any hazardous organic solvent. 
Similarity search analysis proposed the biscoumarin 
pharmacophore as ideal α-glucosidase inhibitors and 
molecular docking studies exhibited that these deriva-
tives effectively fitted within the α-glucosidase active site 
with Chemscore value in the range of 17.56 to 29.49. MD 
assessments of compound 1 recorded critical interactions 

with Asp616, Leu677, Asp518, Arg411, Trp376, and 
Phe649 which prove the potential of this chemical fam-
ily as promising drug candidates for further experimental 
analysis.

These findings demonstrated the applicability of simi-
larity search followed by molecular docking and MD 
assessments as a promising method in the early stage of 
drug discovery.
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