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ABSTRACT  Objective: This research aims to extract human gait parameters from floor vibrations. The
proposed approach provides an innovative methodology on occupant activity, contributing to a broader
understanding of how human movements interact within their built environment. Methods and Procedures:
A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis
of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete
information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG)
for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor
vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model
was tested in a real-time implementation where ten individuals were recorded walking at their own selected
pace. Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range
of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between
estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the
region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned
with the estimations using the APDM sensors and video recordings. Conclusion: This research validates
the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations,
demonstrating its satisfactory comparability with established technologies such as APDM sensors and
video recordings. The close alignment between the estimations and target values emphasizes the approach’s
efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete
data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor
vibrations. Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive
and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential
indicators of neurological conditions. The implications of this research extend to the development of advanced
gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved
diagnostics and personalized healthcare. Clinical and Translational Impact Statement: This manuscript
introduces an innovative approach for unattended gait assessments with potentially significant implications
for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the
technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities
in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities
allows for uninterrupted daily activities during these assessments, reducing the reliance on specialized clinical
environments. This technology enables continuous monitoring of gait patterns over time and has the potential
for integration into healthcare platforms. Such integration can enhance remote monitoring, leading to timely
interventions and personalized care plans, ultimately improving clinical outcomes. The probabilistic nature of
our model enables uncertainty quantification in the estimated parameters, providing clinicians with a nuanced
understanding of data reliability.

INDEX TERMS  Walking-induced floor vibrations, gait parameters, ambulatory metrics, uncertainty quan-
tification, probabilistic multilevel models, health monitoring, at-home assessments.
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I. INTRODUCTION

ALKING patterns provide valuable insights into

human health. Gait parameters, including walking
speed and cadence, are robust predictors of survival, all-cause
mortality, fall risk, physical activity, physical functional
decline, and post-acute care setting [1], [2]. Furthermore,
deviations from baseline gait patterns can indicate aging,
walking capabilities, cognition, and other health-related
markers [3].

Previous studies have correlated gait parameters with
changes in health status. For example, a study involving
5,000 adults with a median age of 70.6 years showed that
a cadence exceeding 100 steps/minute could be associated
with a fifteen-year increase in survival, while a cadence below
100 steps/minute could indicate a ten-year increase [4]. Addi-
tionally, a cadence exceeding 100 steps/minute predicted a
21% reduction in all-cause mortality, with each additional ten
steps further reducing mortality by 4%.

Walking speed, on the other hand, is a reliable clinical
marker across various disease populations [3]. Measure-
ments taken over a 4-meter distance reflect changes in
health conditions beyond measurement errors, with variations
of approximately 0.11 m/s for medium-speed walkers and
0.14 m/s for fast-speed walkers [5]. Research also shows that
increases in walking speed are proportional to changes in
cadence, step length, and metabolic intensity [6], [7].

Interpreting the variability of reported gait measurements
and their interplay presents significant challenges in corre-
lating them with changes in health status. This variability
includes systematic errors, different technologies used for
assessment [8], [9], random errors during assessment, biased
estimations, and inherent variations in subjects’ patterns [5].
Typically, gait parameters are measured by having individuals
walk on the floor in a straight line or on a treadmill for a spe-
cific time [5]; which, as controlled measurements, may not
accurately reflect natural gait variations [8]. The Hawthorne
effect, the subjective influence of perceived observation, can
introduce biases and increase measurement variability, affect-
ing the identification of correlations between gait parameters
and health changes.

Unlike controlled clinical settings, home environments
reflect individuals’ daily challenges, such as varying terrain
and environmental conditions, which can impact gait pat-
terns. Conducting assessments in familiar settings allows for
a more comprehensive analysis of gait variability and its rela-
tion to health changes [10]. Performing assessments at home
holds promise for reducing the burden on individuals and
healthcare systems, enabling more frequent monitoring. This
can be particularly beneficial for longitudinal studies or track-
ing disease progression, such as Parkinson’s or Alzheimer’s
disease [11]. However, at-home assessments using the most
popular available technologies face privacy concerns and
challenges related to compliance with device usage, partic-
ularly in the case of wearable technologies and patients with
cognitive disorders [12]. Forgetfulness or inconsistent use of
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these devices can impact the ability to provide an accurate
snapshot of individuals’ gait changes.

The measurement of floor vibrations is one of the newest
methodologies to identify individuals’ walking patterns from
the structure’s response. Floor vibrations caused by the
impact of footsteps during walking create deformations in
the floor that sensors like accelerometers or geophones can
detect [12]. Once step events are correctly identified from the
measurements (e.g., acceleration signals), valuable informa-
tion can be extracted from complete walking cycles. Various
techniques, including the time of arrival methods (ToA) [13],
force estimation methods [14], [15], signal-energy-based
algorithms [16], and transfer learning [17], have been devel-
oped to address challenges associated with event extraction,
such as wave dispersion or low signal-to-noise ratios (SNR),
which refers to the signal of interest being buried by noise.

Some studies have explored gait parameter extraction
using floor vibrations as a sort of stopwatch, measuring the
time between the first and last events identified in a controlled
setting where the walking distance is known [18]. Others
have addressed gait balance symmetry using ground reaction
forces with ToA methods employed for localization [19].
However, these methods rely on available energy dissipa-
tion throughout the system, which is sensitive to multipath
effects. These effects, where signals reflect and arrive via
multiple paths, can cause inaccuracies propagating through
the estimations. Additionally, the energy dissipation through-
out the system requires step events to be reachable by the
receiver at all times. This can be problematic if the energy
is too low, leading to the complete removal of the event
from the signal during filtering [20]. Existing energy-based
vibro-localization methods often do not consider the uncer-
tainty of the localization success or failure by providing a
measure of the reliability of the collected data, which is
imperative in uncontrolled scenarios, especially if there is
missing information. ToA methods also require sensor syn-
chronization, which can be challenging in real-home settings
where the area to cover is more significant than a hallway
or if the furniture is completely rearranged within the home.
Studies that address obstructions, such as [21], may heavily
depend on sensor placement and the structural characteristics
of the building, impacting the reliability of the localization
results. These methods may also require sophisticated signal
processing algorithms and computational resources, mak-
ing real-time deployment challenging in resource-constrained
environments.

Some of the most advanced techniques for step localiza-
tion, accounting for localization uncertainty, are presented
in [22], [23], and [24]. Although these techniques have yet
to be tested in unattended scenarios, they offer a prob-
abilistic approach to localization that can enhance gait
extraction.

As previous research has shown, floor vibrations present
a unique opportunity to advance at-home gait assessments
compared to other technologies, owing to their non-intrusive
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FIGURE 1. Differences in cadence estimation from acceleration data with
missing step events.

and unobtrusive monitoring nature. However, implemen-
tation remains in its early stages and faces significant
challenges, particularly in event identification within unat-
tended environments. For instance, the acceleration signal
presented in Figure 1 contains gait data, documenting a record
of walking-induced vibrations. From the acceleration data
collected, incomplete step events identification, represented
by the blue markers, and correct step events identification,
represented by the dashed line, provide two completely dif-
ferent estimations of cadence, namely 105 steps/min and
120 steps/min, with a difference of 13%. Such discrepancies
can pose problems when attempting to correlate changes in
health status with changes in cadence. Tracking all events
from an acceleration record containing gait information is not
always possible, especially if the person walks away from
a sensor; thus requiring an estimation of cadence that can
account for the missing information.

Similarly, methodologies aiming to remove noise con-
tributions may inadvertently eliminate the event altogether,
especially when the event’s frequency band is similar to
that of the noise [20]. Considering the possibility of missing
step events in the acceleration signal due to direct source
collection or signal enhancement, this research aims to extract
cadence and walking speed using a probabilistic approach.

The proposed probabilistic model offers an approach for at-
home assessments, providing insights that can significantly
impact clinical decision-making. Sensors can be strategically
installed beneath the flooring of a home or care facility,
allowing individuals to carry out their daily activities without
interruption or conscious effort to participate in gait assess-
ments. Integrating this technology into healthcare platforms
empowers providers to monitor patients’ gait parameters
remotely, significantly enhancing the timeliness of inter-
ventions and personalized care plans, ultimately leading to
improved clinical outcomes. Furthermore, the probabilistic
nature of the model allows for uncertainty quantification in
the estimated parameters, providing clinicians with a nuanced
understanding of data reliability and enabling more informed
decisions and tailored interventions based on objective gait
data obtained from at-home assessments.
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TABLE 1. List of items for the Bayesian analysis reported guidelines
(BARG) (adapted from [25], Table 1).

Location in this document Reporting Items for the BARG
Why Bayesian Analysis
Goals of the analysis
Model
Data variables
Likelihood function
Likelihood model comparison
Prior distribution
Formal specification of likelihood and prior
Prior predictive check
Details of the computation
Software
MCMC chain convergence
MCMC chain resolution
Posterior Distribution
Posterior predictive check
Summary of posterior PDFs
Report decisions
ROPE
Estimated values
Decision threshold and model probabilities
Sensitivity Analysis
Broad Priors
Decisions
Reproducibility
Software
Script and data
MCMC chains

Auxiliary files

section 1

section IV

subsection IV-B

subsection IV-A

subsection IV-C

subsection IV-D

subsection IV-D

section V

subsection IV-E

section VII

The probabilistic multilevel model herein accounts for
nested sources of variability and limited information using
Bayesian analysis. The model consists of two-level predic-
tors: the time of steps events (cadence level) and the walking
speed level predictor as a function of cadence. The first level
can estimate cadence from acceleration signals by modeling
possible missing steps as random variables and estimating
their distributions according to the available information.
The second level predictor uses available data from previous
measurements on cadence and walking speed.

To ensure reproducibility of the results, we present the
model using the Bayesian Analysis Reporting Guidelines
(BARG) [25], which proposes reporting specific items from
the Bayesian analysis to assure transparency of the analy-
sis. The guidelines include model information, computations,
posterior distributions, model comparison, and sensitivity
analysis. Table 1 presents the list of items requested by
the guidelines addressed throughout the manuscript. The
manuscript is divided into four parts: (1) describes the
multilevel model for cadence and walking speed follow-
ing the BARG, (2) presents the experimental framework
for collecting walking-induced floor acceleration data and
Ambulatory Parkinson’s Disease Monitoring (APDM) sen-
sors data to validate the model, (3) presents the imple-
mentation of the model with a group of subjects walking
freely in an unattended setting, and (4) discusses the research
results and corresponding decisions about the gait parameters
estimations.
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Il. UNCERTAINTY QUANTIFICATION

Whether epistemic or aleatory, the assessment of uncertainty
plays a critical role in informed decision-making [26]. The
epistemic uncertainty is associated with variability that can be
reduced once more information is collected. Aleatory uncer-
tainty, however, represents an irreducible variability, even
with access to unlimited data. For example, natural variations
of walking speed and cadence observed in consecutive trials
for the same individual exemplify aleatory uncertainty.

The Bayesian and the frequentist approaches to estimate
uncertainty, including their differences, are well discussed
in many papers [27], [28]. In the frequentist approach, the
probability is defined as the frequencies of occurrences [28];
epistemic and aleatory uncertainty are present, and model
parameters have a true value. In the Bayesian approach,
however, probability represents a state of knowledge [29],
and all uncertainty is considered epistemic. In the Bayesian
approach, model parameters represent knowledge, probabil-
ity is an expression of belief, and prior or expert knowledge
is essential.

This study uses the Bayesian approach due to its suit-
ability for handling small datasets and the variations in
gait parameters derived from limited data, particularly given
the challenges associated with extracting all step events
from acceleration signals. Additionally, this approach offers
flexibility when addressing missing information, which is
crucial for accurate cadence estimation and subsequent speed
estimation. For example, in the case that the number of miss-
ing steps from acceleration signals exceeds the number of
accurately identified step events, higher uncertainty can be
expected compared to cases where all step events are cor-
rectly extracted. A significant advantage of this approach is its
ability to provide credible intervals for model parameters and
predictive model quantities, which is crucial for representing
the limited amount of data necessary for ambulatory metrics.

The goal of the proposed model is to find the distribution
of cadence (£2) and walking speed (f[) that best represents
the time values of steps extracted from a floor acceleration
signal. The purpose of the model is to use nested sources of
information on two levels. The first level estimates cadence
from observations, and the second uses cadence to predict
walking speed. The second level is built based on pre-existing
research linking both markers. Combined criteria using the
high-posterior density (HPD) and the range of practical
equivalence (ROPE) are used to test the target values. The
criteria not only provide a credible interval of the cadence
and walking speed estimations and their most likely value
according to a predefined level of certainty, but they also test
what percentage of the distribution is practically equivalent
to the target values.

Ill. EXPERIMENTAL FRAMEWORK

Experiments were conducted in the structural laboratory at
the University of South Carolina to validate and assess the
results of the multilevel model using walking-induced floor
vibrations. Twenty-seven repetitive trials were performed
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FIGURE 2. Walking test. Floor accelerations and APDM wearable sensors
data collection. A trial using a metronome at 120 BPM.

by a 36-year-old participant wearing training shoes with a
full rubber outsole. The participant walked on a 10-meter
walkway with approximately 2 meters for acceleration and
deceleration phase, respectively. Floor accelerations were
recorded at a sampling frequency of 1706.67 Hz. The
experimental setup, shown in Figure 2, featured four PCB
393B31 seismic accelerometers positioned next to a hallway
separated 1.88 m from each other. These sensors have a
sensitivity of 1.02 V/(m/s?) (£5%) and a frequency range of
0.1 —200 Hz (£5%).

During the experiment, the individual wore six OPAL-
APDM wireless body-mounted inertial sensors and followed
ametronome at three different tempos: 90, 120, and 130 beats
per minute (BPM). The participant stroked the ground with
a left or right foot at each beat. Floor acceleration records
and APDM measurements were collected during the tests.
The APDM cadence and walking speed measurements are
considered baselines (target values) for evaluating the esti-
mations of the multilevel model. The OPAL-APDM sensors
were selected for this research based on being widely used in
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clinical trials for gait analysis. The collected data, including
floor acceleration data from each sensor and the APDM
sensor measurements, has been made available in the Open
Science Framework (OSF) repository [30]. This research
study was conducted with the approval and oversight of
the Institutional Review Board (IRB) at the University of
South Carolina. Informed consent was obtained to publish
the participant’s image (Figure 2) in an online open-access
publication.

IV. MULTILEVEL PROBABILISTIC

CADENCE-SPEED MODEL

Multilevel modeling allows the manipulation of complex
patterns and nested sources of variability. Thus, when using
hierarchy, it is necessary to consider the variability associ-
ated with each nesting level. In multilevel models, random
variables incorporate the variation between different groups.
By assuming that the random effect is generated under the
same distribution, one can share information between the
different levels, improving the precision of the prediction for
groups with little data [31]. Consider, for example, the ran-
dom variable cadence (2) for the first level model presented
in Equation 1. Here, f,, represents the time of the i-th step
from i = {1,2, ...n} of n steps, t, the time of the first step,
and A; = 60/<2 represents the time between consecutive
steps as a function of cadence. Cadence (£2) only depends on
the time each foot touches the floor from consecutive steps.
However, walking speed requires spatial information of the
foot’s location or, at minimum, the total distance walked.
When collecting floor vibrations through multiple sensors in
the time domain, information on the localization of the steps
is not immediately available, which makes the estimation of
walking speed from only time data impossible if sensor place-
ment is not controlled. However, extensive literature shows
that cadence, a walking pattern defined by the number of steps
per minute, can be correlated with walking speed. Developing
a multilevel model to transition from time (cadence) to space
(walking speed) presents an opportunity to use all available
data to make inferences for both markers, even with little or
no information on the localization of the steps. By utilizing
existing knowledge from literature, nested sources of infor-
mation can be employed to estimate one marker based on
the other. In this research, data from Shahar and Agmon [3]
were used to inform the model to derive walking speed from
cadence estimation using the second level predictor presented
in Equation 2. The multilevel model, with both level predic-
tors connected, is presented in Figure 3.

by =ty + A (M

i

N=aQ -4 )

When analyzing walking-induced vibration signals, the time
of the step events can be determined using Equation 1. When
the time differences between detected step events exceed
the most frequently occurring value, there are likely missing
steps. Consequently, additional random variables describing
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FIGURE 3. Multilevel model of the time of step events (cadence) with
A¢ = 60/ and walking speed.

the possible missing step’s time are included in the analysis.
In the walking speed level, « and B are unknown ran-
dom variables representing slope and intercept, respectively,
of the proportional relationship between cadence and walking
speed. The multilevel model’s random variables are €2, «, and
B and different missing steps times ¢#; for each floor vibration
signal. Here, o and B manage the uncertainty linked to the
step length.

A. PRIORS & PRIOR PREDICTIVE CHECK

The selection of the prior distribution for cadence was based
on the principle of maximum entropy [32], and the largest
entropy was considered according to the data provided.
The literature suggests a range of human cadence between
20 steps/minute and 140 steps/minute [3], [9]. Thus, a uni-
form distribution between these values, although a broad prior
distribution, best represents current knowledge.

A prior predictive check of this model parameter is
reported to assess that the chosen prior is consistent with
current knowledge [33]. Figure 4 (a) shows the prior predic-
tive check for cadence and its relationship to the predicted
time interval between step events A;, y-axis. It is noteworthy
that the distribution’s mass is tightly concentrated around
possible values for the time between steps, supported by sci-
entific reasoning. Extreme values of cadence (120-140 steps/
minute) indicate that steps occur every 0.4-0.5 seconds. Val-
ues lower than this range would suggest running, rendering
the distribution for cadence invalid in this analysis. Similarly,
lower cadence values indicate that the person has completed
at least one cycle, meaning the same foot has contacted the
floor twice. The minimum time between steps would be three
seconds, indicating the person is not moving.

The priors selected for the & and 8 parameters of the walk-
ing speed level predictor were two skew-normal distributions,
defined as ¢ ~ f(x | © = 0.009,0 = 0.005,v = 3)
and 8 ~ f(x | o = 02,0 = 0.01,v = 6). These
informative priors were chosen based on an initial fitting
of the data collected from the literature. The skew-normal
distributions were selected to align with the positive nature of
both parameters, with u, o, and v representing the respective
distributions’ mean, standard deviation, and skewness.
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FIGURE 4. Prior predictive check for model parameters. a) A; vs. @,
b) M(x & B) vs. Q.

To understand the interplay of these prior distributions in
the inference process, we assessed the effect of the multi-
variate distribution in the walking speed predictions [33].
The data generated by both distributions leads to the results
presented in Figure 4.b, showing that walking speed values
given cadence are physically plausible. The lowest value of
cadence that represents zero movement leads to a walking
speed marker of 0 m/s. Similarly, the extreme values of walk-
ing speed are associated with cadence for walking. Speed
values over 2.0 m/s are associated with running, which is
outside the scope of this study. Prior predictive checks on
multilevel model parameters indicate that the prior predictive
distributions have mass around extreme but plausible data,
and there is no mass in implausible data.

B. LIKELIHOOD

The Bayesian formulation presented in Equation 3 estimates
the probability of the multilevel model parameters € given the
data. The data for the first level defined as Dy = {t1, 12, .. . t,,}
represent the time of the detected step events from accelera-
tion signals. The data for the second level defined as Dy =
(121, TI11, [Q2, T2, . .. [$2,, TT,,1} represent the information
collected from the literature on cadence (£2,,) and associated
walking speed values (IT,,). The data consist of cadence and
walking speed derived from an 8-10 meter walkway test with
60 adults, ranging in age from 18 to 80, recording at least
fifteen cycles per participant [3].

Likelihood

Posterior Prior  —t—
P@O|DMI) = POIM) ———— 3)

P(DIM)

The likelihood P(D|@, M) is a probability density function
that describes the probability of the data given the model M
and the parameters 6. Given the unknown nature of the like-
lihood function, an evaluation of multiple distributions using
leave-one-out (LOO) cross-validation and Pareto Smoothed
Importance Sampling (PSIS) was performed. This assess-
ment involved using the same defined prior distributions and
available data. Out-of-sample predictive accuracy measures
how well a model predicts new, unseen data points, helping
to determine which likelihood function results in models
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FIGURE 5. Expected log point-wise predictive density (ELPD) for different
likelihood functions (In-sample ELPD: ELPD without penalization for the
number of parameters. ELPD difference: standard error of the difference
in ELPD between the model and the best model. A dashed line indicates
the best function).

that make the most accurate predictions. This estimation
was calculated for each likelihood function using poste-
rior simulations. The likelihoods evaluated are presented
in Figure 5 with their respective expected log point-wise
predictive density (ELPD). The selected distributions are
positively supported, aligning with the positive nature of the
observations. From this comparison, the Gaussian likelihood
presented in Equation 4 and Equation 5 could be considered
the best assumption for the inference process. Thus, the like-
lihood for step times (cadence) was defined as:

n 2
1 1t — t,(OM))
P(D]|0M): I I—Xex [___ L (4)
i1 o2 P 2 or?
And for walking speed as:

S 1 (I1; — T1,0M))?
P(Dy|0M) = —_xexp|————
2| g OwsV 2T P |: 2 Oys? :|

&)

Parameters o, and o,,; are also considered random variables
defined by exponential prior distributions as o; ~ f(x | A =
1/A) and o5 ~ f(x | X = 10), respectively. Where A,
represents the lowest time interval between detected steps
events from the acceleration signal.

C. MARKOV CHAIN MONTE CARLO (MCMC)
SIMULATIONS
In Bayesian analysis, Markov Chain Monte Carlo (MCMC)
simulations are indispensable for sampling from complex
probability distributions, particularly when analytical solu-
tions are impractical or when handling high-dimensional
joint posteriors. These methods iteratively generate sam-
ples that systematically converge to the target distribution
P@OD,M,I).

To approximate the joint posterior distribution, we used
4,000 samples and ran five parallel chains to ensure con-
vergence. Convergence analysis utilized the Potential Scale
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Reduction Factor (PSRF) [34], a diagnostic tool that com-
pares variances across multiple sequences. A PSRF value
lower than 1.1 indicates that the within and between chain
variances are sufficiently close, suggesting convergence to
the same distribution. The MCMC analysis was implemented
using Python 3.8 libraries [35], [36]. Convergence was
achieved, with PSRF values below 1.1 for all parameters [30].

D. POSTERIOR PREDICTIVE CHECK

Two decision-making methods were used to evaluate the
posterior distributions of cadence and walking speed. The
first method employed was the 95% High Posterior Den-
sity (HPD) in conjunction with reference values. The HPD
represents the range of most credible values, while the refer-
ence values are the cadence and walking speed measurements
obtained from the APDM sensors. The second criterion
was the region of practical equivalence (ROPE) [37], which
defines a range of practical values considered satisfactory
for practical purposes. Our analysis combines the HPD and
ROPE to form the decision rule, following the principles
outlined in [37]. For the decision rule, if more than 90% of
the 95HPD falls inside the ROPE, we can accept the target
values for practical purposes. If less than 90% of the 9SHPD
falls entirely outside ROPE, we can reject the target value of
the marker. For any other case, we withhold the decision. The
decision rule 95SHPD + ROPE is more practical than using
the reference values and the HPD, given that it considers the
uncertainty of the estimation and evaluates how close or far
from the practical values these estimations are.

The ROPE is the range of parameter values equivalent
to the null value for practical purposes. Employing ROPE
as a decision rule requires the most credible values of the
marker to be sufficiently close to the null value to accept
it or sufficiently far to reject it [37]. This study defined
the ROPE based on the cadence and walking speed values
obtained from the APDM sensors. Since the ultimate goal of
the proposed models is to track changes in a cadence that cor-
relates with changes in health, a variation of 10 steps/minute
was used based on current literature [4]. Thus, the ROPEs
for cadence in trials at 90, 120, and 130 BPM were defined
as [80,100], [110-130], and [120-140] steps/minute, respec-
tively. For walking speed, the literature correlates changes
in health conditions with changes of 0.14 m/s [5]; thus, the
ROPE for this marker in trials at 90, 120, and 130 BPM
were selected as [0.69,1.0], [1.24,1.55], and [1.33,1.67] m/s,
respectively.

The results for trials 4, 10, and 21 at 90, 120, and 130 BPM
are presented in Figure 6-(a,b,c), respectively. The first plot
illustrates the acceleration record, with vertical lines marking
the identified steps and red lines indicating missing steps.
The second plot displays the posterior distribution of cadence,
with the red band representing the Region of Practical Equiv-
alence (ROPE). The third plot presents the estimated walking
speed, along with the ROPE. Table 2 and Table 3 summa-
rize the results for the 27 trials and the decisions reached.
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FIGURE 6. Posterior distributions for cadence and walking speed for

trials 4,10, and 21, at 90 (a), 120 (b), and 130 (b) BPM. Distribution for
walking speed and cadence, APDM value, 95% HPD, and ROPE.

The 95% HPD, the APDM reference value, and ROPE are
highlighted on each graph. Similarly, Figure 7-(a,b,c) shows
the posterior distribution of the random variables describing
the time of the missing steps events from the acceleration
signal with their 95% HPD and ROPE [30].

E. SENSITIVITY ANALYSIS

This analysis aims to evaluate the robustness of the model
and the consistent decisions when using different prior
distributions. Priors distribution were defined as, o; ~ Uni-
form(x | a = 0.5A;,; b = 1.5A;,), @ ~ Weibull(x | A = 3,
K =0.012); B ~ Weibull(x | A = 6, K = 0.23) and g5 ~
Weibull(x | A = 6, K = 2). Limits of these priors represent
plausible times of step events and walking speed values. The
results presented thus far will be addressed from this point
forward as the results of the first analysis (A1). The second
set of priors will be addressed as the results of the second
analysis (Ap).
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TABLE 2. Characteristics of the cadence posterior distribution for trials at

90, 120, and 130 BPM, respectively.

Trial information | Reference value Posterior distribution of cadence
. Metronome Cadence Mean 95 AHPD % inside .
Trial No (BPM) from APDM (steps/min) interval ROPE Decision
(steps/minute) ) (steps/min)
1 90.1 91.6 [91.1-92.0] 100 Accept
2 90.2 91.3 [90.5-92.0] 100 Accept
3 90.2 91.8 [91.4-92.1] 100 Accept
4 90.3 90.8 [89.9-91.7] 100 Accept
5 90 89.5 91.05 [87.8-94.0] 100 Accept
6 90 90.9 [90.0-91.8] 100 Accept
7 90.4 89.1 [88.3-90.0] 100 Accept
8 90.7 90.9 [90.6-91.3] 100 Accept
9 120 121 [121-122] 100 Accept
10 121 122 [121-122] 100 Accept
11 120 121 [120-121] 100 Accept
12 121 122 [121-123] 100 Accept
13 120 121 [120-121] 100 Accept
14 120 121 122 [122-123] 100 Accept
15 120 121 [121-122] 100 Accept
16 119 120 [119-120] 100 Accept
17 120 121 [1201-122] 100 Accept
18 130 131 [30-131] | 100 | Accept
19 128 129 [128-130] 100 Accept
20 129 129 [128-129] 100 Accept
21 130 130 [129-130] 100 Accept
22 131 130 [130-131] 100 Accept
23 130 128 129 [129-130] 100 Accept
24 130 131 [131-132] 100 Accept
25 130 129 [129-130] 100 Accept
26 130 132 [131-132) 100 Accept
27 132 132 [131-132] 100 Accept

— tp mean

to 95% HPD

3000

2000

count

1000

RSt

98.21 %
in ROPE

16.5
to [s]

|EEE Journal of Translational

Engineering in
Health and Medicine

—— tp mean
to 95% HPD

—— t; mean
t1 95% HPD

—— t3 mean
t2 95% HPD

2500
3000 2500
2000 o
100.0 % ?,?;?gp £ 2000 100.0 %|
in ROPE in ROP|
2000 E
e 5500
g 3
8 1000
1000
500
0
;0-8 0 %00 1825 186 188
o [s] t1 [s] t2[s]
—— to mean —— t; mean —— t; mean

to 95% HPD

t1 95% HPD

t; 95% HPD

TABLE 3. Characteristics of walking speed posterior distribution for trials
at 90, 120, and 130 BPM, respectively.

V. DISCUSSION

Trial information | Reference value | Posterior distribution of walking speed I1
. Metronome Wallding speed Mean 9; %HPD % inside .
Trial No (BPM) from APDM (m/sec) interval ROPE Decision
(m/sec) T (m/sec) ’
1 0.83 0.98 |[[0.94-1.02]| 99.17 Accept
2 0.88 0.98 |[0.94-1.02]| 99.41 Accept
3 0.82 0.98 |[0.94-1.02]| 98.92 Accept
4 0.86 0.97 {[0.93-1.01] 100 Accept
5 90 0.83 0.97 |[0.91-1.02]| 99.43 Accept
6 0.84 0.97 [[0.93-1.01]| 100 Accept
7 0.82 0.95 |[0.91-0.99] 100 Accept
8 0.83 0.97 |[0.93-1.01]| 100 Accept
9 1.38 1.36 [[1.31,1.41]] 100 Accept
10 1.38 1.37 | [1.32,1.43] 100 Accept
11 1.38 1.35 | [1.30-1.40] 100 Accept
12 1.37 1.37 |[1.32-1.42]| 100 Accept
13 1.37 1.35 | [1.31-1.41] 100 Accept
14 120 1.37 1.38 | [1.33-1.43] 100 Accept
15 1.39 1.37 | [1.32-1.42] 100 Accept
16 1.33 1.35 | [1.30-1.40] 100 Accept
17 1.36 1.37 |[1.31-142]| 100 Accept
18 1.57 1.48 [[1.43-1.54] 100 Accept
19 1.55 1.47 | [1.41-1.52] 100 Accept
20 1.53 1.46 | [1.41-1.51] 100 Accept
21 1.50 147 |[142-1.53]| 100 | Accept
22 1.53 1.48 | [1.43-1.54] 100 Accept
23 130 1.55 147 |[1.42-1.52] 100 Accept
24 1.57 1.50 | [1.44-1.55] 100 Accept
25 1.58 147 |[1.41-1.52] 100 Accept
26 1.54 1.50 | [1.44-1.55] 100 Accept
27 1.55 1.50 | [1.44-1.55] 100 Accept

The analysis of twenty-seven trials at different tempos
demonstrates satisfactory results for estimating cadence
and walking speed using the proposed multilevel model.
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FIGURE 7. Missing steps times posterior distributions, with (a) missing
steps from Figure 6 (a.1), (b) missing steps from Figure 6 (b.1), (c) missing
steps from Figure 6 (c.1).

The baseline (target value) of the parameters, which is the
ADPM sensor measurements for cadence and walking speed,
falls inside the 95% HPD, and more than 90% of this range
falls within the ROPE for all cases, further indicating the prac-
ticality and reliability of the estimations. The mean values
of the posterior distribution for cadence and walking speed,
presented in Table 2 and Table 3, provide the best estimates
for these parameters and are practically equivalent to the
target values.

The results of the distribution for cadence, which is directly
estimated from the acceleration record, can be attributed
to including missing step times as random variables in the
analysis. Data imputation has provided more flexibility for
the parameter values, reducing bias in cadence estimations.
Figure 7 shows that 95SHPD of these stochastic variables are
within the ROPE in a percentage greater than 95% for 96%
of the trials.

While the results for walking speed are satisfactory, there
is more variation in the results associated with a cadence
value of 90 steps per minute. This variation may be attributed
to the insufficient information extracted from the literature
for walking speeds between 0.85 and 1.0 m/s. Creating a
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and 130 BPM—comparing analysis A; and A, with two sets of priors.
Marker *,*,*: 5K,7K, and 10K samples, respectively.

unified model representing the variability among individual
subjects or incorporating spatial dimensions when dealing
with data from multiple individuals can further reduce uncer-
tainty in the estimation. It’s important to note that higher
uncertainty in the estimation stems from incomplete data
rather than modeling errors. For example, if spatial data, such
as step localization, were available, it would contribute to a
more accurate estimation of an individual’s walking speed by
directly accounting for step length, which is influenced by
subject-specific characteristics such as age or height [38].
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The sensitivity analysis, performed using a different set
of priors, confirms that the decision about cadence remains
consistent, with posterior distributions of the model param-
eters falling within the range of practical values over 90%.
Figure 8 and Figure 9 present the results of twenty-seven
trials for cadence and walking speed, respectively. While the
decisions for cadence and walking speed remain unchanged,
it should be noted that for trials marked with (*), the infer-
ence in Ay was insufficient under the same conditions as Aj.
In these cases, convergence was achieved only after increas-
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FIGURE 10. Individuals walking at self-selected speeds and posterior
distributions of cadence and walking speed.

ing the number of draws to 5K, 7K, and 10K for specific
trials. The complete results of the second analysis, including
convergence diagnostics, marginals, and joint posterior dis-
tributions, can be found on the OSF platform [30].

VI. UNATTENDED IMPLEMENTATION

An unattended implementation was conducted to demonstrate
the model’s efficacy in uncontrolled monitoring scenarios
where velocity is not regulated. For this purpose, two Log-
itech C615 1080p cameras were strategically positioned on
the ceiling to capture individuals walking, providing ground
truth validation. A threshold-crossing acceleration trigger
was implemented to synchronize data collection, simultane-
ously initiating acceleration recording and video capture. The
cameras’ field of view covered the entire corridor, including
two demarcated lines representing the start and end of a
ten-meter walkway. Data collection involved gathering video
recordings and acceleration data from ten individuals walking
at various self-selected speeds. While subjects were informed
about the system collecting video and floor vibrations by
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TABLE 4. Characteristics of walking speed and cadence posterior
distributions for all subjects.

Information | Reference value Posterior distribution of Cadence 2

Cadence Mean 95 %HPD % inside
Subject ID | from Video (steps/min) interval (1;\ OPE Decision

(steps/min) SLeps (steps/min) B
001 97.9 95.8 93.9-97.9 100 Accept
002 90.5 91.6 91.2-91.9 100 Accept
003 114 111 110-112 100 Accept
004 107 103 102-103 90.3 | Accept
005 117 118 118-119 100 Accept
006 108 110 110-111 100 Accept
007 107 105 104-106 100 Accept
008 115 115 114-116 100 Accept
009 103 104 104-105 100 Accept
010 120 117 116-118 100 Accept

Information | Reference value | Posterior distribution of walking speed I1

Walking speed Moan 95 %HPD |, iside

Subject ID | from Video (m/sec) interval (1;\ OiDE Decision
(m/sec) o (m/sec)

001 0.96 0.97 0.93-1.01 100 Accept
002 1.01 0.92 0.89-0.95 100 Accept
003 1.19 1.16 1.12-1.19 100 Accept
004 1.38 1.33 1.28-1.37 100 Accept
005 1.50 1.55 1.50-1.60 100 Accept
006 1.15 1.20 1.12-1.19 100 Accept
007 1.19 1.09 1.05-1.12 100 Accept
008 1.28 1.21 1.17-1.25 100 Accept
009 1.44 1.35 1.31-1.39 100 Accept
010 1.33 1.23 1.20-1.27 100 Accept

IRB regulations, they were not instructed to walk at specific
speeds or times. Recordings were made randomly, ensuring
subjects remained unaware of being monitored in real-time.
As a result, some subjects engaged in dual tasks, such as
holding a backpack or looking at their cell phones while
walking.

From the probabilistic model formulated, estimations for
both walking speed and cadence were derived. These esti-
mations were then compared with values extracted from the
video recordings. Figure 10 illustrates the posterior distri-
butions of cadence and walking speed for three subjects,
demonstrating that the credible interval falls within the
Region of Practical Equivalence (ROPE) in a percentage
greater than 90%. This indicates the estimations are practi-
cally equivalent to those extracted from the video recordings.
Posterior distributions for all subjects can be found in [30].
A summary of mean values, credible intervals, and the per-
centage of ROPE agreement is presented in Table 4 for
both parameters and all subjects. Acceleration data and the
probabilistic analysis for this implementation can be accessed
in [30].

The uncertainty of the walking speed estimations is greater
than the uncertainty associated with the cadence estimation
in all cases. However, the criteria used to evaluate the uncer-
tainty draw an acceptable decision for both distributions.
Notably, the subjects identified in the data collection process
have different heights, an additional parameter expected to
affect walking speed estimations for similar cadence values.
The step length of each individual is intrinsically incorporated
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in the joint distribution of parameters « and 8 from the model
formulation. Incorporating this additional layer of informa-
tion in the multilevel model offers the opportunity to reduce
uncertainty and estimate the step length for each individual.

VIi. CONCLUSION

The approach presented in this manuscript expands our use
of structural vibrations under human excitation to extract
relevant insights about occupants. This manuscript intro-
duces the first known probabilistic multilevel model that
uses floor acceleration signals induced by walking to esti-
mate gait parameters, including cadence and walking speed.
By accounting for missing or incomplete information in the
acceleration signal, the proposed model offers a more realistic
estimation of these parameters, addressing common chal-
lenges such as missing steps and low signal-to-noise ratios
in at-home assessments. Estimating cadence using signals
with missing step events can result in inaccurate cadence and
walking speed estimations, impeding their utility in corre-
lating changes in health. The formulated model tackles this
issue by providing a more realistic analysis of gait parameters
while considering the available data and the limitations of the
technology.

The results of the cadence and walking speed estimations
demonstrate that in the twenty-seven cases evaluated using
equivalence testing, the 95% HPD of cadence fell within more
than 90% of the range of practical equivalence (ROPE). This
indicates that the estimated cadence and walking speed values
are practically equivalent to the baseline values measured
with the APDM sensors. Similarly, including missing step
events as stochastic variables in the analysis reduced bias in
the cadence estimations, improving their practical relevance.

The combination of 95SHPD and ROPE as decision criteria
proved to be more stringent in accepting the target values.
Although the ADPM measurements fell within the 95% HPD
for all cases, the ROPE criteria evaluated the extent to which
the distribution approached the null value, considering the
uncertainty of the estimation. This approach enables a more
informed decision regarding the parameters. The sensitivity
analysis demonstrated that using different priors for all mul-
tilevel model parameters resulted in the same decision as the
initial analysis. However, the complete analysis required an
increase in the number of samples for specific trials.

While the posterior distribution for walking speeds associ-
ated with a cadence value of 90 steps per minute fell within
the region of practical equivalence according to the ROPE
criteria, it appeared to be less consistent with the variability
of other cadence-walking speed combinations. The authors
believe this outcome indicates incomplete data rather than
problems with the model formulation. Expanding the model
to incorporate spatial information will further reduce uncer-
tainty.

To further validate the model, a real-time monitoring
implementation was conducted. Video recordings and accel-
eration data were collected from ten individuals walking
at a self-selected pace. All estimations derived from the
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probabilistic model formulated here resulted in accepted
decisions based on 95%HPD and ROPE criteria combined.
These results suggest that the model can reliably estimate
these markers in unattended acquisition and produce estima-
tions practically equivalent to those obtained from APDM
and video recordings.

The model presented herein demonstrates robust perfor-
mance, contingent upon detecting a minimum of three-step
events (even with background noise), collectively represent-
ing a complete walking cycle. However, supplementary signal
enhancement techniques may be necessary to extract the gait
signal in scenarios where all step events are entirely obscured
by noise. These techniques could involve the application of
filtering methodologies to distinguish the gait signal from the
ambient noise. Following signal enhancement, the model is
anticipated to function as intended.
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